The Effect of Monensin vs. Neem, and Moringa Extracts on Nutrient Digestibility, Growth Performance, Methane, and Blood Profile of Merino Lambs
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal, Experimental Design, and Adaptation
2.2. Blood Collection and Analysis
2.3. Nutrient Digestibility and Nitrogen Balance Evaluation
2.4. Methane Emission Measurement
2.5. Chemical Analysis
2.6. Statistical Analysis
3. Results
3.1. Animal Performance and Nutrient Digestibility
3.2. Hematological and Serum Biochemical Profile
4. Discussion
Digestibility, N-Balance, and Growth Performance
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moss, A.R.; Jouany, J.P.; Newbold, J. Methane Production by Ruminants: Its Contribution to Global Warming. Anim. Res. 2000, 49, 231–253. [Google Scholar] [CrossRef]
- Patra, A.K.; Min, B.R.; Saxena, J. Dietary Tannins on Microbial Ecology of the Gastrointestinal Tract in Ruminants. In Dietary Phytochemicals and Microbes; Springer: Berlin/Heidelberg, Germany, 2011; pp. 237–262. ISBN 9789400739260. [Google Scholar]
- Ugbogu, E.A.; Elghandour, M.M.M.Y.; Ikpeazu, V.O.; Buendía, G.R.; Molina, O.M.; Arunsi, U.O.; Emmanuel, O.; Salem, A.Z.M. The Potential Impacts of Dietary Plant Natural Products on the Sustainable Mitigation of Methane Emission from Livestock Farming. J. Clean. Prod. 2019, 213, 915–925. [Google Scholar] [CrossRef]
- Cottle, D.J.; Nolan, J.V.; Wiedemann, S.G. Ruminant Enteric Methane Mitigation: A Review. Anim. Prod. Sci. 2011, 51, 491–514. [Google Scholar] [CrossRef]
- Hristov, A.N.; Oh, J.; Firkins, J.L.; Dijkstra, J.; Kebreab, E.; Waghorn, G.; Makkar, H.P.S.; Adesogan, A.T.; Yang, W.; Lee, C.; et al. SPECIAL TOPICS-Mitigation of Methane and Nitrous Oxide Emissions from Animal Operations: I. A Review of Enteric Methane Mitigation Options. J. Anim. Sci. 2013, 91, 5045–5069. [Google Scholar] [CrossRef]
- Malik, P.K.; Kolte, A.P.; Baruah, L.; Saravanan, M.; Bakshi, B.; Bhatta, R. Enteric Methane Mitigation in Sheep through Leaves of Selected Tanniniferous Tropical Tree Species. Livest. Sci. 2017, 200, 29–34. [Google Scholar] [CrossRef]
- Bhatta, R.; Saravanan, M.; Baruah, L.; Prasad, C.S. Effects of Graded Levels of Tannin-Containing Tropical Tree Leaves on in Vitro Rumen Fermentation, Total Protozoa and Methane Production. J. Appl. Microbiol. 2015, 118, 557–564. [Google Scholar] [CrossRef]
- Subapriya, R.; Nagini, S. Medicinal Properties of Neem Leaves: A Review. Curr. Med. Chem. Anti-Cancer Agents 2005, 5, 149–156. [Google Scholar] [CrossRef]
- Akanmu, A.M.; Hassen, A.; Adejoro, F.A. Gas Production, Digestibility and Efficacy of Stored or Fresh Plant Extracts to Reduce Methane Production on Different Substrates. Animals 2020, 10, 4–6. [Google Scholar] [CrossRef]
