Nesting Habitat Suitability of the Kentish Plover in the Arid Lands of Xinjiang, China
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources and Processing
2.2.1. Nesting Site Data
2.2.2. Selection of Ecological Factors and Data Sources
2.3. Model Operation and Effect Evaluation
2.3.1. Model Building
2.3.2. Verification of the Model
2.3.3. Assessment of Importance
2.3.4. Classification of Suitability
3. Results
3.1. Model Performance
3.2. Importance of the Ecological Factors
3.3. Nesting Habitat Suitability Maps for C. alexandrinus
3.4. Conservation Status of the Plover Nesting Site
4. Discussion
4.1. Major Ecological Factors Influencing Habitat Assessment
4.2. The Plasticity of the Nest to Land Use
4.3. Conservation Gaps in the Nesting Habitat of C. alexandrinus
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Newbold, T.; Hudson, L.N.; Hill, S.L.; Contu, S.; Lysenko, I.; Senior, R.A.; Börger, L.; Bennett, D.J.; Choimes, A.; Collen, B.; et al. Global effects of land use on local terrestrial biodiversity. Nature 2015, 520, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Maxwell, S.L.; Fuller, R.A.; Brooks, T.M.; Watson, J.E.M. Biodiversity: The ravages of guns, nets and bulldozers. Nature 2016, 536, 143–145. [Google Scholar] [CrossRef] [PubMed]
- Owens, I.P.F.; Bennett, P.M. Ecological basis of extinction risk in birds: Habitat loss versus human persecution and introduced predators. Proc. Natl. Acad. Sci. USA 2000, 97, 12144–12148. [Google Scholar] [CrossRef]
- Brooks, T.M.; Mittermeier, R.A.; Mittermeier, C.G.; Da Fonseca, G.A.; Rylands, A.B.; Konstant, W.R.; Flick, P.; Pilgrim, J.; Oldfield, S.; Magin, G.; et al. Habitat Loss and Extinction in the Hotspots of Biodiversity. Conserv. Biol. 2002, 16, 909–923. [Google Scholar] [CrossRef]
- Ma, Z.; Choi, C.Y.; Gan, X.; Li, J.; Liu, Y.; Melville, D.S.; Mu, T.; Piersma, T.; Zhang, Z. Achievements, challenges, and recommendations for waterbird conservation in China’s coastal wetlands. Avian Res. 2023, 14, 100123. [Google Scholar] [CrossRef]
- Kubelka, V.; Sládeček, M.; Zámečník, V.; Vozabulová, E.; Šálek, M. Seasonality Predicts Egg Size Better Than Nesting Habitat in a Precocial Shorebird. Ardea 2019, 107, 239–250. [Google Scholar] [CrossRef]
- Wang, P.; Xia, W.; Zhou, E.; Li, Y.; Hu, J. Suitable Habitats of Chrysolophus spp. Need Urgent Protection from Habitat Fragmentation in China: Especially Suitable Habitats in Non-Nature Reserve Areas. Animals 2022, 12, 2047. [Google Scholar] [CrossRef]
- Zhu, B.R.; Verhoeven, M.A.; Velasco, N.; Sanchez-Aguilar, L.; Zhang, Z.W.; Piersma, T. Current breeding distributions and predicted range shifts under climate change in two subspecies of Black-tailed Godwits in Asia. Glob. Chang. Biol. 2022, 28, 5416–5426. [Google Scholar] [CrossRef]
- Gomez-Serrano, M.A.; Lopez-Lopez, P. Nest site selection by Kentish Plover suggests a trade-off between nest-crypsis and predator detection strategies. PLoS ONE 2014, 9, e107121. [Google Scholar] [CrossRef]
- Maslo, B.; Schlacher, T.A.; Weston, M.A.; Huijbers, C.M.; Anderson, C.; Gilby, B.L.; Olds, A.D.; Connolly, R.M.; Schoeman, D.S. Regional drivers of clutch loss reveal important trade-offs for beach-nesting birds. PeerJ 2016, 4, e2460. [Google Scholar] [CrossRef]
