Effects of Dam and Sire Breeds on Lamb Carcass Quality and Composition in Pasture-Based Systems
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Design
2.2. Myostatin
2.3. DXA Analysis
2.4. Carcass Dissection
2.5. Fatty Acids
2.6. Warner–Bratzler Shear Force
2.7. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chikwanha, O.C.; Vahmani, P.; Muchenje, V.; Dugan, M.E.R.; Mapiye, C. Nutritional enhancement of sheep meat fatty acid profile for human health and wellbeing. Food Res. Int. 2018, 104, 25–38. [Google Scholar] [CrossRef] [PubMed]
- National Research Council. Changes in the Sheep Industry in the United States: Making the Transition from Tradition; The National Academies Press: Washington, DC, USA, 2008. [Google Scholar] [CrossRef]
- Pannier, L.; Gardner, G.E.; O’Reilly, R.A.; Pethick, D.W. Factors affecting lamb eating quality and the potential for their integration into an MSA sheep meat grading model. Meat Sci. 2018, 144, 43–52. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, E.; Ciappesoni, G.; Iriarte, W.; Da Silva, C.; Macedo, F.; Navajas, E.; Brito, G.; Julián, R.S.; Gimeno, D.; Postiglioni, A. Novel genetic polymorphisms associated with carcass traits in grazing Texel sheep. Meat Sci. 2018, 145, 202–208. [Google Scholar] [CrossRef]
- Freking, B.A.; Leymaster, K.A. Evaluation of Dorset, Finnsheep, Romanov, Texel, and Montadale breeds of sheep: IV. Survival, growth, and carcass traits of F1 lambs. J. Anim. Sci. 2004, 82, 3144–3153. [Google Scholar] [CrossRef] [PubMed]
- Clop, A.; Marcq, F.; Takeda, H.; Pirottin, D.; Tordoir, X.; Bibé, B.; Bouix, J.; Caiment, F.; Elsen, J.-M.; Eychenne, F.; et al. A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nat. Genet. 2006, 38, 813–818. [Google Scholar] [CrossRef]
- Wolf, B.T.; Smith, C.; Sales, D.I. Growth and carcass composition in the crossbred progeny of six terminal sire breeds of sheep. Anim. Sci. 1980, 31, 307–313. [Google Scholar] [CrossRef]
- Shackelford, S.D.; Leymaster, K.A.; Wheeler, T.L.; Koohmaraie, M. Effects of breed of sire on carcass composition and sensory traits of lamb. J. Anim. Sci. 2012, 90, 4131–4139. [Google Scholar] [CrossRef]
- United States Department of Agriculture. United States Standards for Grades of Slaughter Lambs, Yearlings and Sheep. 1992. Available online: https://www.ams.usda.gov/sites/default/files/media/Slaughter_Lambs%2C_Yearlings%2C_and_Sheep%5B1%5D.pdf (accessed on 2 April 2020).
- Jones, S.D.M.; Robertson, W.M.; Price, M.A.; Coupland, T. The prediction of saleable meat yield in lamb carcasses. Can. J. Anim. Sci. 1996, 76, 49–53. [Google Scholar] [CrossRef]
- Suster, D.; Leury, B.; Ostrowska, E.; Butler, K.; Kerton, D.; Wark, J.; Dunshea, F. Accuracy of dual energy X-ray absorptiometry (DXA), weight and P2 back fat to predict whole body and carcass composition in pigs within and across experiments. Livest. Prod. Sci. 2003, 84, 231–242. [Google Scholar] [CrossRef]
- Scholz, A.; Bünger, L.; Kongsro, J.; Baulain, U.; Mitchell, A. Non-invasive methods for the determination of body and carcass composition in livestock: Dual-energy X-ray absorptiometry, computed tomography, magnetic resonance imaging and ultrasound: Invited review. Animal 2015, 9, 1250–1264. [Google Scholar] [CrossRef]
- Mitchell, A.D.; Conway, J.M.; Scholz, A.M. Incremental changes in total and regional body composition of growing pigs measured by dual-energy X-ray absorptiometry. Growth Dev. Aging GDA 1996, 60, 95–105. [Google Scholar] [PubMed]
- United States Department of Agriculture. Institutional Meat Purchase Specifications, Fresh Lamb Series 200. 2014. Available online: https://www.ams.usda.gov/sites/default/files/media/IMPS_200_Fresh_Lamb_and_Mutton%5B1%5D.pdf (accessed on 2 April 2020).