- Roque, B.M.; Van Lingen, H.J.; Vrancken, H.; Kebreab, E. Effect of Mootral-A Garlic- And Citrus-Extract-Based Feed Additive-And Enteric Methane Emissions in Feedlot Cattle. Transl. Anim. Sci. 2019, 3, 1383–1388. [Google Scholar] [CrossRef]
- Soliva, C.R.; Zeleke, A.B.; Clément, C.; Hess, H.D.; Fievez, V.; Kreuzer, M. In Vitro Screening of Various Tropical Foliages, Seeds, Fruits and Medicinal Plants for Low Methane and High Ammonia Generating Potentials in the Rumen. Anim. Feed Sci. Technol. 2008, 147, 53–71. [Google Scholar] [CrossRef]
- Leone, A.; Spada, A.; Battezzati, A.; Schiraldi, A.; Aristil, J.; Bertoli, S. Cultivation, Genetic, Ethnopharmacology, Phytochemistry and Pharmacology of Moringa oleifera Leaves: An Overview. Int. J. Mol. Sci. 2015, 16, 12791–12835. [Google Scholar] [CrossRef] [PubMed]
- Elghandour, M.M.Y.; Salem, A.Z.M.; Khusro, A.; Cipriano-Salazar, M.; Olivares-Pérez, J.; Barros-Rodriguez, M.A.; Lugo Coyote, R. Assessment of Some Browse Tree Leaves on Gas Production and Sustainable Mitigation of CH4 and CO2 Emissions in Dairy Calves at Different Age. J. Clean. Prod. 2017, 162, 1192–1199. [Google Scholar] [CrossRef]
- Akanmu, A.M.; Hassen, A. The Use of Certain Medicinal Plant Extracts Reduced in Vitro Methane Production While Improving in Vitro Organic Matter Digestibility. Anim. Prod. Sci. 2018, 58, 900–908. [Google Scholar] [CrossRef]
- Adejoro, F.A.; Hassen, A.; Akanmu, A.M.; Morgavi, D.P. Replacing Urea with Nitrate as a Non-Protein Nitrogen Source Increases Lambs’ Growth and Reduces Methane Production, Whereas Acacia Tannin Has No Effect. Anim. Feed Sci. Technol. 2020, 259, 114360. [Google Scholar] [CrossRef]
- Kholif, A.E.; Gouda, G.A.; Anele, U.Y.; Galyean, M.L. Extract of Moringa oleifera Leaves Improves Feed Utilization of Lactating Nubian Goats. Small Rumin. Res. 2018, 158, 69–75. [Google Scholar] [CrossRef]
- Ozer, J.; Ratner, M.; Shaw, M.; Bailey, W.; Schomaker, S. The Current State of Serum Biomarkers of Hepatotoxicity. Toxicology 2008, 245, 194–205. [Google Scholar] [CrossRef]
- Lepherd, M.L.; Canfield, P.J.; Hunt, G.B.; Bosward, K.L. Haematological, Biochemical and Selected Acute Phase Protein Reference Intervals for Weaned Female Merino Lambs. Aust. Vet. J. 2009, 87, 5–11. [Google Scholar] [CrossRef]
- AOAC. AOAC Official Methods of Analysis of AOAC International; AOAC: Rockville, MD, USA, 2005; ISBN 0935584544. [Google Scholar]
- Feldsine, P.; Abeyta, C.; Andrews, W.H. AOAC International Methods Committee Guidelines for Validation of Qualitative and Quantitative Food Microbiological Official Methods of Analysis. J. AOAC Int. 2002, 85, 1187–1200. [Google Scholar] [CrossRef]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef] [PubMed]