- AlRashidi, M.; Shobrak, M.; Al-Eissa, M.S.; Székely, T. Integrating spatial data and shorebird nesting locations to predict the potential future impact of global warming on coastal habitats: A case study on Farasan Islands, Saudi Arabia. Saudi J. Biol. Sci. 2012, 19, 311–315. [Google Scholar] [CrossRef] [PubMed]
- Di Marco, M.; Watson, J.E.M.; Possingham, H.P.; Venter, O. Limitations and trade-offs in the use of species distribution maps for protected area planning. J. Appl. Ecol. 2017, 54, 402–411. [Google Scholar] [CrossRef]
- Bai, J.; Hou, P.; Jin, D.; Zhai, J.; Ma, Y.; Zhao, J. Habitat Suitability Assessment of Black-Necked Crane (Grus nigricollis) in the Zoige Grassland Wetland Ecological Function Zone on the Eastern Tibetan Plateau. Diversity 2022, 14, 579. [Google Scholar] [CrossRef]
- Engel, N.; Végvári, Z.; Rice, R.; Kubelka, V.; Székely, T. Incubating parents serve as visual cues to predators in Kentish Plover (Charadrius alexandrinus). PLoS ONE 2020, 15, e0236489. [Google Scholar] [CrossRef]
- Kubelka, V.; Šálek, M.; Tomkovich, P.; Végvári, Z.; Freckleton, R.P.; Székely, T. Global pattern of nest predation is disrupted by climate change in shorebirds. Science 2018, 362, 680–683. [Google Scholar] [CrossRef] [PubMed]
- Shew, J.J.; Nielsen, C.K.; Sparling, D.W. Finer-scale habitat predicts nest survival in grassland birds more than management and landscape: A multi-scale perspective. J. Appl. Ecol. 2019, 56, 929–945. [Google Scholar] [CrossRef]
- del Hoyo, J.; Elliott, A.; Sargatal, J. Handbook of the Birds of the World. Volume 3: Hoatzin to Auks; Barcelona: Lynx Edicions, Spain, 1996. [Google Scholar]
- Piersma, T.; Lindström, A. Migrating shorebirds as integrative sentinels of global environmental change. Ibis 2004, 146, 61–69. [Google Scholar] [CrossRef]
- Thomas, G.H.; Lanctot, R.B.; Szekely, T. Can intrinsic factors explain population declines in North American breeding shorebirds? A comparative analysis. Anim. Conserv. 2006, 9, 252–258. [Google Scholar] [CrossRef]
- Massey, K.; Cosgrove, P.; Massey, F.; Jackson, D.; Chapman, M. Habitat characteristics of breeding Eurasian Whimbrel Numenius phaeopus on Mainland Shetland, Scotland, UK. Bird Study 2016, 63, 500–508. [Google Scholar] [CrossRef]
- Toral, G.M.; Figuerola, J. Nest Success of Black-Winged Stilt Himantopus Himantopus and Kentish Plover Charadrius alexandrines in Rice Fields, Southwest Spain. Ardea 2012, 100, 29–36. [Google Scholar] [CrossRef]
- Loegering, J.P.; Fraser, J.D. Factors Affecting Piping Plover Chick Survival in Different Brood-Rearing Habitats. J. Wildlife Manag. 1995, 59, 646–655. [Google Scholar] [CrossRef]
- Kosztolányi, A.; Székely, T.; Cuthill, I.C. The function of habitat change during brood-rearing in the precocial Kentish Plover Charadrius alexandrinus. Acta Ethol. 2007, 10, 73–79. [Google Scholar] [CrossRef]
- AlRashidi, M.; Long, P.R.; O’Connell, M.; Shobrak, M.; Székely, T. Use of remote sensing to identify suitable breeding habitat for the Kentish Plover and estimate population size along the western coast of Saudi Arabia. Wader Study Group Bull. 2011, 118, 32–39. [Google Scholar]
- Zhao, N.; Xia, S.X.; Yu, X.B.; Duan, H.L.; Li, J.P.; Chen, Y.H. Habitat suitability assessment of shorebirds in Bohai Bay coast using MaxEnt Model. Chin. J. Ecol. 2020, 1, 194–205. [Google Scholar]