- Duckett, S.K.; Justice, S.M.; Jesch, E.D. Case Report: Validation of Dual-Energy X-ray absorptiometry for rapid prediction of fat content in lean lamb carcasses and primals. Concepts Dairy Vet Sci. 2022, 4, 465–470. [Google Scholar] [CrossRef]
- Park, P.; Goins, R. In Situ Preparation of Fatty Acid Methyl Esters for Analysis of Fatty Acid Composition in Foods. J. Food Sci. 1994, 59, 1262–1266. [Google Scholar] [CrossRef]
- American Meat Science Association. Research Guidelines for Cookery, Sensory Evaluation, and Instrumental Tenderness Measurements of Meat, 2nd ed.; Version 1.02; American Meat Science Association: Champaign, IL, USA, 2016; Available online: https://meatscience.org/docs/default-source/publications-resources/research-guide/amsa-research-guidelines-for-cookery-and-evaluation-1-02.pdf?sfvrsn=4c6b8eb3_2 (accessed on 2 April 2020).
- Lewis, R.M.; Simm, G.; Dingwall, W.S.; Murphy, S.V. Selection for lean growth in terminal sire sheep to produce leaner crossbred progeny. Anim. Sci. 1996, 63, 133–142. [Google Scholar] [CrossRef]
- Freking, B.A.; Leymaster, K.A.; Young, L.D. Evaluation of Dorset, Finnsheep, Romanov, Texel, and Montadale breeds of sheep: I. Effects of ram breed on productivity of ewes of two crossbred populations. J. Anim. Sci. 2000, 78, 1422–1429. [Google Scholar] [CrossRef] [PubMed]
- Kempster, A.J.; Jones, D.W.; Wolf, B.T. A comparison of alternative methods for predicting the carcass composition of crossbred lambs of different breeds and crosses. Meat Sci. 1986, 18, 89–110. [Google Scholar] [CrossRef] [PubMed]
- Tellam, R.L.; Cockett, N.E.; Vuocolo, T.; Bidwell, C.A. Genes Contributing to Genetic Variation of Muscling in Sheep. Front. Genet. 2012, 3, 164. [Google Scholar] [CrossRef]
- Leymaster, K.A.; Jenkins, T.G. Comparison of Texel-and Suffolk-sired crossbred lambs for survival, growth, and compositional traits. J. Anim. Sci. 1993, 71, 859–869. [Google Scholar] [CrossRef]
- United States Department of Agriculture. National Summary of Meats Graded. 2019. Available online: https://ams.prod.usda.gov/sites/default/files/media/FY2019GradeVolume.pdf (accessed on 2 April 2020).
- Snowder, G.D.; Field, R.A.; Busboom, J.R. Efficacy of bodywall thickness and backfat depth for estimating percentage yield of retail cuts of lamb. Sheep Goat Res. J. 1994, 3, 148. [Google Scholar]
- Mercier, J.; Pomar, C.; Marcoux, M.; Goulet, F.; Theriault, M.; Castonguay, F.W. The use of dual-energy X-ray absorptiometry to estimate the dissected composition of lamb carcasses. Meat Sci. 2006, 73, 249–257. [Google Scholar] [CrossRef]
- Hunter, T.E.; Suster, D.; Dunshea, F.R.; Cummins, L.J.; Egan, A.R.; Leury, B.J. Dual energy X-ray absorptiometry (DXA) can be used to predict live animal and whole carcass composition of sheep. Small Rumin. Res. 2011, 100, 143–152. [Google Scholar] [CrossRef]
- Clelland, N.; Bunger, L.; McLean, K.A.; Knott, S.; Matthews, K.R.; Lambe, N.R. Prediction of intramuscular fat content and shear forage in Texel laml loins using combinations of different X-ray computed tomography (CT) scanning techniques. Meat Sci. 2018, 140, 78–85. [Google Scholar] [CrossRef] [PubMed]