- Elghandour, M.M.Y.M.Y.; Vallejo, L.H.H.; Salem, A.Z.M.Z.M.; Mellado, M.; Camacho, L.M.M.; Cipriano, M.; Olafadehan, O.A.A.; Olivares, J.; Rojas, S. Moringa oleifera Leaf Meal as an Environmental Friendly Protein Source for Ruminants: Biomethane and Carbon Dioxide Production, and Fermentation Characteristics. J. Clean. Prod. 2017, 165, 1229–1238. [Google Scholar] [CrossRef]
- Saleem, A.; Saleem, M.; Akhtar, M.F. Antioxidant, Anti-Inflammatory and Antiarthritic Potential of Moringa oleifera Lam: An Ethnomedicinal Plant of Moringaceae Family. S. Afr. J. Bot. 2020, 128, 246–256. [Google Scholar] [CrossRef]
- Faniyi, T.O.; Adewumi, M.K.; Jack, A.A.; Adegbeye, M.J.; Elghandour, M.M.M.Y.; Barbabosa-Pliego, A.; Salem, A.Z.M. Extracts of Herbs and Spices as Feed Additives Mitigate Ruminal Methane Production and Improve Fermentation Characteristics in West African Dwarf Sheep. Trop. Anim. Health Prod. 2021, 53, 312. [Google Scholar] [CrossRef]
- El-Zaiat, H.M.; Elshafie, E.I.; Al-Marzooqi, W.; Dughaishi, K. Al Effects of Neem (Azadirachta indica) Leaf Powder Supplementation on Rumen Fermentation, Feed Intake, Apparent Digestibility and Performance in Omani Sheep. Animals 2022, 12, 3146. [Google Scholar] [CrossRef]
- Pal, K.; Patra, A.K.; Sahoo, A.; Kumawat, P.K. Evaluation of Several Tropical Tree Leaves for Methane Production Potential, Degradability and Rumen Fermentation In Vitro. Livest. Sci. 2015, 180, 98–105. [Google Scholar] [CrossRef]
- Arowolo, M.A.; He, J. Use of Probiotics and Botanical Extracts to Improve Ruminant Production in the Tropics: A Review. Anim. Nutr. 2018, 4, 241–249. [Google Scholar] [CrossRef] [PubMed]
- Makkar, H.P.S.; Becker, K. Nutrional Value and Whole and Ethanol Antinutritional Components of Extracted Moringa oleifera Leaves. Anim. Feed. Sci. Technol. 1996, 63, 211–228. [Google Scholar] [CrossRef]
- Falowo, A.B.; Mukumbo, F.E.; Idamokoro, E.M.; Lorenzo, J.M.; Afolayan, A.J.; Muchenje, V. Multi-Functional Application of Moringa oleifera Lam. in Nutrition and Animal Food Products: A Review. Food Res. Int. 2018, 106, 317–334. [Google Scholar] [CrossRef]
- Wina, E.; Muetzel, S.; Becker, K. The Impact of Saponins or Saponin-Containing Plant Materials on Ruminant Production-A Review. J. Agric. Food Chem. 2005, 53, 8093–8105. [Google Scholar] [CrossRef]
- Yatoo, M.A.; Chaudhary, L.C.; Agarwal, N.; Chaturvedi, V.B.; Kamra, D.N. Effect of Feeding of Blend of Essential Oils on Methane Production, Growth, and Nutrient Utilization in Growing Buffaloes. Asian-Australas. J. Anim. Sci. 2018, 31, 672–676. [Google Scholar] [CrossRef] [PubMed]
- Soliva, C.R.; Kreuzer, M.; Foidl, N.; Foidl, G.; Machmüller, A.; Hess, H.D. Feeding Value of Whole and Extracted Moringa oleifera Leaves for Ruminants and Their Effects on Ruminal Fermentation in Vitro. Anim. Feed Sci. Technol. 2005, 118, 47–62. [Google Scholar] [CrossRef]