- Caughley, G.; Sinclair, A.R. Wildlife Ecology and Management; Blackwell Scientific Publications: Boston, MA, USA, 1994. [Google Scholar]
- Zhang, Y.Y.; Zhang, Z.W.; Dong, L.; Ding, P.; Ding, C.Q.; Ma, Z.J.; Zheng, G.M. Evaluation of the Red List of birds in China. Biodivers. Sci. 2016, 24, 568–577. [Google Scholar] [CrossRef]
- Ma, M.; Leader, P.J.; Carey, G.J.; Williams, B. A Report of Birds Banding and Recovery in Xinjiang, China. Zool. Res. 2002, 23, 105–106, 112, 135. [Google Scholar]
- Ma, M.; Bayahen, K.; Li, F.; Hu, B.W.; Wu, J.Q.; Douglas, M.; Gao, X.; Amanjiang, R.; Chen, Y.; Mei, Y.; et al. List of birds and count of autumn migration in Ebinur wetland nature reserve. Sichuan J. Zool. 2010, 6, 912–918. [Google Scholar]
- Wu, R.; Zhang, S.; Yu, D.W.; Zhao, P.; Li, X.; Wang, L.; Yu, Q.; Ma, J.; Chen, A.; Long, Y. Effectiveness of China’s nature reserves in representing ecological diversity. Front. Ecol. Environ. 2011, 9, 383–389. [Google Scholar] [CrossRef]
- Ma, Z.; Chen, Y.; Melville, D.S.; Fan, J.; Liu, J.; Dong, J.; Tan, K.; Cheng, X.; Fuller, R.A.; Xiao, X.; et al. Changes in area and number of nature reserves in China. Conserv. Biol. 2019, 33, 1066–1075. [Google Scholar] [CrossRef]
- Ding, P.; Song, Z.; Liu, Y.; Székely, T.; Shi, L.; Turghan, M.A. Variations in the Reproductive Strategies of Different Charadrius alexandrinus Populations in Xinjiang, China. Animals 2023, 13, 2260. [Google Scholar] [CrossRef]
- Székely, T. Why study plovers? The significance of non-model organisms in avian ecology, behaviour and evolution. J. Ornithol. 2019, 160, 923–933. [Google Scholar] [CrossRef]
- Wang, S.J. Complete Works of Rivers and Lakes in Xinjiang, China; Water Resources and Hydropower Press: Beijing, China, 2010. [Google Scholar]
- He, J.Y.; Zhang, M.J.; Wang, P.; Xin, H.; Huang, X. New Progress of the Study on Climate Change in Xinjiang. Arid. Land Res. 2011, 28, 499–508. [Google Scholar]
- Cui, C.; Yang, Q.; Wang, S. Comparison Analysis of the Long-Term Variations of Snow Cover between Mountain and Plain Areas in Xinjiang Region from 1960 to 2003. J. Glaciol. Geocryol. 2005, 27, 486–490. [Google Scholar] [CrossRef]
- Huang, X.; Liang, T.; Zhang, X.; Guo, Z. Validation of MODIS snow cover products using Landsat and ground measurements during the 2001–2005 snow seasons over northern Xinjiang, China. Int. J. Remote Sens. 2011, 32, 133–152. [Google Scholar] [CrossRef]
- China Meteorological Data Service Center. Daily Timed Data from Automated Weather Stations in China. Available online: http://data.cma.cn/en/?r=data/detail&dataCode=A.0012.0001 (accessed on 16 August 2021).
- Resource and Environment Science and Data Center, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences. Datasets. Available online: https://www.resdc.cn/DataSearch.aspx (accessed on 21 August 2022).
- Liu, L.; Zhang, X.; Chen, X.; Gao, Y.; Mi, J. GLC_FCS30-2020: Global Land Cover with Fine Classification System at 30m in 2020 (v1.2). Zenodo 2020. [Google Scholar] [CrossRef]
- BioONE: An Integrated Big BioData Infrastructure for CASEarth. Shared Datasets. Available online: https://bio-one.org.cn/BioDatasets_en.html (accessed on 16 March 2021).