- Juarez, M.; Lopez-Campos, O.; Roberts, J.C.; Prieto, N.; Larsen, I.L.; Uttaro, B.; Dugan, M.E.R.; Cancino-Baier, D.; Hosford, S.; Galbraith, J.; et al. Exploration of methods for lamb carcass yield estimation in Canada. Can. J. Anim. Sci. 2018, 98, 760–768. [Google Scholar] [CrossRef]
- Connaughton, S.L.; Williams, A.; Anderson, F.; Kelman, K.R.; Gardner, G.E. Dual energy X-ray absorptiometry precisely and accurately predicts lamb carcass composition at abattoir chain speed across a range of phenotypic and genotypic variables. Animal 2020, 14, 2194–2202. [Google Scholar] [CrossRef] [PubMed]
- Connaughton, S.L.; Williams, A.; Anderson, F.; Kelman, K.R.; Peterse, J.; Gardner, G.E. Dual energy X-ray absorptiometry predicts lamb carcass composition at abattoir chain speed with high repeatability across varying processing factors. Meat Sci. 2021, 181, 108413. [Google Scholar] [CrossRef] [PubMed]
- Justice, S.M.; Greene, M.A.; Dennis, M.; Hart, K.; Humphrey, L.; Duckett, S.K. Evaluation of terminal sire breed on carcass and muscle composition in pasture-finished lambs. Concepts Dairy Vet. Sci. 2022, 4, 471–483. [Google Scholar] [CrossRef]
- Snowder, G.D.; Duckett, S.K. Evaluation of the South African Dorper as a terminal sire breed for growth, carcass and palatability characteristics. J. Anim. Sci. 2003, 81, 368–375. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, L.; Zhao, M.; Zhang, X.; Chen, J.; Zhang, Z.; Cheng, X.; Ren, C. Feeding regiments affecting carcass and quality attributes of sheep and goat meat—A comprehensive review. Anim. Biosci. 2023, 36, 1314–1326. [Google Scholar] [CrossRef]
- Duckett, S.K.; Neel, J.P.; Fontenot, J.P.; Clapham, W.M. Effects of winter stocker growth rate and finishing system on: III. Tissue proximate, fatty acid, vitamin and cholesterol content. J. Anim. Sci. 2009, 87, 2961–2970. [Google Scholar] [CrossRef]
- Pavan, E.; Duckett, S.K. Fatty acid composition and interrelationships among eight retail cuts of grass-fed beef. Meat Sci. 2013, 93, 371–377. [Google Scholar] [CrossRef]
- Simopoulos, A.P. The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed. Pharmacother. 2002, 56, 365–379. [Google Scholar] [CrossRef] [PubMed]
- Simopoulos, A.P. The omega-6/omega-3 fatty acid ratio: Health implications. Oilseed Fats Crops Lipids. 2010, 17, 267. [Google Scholar] [CrossRef]
- Mousel, M.R.; Notter, D.R.; Leeds, T.D.; Zerby, H.N.; Moeller, S.J.; Taylor, J.B.; Lewis, G.S. Evaluation of Columbia, USMARC-composite, Suffolk and Texel rams as terminal sires in an extensive rangeland production system: VIII. Quality measures of lamb longissimus dorsi. J. Anim. Sci. 2014, 92, 2861–2868. [Google Scholar] [CrossRef] [PubMed]
Dam Breed 1 | SD | SD | SF | SF | p-Levels | |||
---|---|---|---|---|---|---|---|---|
Sire Breed 2 | SD | TX | SD | TX | SE | Dam | Sire | Int |
n | 15 | 16 | 24 | 24 | ||||
Lambing rate | 1.67 | 1.56 | 1.92 | 1.82 | 0.41 | 0.0085 | 0.27 | 0.95 |
Lamb sex | 1.67 | 1.50 | 1.58 | 1.5 | 0.50 | 0.72 | 0.28 | 0.72 |
Live lambs | 1.00 | 0.94 | 0.96 | 1.00 | 0.16 | 0.85 | 0.85 | 0.19 |
Birth weight, kg | 4.36 | 5.04 | 4.24 | 4.86 | 0.90 | 0.47 | 0.0022 | 0.88 |
Wean weight, kg | 29.10 | 31.18 | 28.49 | 29.78 | 4.13 | 0.30 | 0.086 | 0.69 |
ADG, kg/d | ||||||||