- Jadhav, R.V.; Chaudhary, L.C.; Agarwal, N.; Kamra, D.N. Influence of Moringa oleifera Foliage Supplementation on Feed Intake, Rumen Fermentation and Microbial Profile of Goats. Indian J. Anim. Sci. 2018, 88, 458–462. [Google Scholar] [CrossRef]
- Oh, J.; Wall, E.H.; Bravo, D.M.; Hristov, A.N. Host-Mediated Effects of Phytonutrients in Ruminants: A Review. J. Dairy Sci. 2017, 100, 5974–5983. [Google Scholar] [CrossRef] [PubMed]
- Landau, S.Y.; Provenza, F.D.; Gardner, D.R.; Pfister, J.A.; Knoppel, E.L.; Peterson, C.; Kababya, D.; Needham, G.R.; Villalba, J.J. Neem-Tree (Azadirachta indica Juss.) Extract as a Feed Additive against the American Dog Tick (Dermacentor variabilis) in Sheep (Ovis aries). Vet. Parasitol. 2009, 165, 311–317. [Google Scholar] [CrossRef] [PubMed]
- Morris, J.; Gonzales, C.B.; De La Chapa, J.J.; Cabang, A.B.; Fountzilas, C.; Patel, M.; Orozco, S.; Wargovich, M.J. The Highly Pure Neem Leaf Extract, SCNE, Inhibits Tumorigenesis in Oral Squamous Cell Carcinoma via Disruption of Pro-Tumor Inflammatory Cytokines and Cell Signaling. Front. Oncol. 2019, 9, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Jiwuba, P.C.; Ahamefule, F.O.; Ogbuewu, I.P.; Ikwunze, K. Blood Chemistry and Haematology of West African Dwarf Goats Fed Moringa oleifera Leaf Meal (MOLM) in Their Diet. Comp. Clin. Path. 2017, 26, 621–624. [Google Scholar] [CrossRef]
- Jones, M.L.; Allison, R.W. Evaluation of the Ruminant Complete Blood Cell Count. Vet. Clin. North Am. Food Anim. Pract. 2007, 23, 377–402. [Google Scholar] [CrossRef]
- Adejoro, F.A.; Hassen, A.; Thantsha, M.S. Preparation of Acacia Tannin Loaded Lipid Microparticles by Solid-in-Oil-in-Water and Melt Dispersion Methods, Their Characterization and Evaluation of Their Effect on Ruminal Gas Production In Vitro. PLoS ONE 2018, 13, e0206241. [Google Scholar] [CrossRef]
- Reynolds, C.K.; Kristensen, N.B. Nitrogen Recycling through the Gut and the Nitrogen Economy of Ruminants: An Asynchronous Symbiosis. J. Anim. Sci. 2008, 86, E293–E305. [Google Scholar] [CrossRef]
- Adedapo, A.A.; Mogbojuri, O.M.; Emikpe, B.O. Safety Evaluations of the Aqueous Extract of the Leaves of Moringa oleifera in Rats. J. Med. Plants Res. 2009, 3, 586–591. [Google Scholar]
- Aubrecht, J.; Schomaker, S.J.; Amacher, D.E. Emerging Hepatotoxicity Biomarkers and Their Potential to Improve Understanding and Management of Drug-Induced Liver Injury. Genome Med. 2013, 5, 85. [Google Scholar] [CrossRef]
- Raizada, R.B.; Srivastava, M.K.; Kaushal, R.A.; Singh, R.P. Azadirachtin, a Neem Biopesticide: Subchronic Toxicity Assessment in Rats. Food Chem. Toxicol. 2001, 39, 477–483. [Google Scholar] [CrossRef] [PubMed]
Ingredient | Composition (%) |
---|---|
Soybean meal | 17 |