- Merow, C.; Smith, M.J.; Silander, J.A. A practical guide to MaxEnt for modeling species’ distributions: What it does, and why inputs and settings matter. Ecography 2013, 36, 1058–1069. [Google Scholar] [CrossRef]
- Warren, D.L.; Matzke, N.J.; Cardillo, M.; Baumgartner, J.B.; Beaumont, L.J.; Turelli, M.; Glor, R.E.; Huron, N.A.; Simões, M.; Iglesias, T.L. ENMTools 1.0: An R package for comparative ecological biogeography. Ecography 2021, 44, 504–511. [Google Scholar] [CrossRef]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef]
- Liu, C.; White, M.; Newell, G. Selecting thresholds for the prediction of species occurrence with presence-only data. J. Biogeogr. 2013, 40, 778–789. [Google Scholar] [CrossRef]
- Jiménez-Valverde, A.; Lobo, J.M. Threshold criteria for conversion of probability of species presence to either–or presence–absence. Acta Oecol. 2007, 31, 361–369. [Google Scholar] [CrossRef]
- Kong, W.Y.; Li, X.H.; Zou, H.F. Optimizing MaxEnt model in the prediction of species distribution. Chin. J. Appl. Ecol. 2019, 30, 2116–2128. [Google Scholar] [CrossRef]
- Elith, J.; Graham, C.H.; Anderson, R.P.; Dudík, M.; Ferrier, S.; Guisan, A.; Hijmans, R.J.; Huettmann, F.; Leathwick, J.R.; Lehmann, A.; et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecograph 2006, 29, 129–151. [Google Scholar] [CrossRef]
- Elith, J.; Phillips, S.J.; Hastie, T.; Dudík, M.; Chee, Y.E.; Yates, C.J. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 2011, 17, 43–57. [Google Scholar] [CrossRef]
- Liu, C.; Berry, P.M.; Dawson, T.P.; Pearson, R.G. Selecting thresholds of occurrence in the prediction of species distributions. Ecography 2005, 28, 385–393. [Google Scholar] [CrossRef]
- Zhuo, Y.Y.; Kessler, M.; Wang, M.Y.; Xu, W.X.; Xu, F.; Yang, W.K. Habitat suitability assessment for the Great bustard Otis tarda tarda in Tacheng Basin, western China. Global Ecol. Conserv. 2021, 32, e01926. [Google Scholar] [CrossRef]
- Starck, J.M.; Ricklefs, R.E. Avian Growth and Development: Evolution within the Altricial-Precocial Spectrum; Oxford University Press: New York, NY, USA, 1998. [Google Scholar]
- Elias, S.P.; Fraser, J.D.; Buckley, P.A. Piping Plover Brood Foraging Ecology on New York Barrier Islands. J. Wildlife Manag. 2000, 64, 346–354. [Google Scholar] [CrossRef]
- Amat, J.A.; Masero, J.A. Belly-soaking: A behavioural solution to reduce excess body heat in the Kentish Plover Charadrius alexandrinus. J. Ethol. 2009, 27, 507–510. [Google Scholar] [CrossRef]
- AlRashidi, M.; Kosztolányi, A.; Shobrak, M.; Küpper, C.; Székely, T. Parental cooperation in an extreme hot environment: Natural behaviour and experimental evidence. Anim. Behav. 2011, 82, 235–243. [Google Scholar] [CrossRef]
- Ims, R.A.; Henden, J.A.; Strømeng, M.A.; Thingnes, A.V.; Garmo, M.J.; Jepsen, J.U. Arctic greening and bird nest predation risk across tundra ecotones. Nat. Clim. Chang. 2019, 9, 607–610. [Google Scholar] [CrossRef]
- Akcali, C.K.; Pérez-Mendoza, H.A.; Salazar-Valenzuela, D.; Kikuchi, D.W.; Guayasamin, J.M.; Pfennig, D.W. Evaluating the utility of camera traps in field studies of predation. PeerJ 2019, 7, e6487. [Google Scholar] [CrossRef]
- Halimubieke, N.; Valdebenito, J.O.; Harding, P.; Cruz-López, M.; Serrano-Meneses, M.A.; James, R.; Kupán, K.; Székely, T. Mate fidelity in a polygamous shorebird, the snowy plover (Charadrius nivosus). Ecol. Evol. 2019, 9, 10734–10745. [Google Scholar] [CrossRef]
- AlRashidi, M.; Kosztolányi, A.; Küpper, C.; Cuthill, I.C.; Javed, S.; Székely, T. The influence of a hot environment on parental cooperation of a ground-nesting shorebird, the Kentish Plover Charadrius alexandrinus. Front. Zool. 2010, 7, 1. [Google Scholar] [CrossRef]
- Bouakkaz, A.; Belhassini, K.; Bensouilah, T.; Bensouilah, M.A.; Houhamdi, M. Breeding behaviour of the Kentish Plover (Charadrius alexandrinus) in a salt marsh from the eastern high Plateaux, northeast Algeria. J. King Saud Univ. Sci. 2017, 29, 291–301. [Google Scholar] [CrossRef]
- Hanane, S. Breeding ecology of Kentish Plovers Charadrius alexandrinus in rocky and sandy habitats of north-west Morocco (North Africa). Ostrich 2011, 82, 217–223. [Google Scholar] [CrossRef]
- Kosztolanyi, A.; Szekely, T.; Cuthill, I.C.; Yilmaz, K.T.; Berberoglu, S. Ecological constraints on breeding system evolution: The influence of habitat on brood desertion in Kentish Plover. J. Anim. Ecol. 2006, 75, 257–265. [Google Scholar] [CrossRef] [PubMed]
- Norte, A.C.; Ramos, J.A. Nest-site selection and breeding biology of Kentish Plover Charadrius alexandrinus on sandy beaches of the Portuguese west coast. Ardeola 2004, 51, 255–268. [Google Scholar]
- Scarton, F.; Cecconi, G.; Valle, R. Use of dredge islands by a declining European shorebird, the Kentish Plover Charadrius alexandrinus. Wetl. Ecol. Manag. 2013, 21, 15–27. [Google Scholar] [CrossRef]
- Chokri, M.A.; Selmi, S. Nesting ecology of Pied Avocet Recurvirostra avosetta in Sfax salina, Tunisia. Ostrich 2011, 82, 11–16. [Google Scholar] [CrossRef]
- Rocha, A.D.; Fonseca, D.; Masero, J.A.; Ramos, J.A. Coastal saltpans are a good alternative breeding habitat for Kentish Plover Charadrius alexandrines when umbrella species are present. J. Avian Biol. 2016, 47, 824–833. [Google Scholar] [CrossRef]
- Wen, L.; Saintilan, N.; Reid, J.R.W.; Colloff, M.J. Changes in distribution of waterbirds following prolonged drought reflect habitat availability in coastal and inland regions. Ecol. Evol. 2016, 6, 6672–6689. [Google Scholar] [CrossRef]
- Jung, M.; Dahal, P.R.; Butchart, S.H.M.; Donald, P.F.; De Lamo, X.; Lesiv, M.; Visconti, P. A global map of terrestrial habitat types. Sci. Data 2020, 7, 256. [Google Scholar] [CrossRef] [PubMed]
- Sun, R.; Zheng, Y.; Lei, T.; Cui, G. An assessment of wetland nature reserves and the protection of China’s vertebrate diversity. Anim. Biodiv. Conserv. 2014, 37, 217–225. [Google Scholar] [CrossRef]
- Hu, R.; Wen, C.; Gu, Y.; Wang, H.; Gu, L.; Shi, X.; Zhang, J.; Wei, M.; He, F.; Lu, Z. A bird’s view of new conservation hotspots in China. Biol. Conserv. 2017, 211, 47–55. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhang, H.; Niu, Z.; Gong, P. Protection efficacy of national wetland reserves in China. Chin. Sci. Bull. 2012, 57, 1116–1134. [Google Scholar] [CrossRef]