Maize (corn) grain | 28 |
Lucerne hay | 20 |
Eragrostis hay | 22.7 |
Sugarcane Molasses | 6 |
Wheat bran | 5 |
Urea | 0.8 |
* Vitamin–mineral premix | 0.5 |
Total | 100 |
Analyzed chemical composition | |
Dry matter (%) | 89.6 |
Crude protein (g/kg DM) | 192 |
Starch (g/kg DM) | 221 |
Neutral detergent fibre (g/kg DM) | 324 |
Acid detergent fibre (g/kg DM) | 186 |
Acid detergent lignin (g/kg DM) | 32 |
Crude ash (g/kg DM) | 71.4 |
Metabolizable energy (MJ/kg DM) | 10.6 |
Parameters | Control | Monensin | Moringa | Neem | SEM | p-Value |
---|---|---|---|---|---|---|
Nutrient intake (g/d) | ||||||
Dry matter | 1672 | 1866 | 1765 | 1655 | 37.0 | 0.25 |
Neutral detergent fibre | 587 | 650 | 635 | 586 | 15.5 | 0.39 |
Acid detergent fibre | 277 | 328 | 310 | 286 | 9.83 | 0.24 |
Crude protein | 346 | 402 | 362 | 339 | 9.44 | 0.11 |
Apparent Nutrient Digestibility (g/100 g DM) | ||||||
Dry matter | 68.9 | 68.4 | 68.2 | 65.3 | 0.61 | 0.35 |
Organic matter | 68.7 | 67.9 | 68.0 | 64.6 | 0.65 | 0.29 |
Neutral detergent fibre | 49.0 | 48.9 | 50.5 | 41.8 | 1.42 | 0.16 |
Acid detergent fibre | 37.1 | 40.1 | 43.2 | 34.1 | 1.75 | 0.65 |
Crude protein | 79.2 | 78.2 | 78.0 | 78.5 | 0.41 | 0.61 |
Fecal-N (g/d) | 10.3 | 10.5 | 11.6 | 12.3 | 0.40 | 0.34 |
Urinary-N (g/d) | 17.5 | 13.2 | 19.2 | 17.5 | 0.54 | 0.38 |
N-retained, g/d | 21.6 | 24.5 | 22.5 | 27.4 | 0.83 | 0.38 |
Parameters | Control | Monensin | Moringa | Neem | SEM | p-Value |
---|---|---|---|---|---|---|
Initial BW (kg) | 35.6 | 35.5 | 35.6 | 36.0 | 1.32 | 0.99 |
Final BW (kg) | 59.0 | 59.0 | 60.0 | 59.2 | 1.26 | 0.99 |
Average daily gain (g/d) | 295 | 309 | 314 | 302 | 5.95 | 0.73 |
Average dry matter intake (g/d) | 2051 | 1941 | 1806 | 1781 | 125 | 0.10 |
Feed conversion ratio | 7.4 | 7.2 | 6.9 | 7.2 | 0.16 | 0.79 |
CH4 emitted (g/d) | 36.9 | 31.6 | 30.3 | 33.5 | 0.99 | 0.08 |
CH4 emitted (g/kg DMI) | 22.2 | 17.7 | 16.8 | 18.9 | 0.73 | 0.07 |
Parameters | Control | Monensin | Moringa | Neem | SEM | p-Value |
---|---|---|---|---|---|---|
Total volatile fatty acid (mmol/L) | 151 | 137 | 144 | 142 | 2.60 | 0.39 |
Acetic acid (mol/100 mol) | 59.9 b | 61.3 b | 60.8 b | 62.7 a | 0.37 | 0.02 |
Propionic acid (mol/100 mol) | 22.7 a | 21.8 a | 22.2 a | 19.6 b | 0.43 | 0.03 |
Butyric acid (mol/100 mol) | 12.6 | 12.8 | 11.4 | 12.5 | 0.23 | 0.09 |
Valeric acid (mol/100 mol) | 1.41 | 1.40 | 1.43 | 1.34 | 0.03 | 0.18 |
Branched VFA (mol/100 mol) | 3.41 c | 4.83 a | 4.16 b | 3.77 b | 0.30 | 0.04 |
Acetic acid: Propionic acid ratio | 2.64 b | 2.81 b | 2.70 b | 3.34 a | 0.14 | 0.04 |
1 Parameters | 2 Reference Range | Control | Monensin | Moringa | Neem | SEM | p-Values |
---|---|---|---|---|---|---|---|
Hemoglobin (g/L) | 105–137 | 117 | 111 | 115 | 111 | 1.71 | 0.46 |