- Luo, N.; Yu, R.; Mao, D.; Wen, B.; Liu, X. Spatiotemporal variations of wetlands in the northern Xinjiang with relationship to climate change. Wetl. Ecol. Manag. 2021, 29, 617–631. [Google Scholar] [CrossRef]
- Zuckerberg, B.; Woods, A.M.; Porter, W.F. Poleward shifts in breeding bird distributions in New York State. Glob. Chang. Biol. 2009, 15, 1866–1883. [Google Scholar] [CrossRef]
- Wauchope, H.S.; Shaw, J.D.; Varpe, Ø.; Lappo, E.G.; Boertmann, D.; Lanctot, R.B.; Fuller, R.A. Rapid climate-driven loss of breeding habitat for Arctic migratory birds. Glob. Chang. Biol. 2017, 23, 1085–1094. [Google Scholar] [CrossRef]
Ecological Factors | Description, Unit | Data Source |
---|---|---|
Mean temperature | Mean temperature during the breeding season from April to July, °C | [38] |
Precipitation | Precipitation during the breeding season from April to July, mm | [38] |
Altitude | Vertical elevation of the ground above or below sea level, m | [39] |
Slope | Degree of steepness of a surface unit, ° | [39] |
Aspect | Direction of the projection of a slope normal onto a horizontal plane, ° | [39] |
Distance from road | Distance to nearest road, m | [39] |
Distance from settlement | Distance to nearest settlement, m | [39] |
Distance from water | Distance to nearest water, m | [40] |
Land use | Land use type (cultivated land, forest, grassland, shrubland, wetland, water bodies, tundra, artificial surfaces, bare land, permanent snow and ice) | [40] |
NDVI | Normalized difference vegetation index | [39] |
Factors | Percent Contribution (%) | Permutation Importance (%) |
---|---|---|
Distance from water | 77.3 | 86.2 |
NDVI | 8.4 | 7.4 |
Mean temperature | 6.2 | 3.6 |
Slope | 2.1 | 0.9 |
Land use | 3.1 | 0.4 |
Distance from settlement | 1.8 | 0.9 |
Aspect | 0.8 | 0.1 |
Distance from road | 0.3 | 0.5 |
Area | Area and Proportion | Protected | Unprotected | Total |
---|---|---|---|---|
Northern Xinjiang | Area (km2) | 45,196.43 | 332,111.45 | 377,307.88 |
Proportion (%) | 11.98 | 88.02 | 100.00 | |
Most suitable nesting habitat | Area (km2) | 245.94 | 1667.77 | 1913.71 |
Proportion (%) | 12.85 | 87.15 | 100.00 | |
Second suitable nesting habitat | Area (km2) | 605.72 | 5207.89 | 5813.61 |
Proportion (%) | 10.42 | 89.58 | 100.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, P.; Song, Z.; Liu, Y.; Halimubieke, N.; Székely, T.; Shi, L. Nesting Habitat Suitability of the Kentish Plover in the Arid Lands of Xinjiang, China. Animals 2023, 13, 3369. https://doi.org/10.3390/ani13213369
Ding P, Song Z, Liu Y, Halimubieke N, Székely T, Shi L. Nesting Habitat Suitability of the Kentish Plover in the Arid Lands of Xinjiang, China. Animals. 2023; 13(21):3369. https://doi.org/10.3390/ani13213369
Chicago/Turabian StyleDing, Peng, Zitan Song, Yang Liu, Naerhulan Halimubieke, Tamás Székely, and Lei Shi. 2023. "Nesting Habitat Suitability of the Kentish Plover in the Arid Lands of Xinjiang, China" Animals 13, no. 21: 3369. https://doi.org/10.3390/ani13213369
APA StyleDing, P., Song, Z., Liu, Y., Halimubieke, N., Székely, T., & Shi, L. (2023). Nesting Habitat Suitability of the Kentish Plover in the Arid Lands of Xinjiang, China. Animals, 13(21), 3369. https://doi.org/10.3390/ani13213369