RBC (×1012/L) | 9.2–13.0 | 10.8 | 10.6 | 10.7 | 10.2 | 0.18 | 0.52 |
WBC (×109/L) | 5.1–15.9 | 6.2 | 7.0 | 6.9 | 6.9 | 0.27 | 0.74 |
Hematocrit value (L/L) | 0.28–0.39 | 0.3 | 0.4 | 0.4 | 0.4 | 0.01 | 0.38 |
MCV (fL) | 28–35 | 35.2 | 33.9 | 34.6 | 34.8 | 0.34 | 0.51 |
MCH (pg) | 10–13 | 10.9 | 10.5 | 10.7 | 10.9 | 0.10 | 0.48 |
MCHC (g/dL) | 31.7–39.2 | 31.0 | 31.1 | 31.5 | 31.2 | 0.12 | 0.47 |
Red cell distribution (%) | NFR | 16.7 | 17.4 | 16.9 | 17.0 | 0.20 | 0.52 |
Segmented Neutrophil (×109/L) | 0.8–6.3 | 2.2 | 2.9 | 2.7 | 2.7 | 0.17 | 0.53 |
Lymphocytes (×109/L) | 2.1–10.2 | 3.8 | 3.7 | 4.0 | 3.9 | 0.13 | 0.93 |
Monocyte (×109/L) | 0.1–0.8 | 0.2 | 0.3 | 0.3 | 0.2 | 0.03 | 0.36 |
Eosinophil (×109/L) | 0–0.2 | 0.09 | 0.05 | 0.04 | 0.1 | 0.01 | 0.11 |
Basophil (×109/L) | 0–0.2 | 0.00 | 0.04 | 0.02 | 0.01 | 0.01 | 0.14 |
Platelet count (×109/L) | 426–1142 | 313 b | 552 a | 480 ab | 529 a | 32.7 | 0.02 |
1 Parameters | 2 Reference Range | Control | Monensin | Moringa | Neem | SEM | p-Values |
---|---|---|---|---|---|---|---|
Urea N (mmol/L) | 5.0–9.1 | 11.6 | 13.1 | 11.6 | 12.3 | 0.25 | 0.13 |
Glucose (mmol/L) | 2.7–4.8 | 4.2 | 4.3 | 4.3 | 4.3 | 0.04 | 0.91 |
Cholesterol (mmol/L) | NFR | 1.5 | 1.4 | 1.5 | 1.5 | 0.04 | 0.23 |
TSP (g/L) | 51–64 | 62.2 | 65.2 | 62.9 | 62.5 | 0.53 | 0.10 |
Albumin (g/L) | 30–37 | 39.5 | 39.7 | 39.3 | 39.6 | 0.29 | 0.95 |
Globulin (g/L) | 19–30 | 22.8 b | 25.6 a | 23.6 ab | 23 b | 0.44 | 0.03 |
AST (U/L) | 83–140 | 111 | 120 | 110 | 111 | 3.89 | 0.80 |
ALT (U/L) | 9–45 | 13.6 | 13.8 | 16.3 | 13.9 | 0.64 | 0.28 |
ALP (U/L) | 99–464 | 373 | 380 | 298 | 364 | 18.6 | 0.35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Preez, D.A.D.; Akanmu, A.M.; Adejoro, F.A.; Hassen, A. The Effect of Monensin vs. Neem, and Moringa Extracts on Nutrient Digestibility, Growth Performance, Methane, and Blood Profile of Merino Lambs. Animals 2023, 13, 3514. https://doi.org/10.3390/ani13223514
Preez DAD, Akanmu AM, Adejoro FA, Hassen A. The Effect of Monensin vs. Neem, and Moringa Extracts on Nutrient Digestibility, Growth Performance, Methane, and Blood Profile of Merino Lambs. Animals. 2023; 13(22):3514. https://doi.org/10.3390/ani13223514
Chicago/Turabian StylePreez, Danah A. Du, Abiodun Mayowa Akanmu, Festus Adeyemi Adejoro, and Abubeker Hassen. 2023. "The Effect of Monensin vs. Neem, and Moringa Extracts on Nutrient Digestibility, Growth Performance, Methane, and Blood Profile of Merino Lambs" Animals 13, no. 22: 3514. https://doi.org/10.3390/ani13223514
APA StylePreez, D. A. D., Akanmu, A. M., Adejoro, F. A., & Hassen, A. (2023). The Effect of Monensin vs. Neem, and Moringa Extracts on Nutrient Digestibility, Growth Performance, Methane, and Blood Profile of Merino Lambs. Animals, 13(22), 3514. https://doi.org/10.3390/ani13223514