0–14 | 0.34 | 0.38 | 0.37 | 0.35 | 0.099 | 0.90 | 0.61 | 0.27 |
14–28 | 0.31 | 0.35 | 0.26 | 0.24 | 0.16 | 0.027 | 0.68 | 0.51 |
28–42 | 0.34 | 0.35 | 0.35 | 0.36 | 0.18 | 0.72 | 0.75 | 0.97 |
42–56 | 0.39 | 0.36 | 0.34 | 0.35 | 0.20 | 0.51 | 0.82 | 0.69 |
56–75 | 0.38 | 0.40 | 0.41 | 0.46 | 0.20 | 0.37 | 0.46 | 0.74 |
overall | 0.33 | 0.35 | 0.32 | 0.33 | 0.20 | 0.33 | 0.29 | 0.81 |
Dam Breed 1 | SD | SD | SF | SF | p-Levels | |||
---|---|---|---|---|---|---|---|---|
Sire Breed 2 | SD | TX | SD | TX | SE | Dam | Sire | Int |
n (wethers) | 9 | 9 | 12 | 11 | ||||
Birth wt, kg | 4.32 | 5.32 | 4.29 | 5.14 | 0.90 | 070 | 0.0022 | 0.80 |
Wean wt, kg | 29.70 | 31.72 | 28.64 | 30.29 | 4.54 | 0.39 | 0.20 | 0.90 |
Final wt, kg | 50.60 | 51.72 | 52.90 | 55.45 | 5.35 | 0.084 | 0.29 | 0.68 |
Pre-wean adg, kg/d | 0.34 | 0.35 | 0.32 | 0.34 | 0.053 | 0.36 | 0.46 | 0.93 |
Post-wean adg, kg | 0.11 | 0.11 | 0.15 | 0.14 | 3.17 | 0.0001 | 0.83 | 0.50 |
Age at harvest, d | 255.4 | 255.1 | 247.2 | 253.1 | 19.29 | 0.41 | 0.65 | 0.62 |
Carcass traits | ||||||||
Hot carcass wt, kg | 27.95 | 28.30 | 29.17 | 31.34 | 1.91 | 0.0012 | 0.045 | 0.14 |
Dressing percent | 53.27 b | 52.61 b | 52.93 b | 55.08 a | 0.017 | 0.055 | 0.18 | 0.013 |
Chill carcass wt, kg | 27.1 | 27.4 | 28.4 | 30.7 | 1.84 | 0.0004 | 0.028 | 0.10 |
Fat thickness, cm | 0.14 | 0.17 | 0.16 | 0.16 | 0.041 | 0.70 | 0.31 | 0.30 |
Yield grade | 1.83 | 2.10 | 2.02 | 2.02 | 0.41 | 0.70 | 0.31 | 0.30 |
Ribeye area cm 2 | 2.32 c | 2.70 b | 2.53 bc | 3.33 a | 0.27 | 0.0001 | 0.0001 | 0.022 |
Flank streaking 3 | 18.0 | 19.1 | 18.5 | 19.3 | 1.40 | 0.49 | 0.037 | 0.74 |
Conformation 3 | 17.8 | 19.2 | 18.2 | 20.1 | 0.90 | 0.024 | 0.0001 | 0.50 |
Quality grade 3 | 17.9 | 19.2 | 18.3 | 19.7 | 0.88 | 0.086 | 0.0001 | 0.94 |
Primals | ||||||||
Shoulder, kg/side | 3.22 | 3.14 | 3.20 | 3.55 | 0.33 | 0.072 | 0.22 | 0.54 |
Rack, kg/side | 1.46 b | 1.46 b | 1.45 b | 1.68 a | 0.14 | 0.025 | 0.014 | 0.015 |
Loin, kg/side | 1.51 | 1.49 | 1.51 | 1.71 | 0.22 | 0.12 | 0.19 | 0.13 |
Leg, kg/side | 4.50 c | 4.71 bc | 4.80 b | 5.48 a | 0.29 | 0.0001 | 0.0001 | 0.017 |
Total, kg/side | 10.69 b | 10.80 b | 10.97 b | 12.42 a | 0.81 | 0.0008 | 0.0044 | 0.014 |
Shoulder, % | 30.08 | 29.03 | 29.17 | 28.55 | 1.62 | 0.19 | 0.11 | 0.68 |
Rack, % | 13.60 | 13.52 | 13.21 | 13.54 | 0.73 | 0.42 | 0.60 | 0.38 |
Loin,% | 14.03 | 13.78 | 13.74 | 13.79 | 1.36 | 0.75 | 0.81 | 0.74 |
Leg, % | 42.29 | 43.67 | 43.87 | 44.12 | 1.56 | 0.047 | 0.11 | 0.26 |
Muscle wt, g/side | ||||||||
Longissimus | 646.55 b | 670.92 b | 677.78 b | 846.43 a | 98.01 | 0.0020 | 0.0037 | 0.026 |
Semitendinosus | 151.58 | 160.28 | 172.07 | 197.36 | 13.41 | 0.0001 | 0.0003 | 0.059 |
Gluteus medius | 305.03 | 344.45 | 321.08 | 383.99 | 27.79 | 0.0033 | 0.0001 | 0.19 |
Biceps femoris | 406.40 | 470.41 | 483.24 | 543.39 | 42.89 | 0.0001 | 0.0001 | 0.89 |
Adductor | 166.87 | 200.37 | 194.26 | 234.43 | 18.15 | 0.0001 | 0.0001 | 0.56 |
Quadriceps femoris | 555.48 | 595.86 | 601.76 | 675.76 | 64.28 | 0.0038 | 0.0081 | 0.42 |
Semimembranosus | 415.51 b | 421.30 b | 444.10 b | 507.68 a | 35.18 | 0.0001 | 0.0037 | 0.014 |
Total excised | 2647.4 c | 2863.6 b | 2894.3 b | 3389.0 a | 215.49 | 0.0001 | 0.0001 | 0.049 |
Dam Breed 1 | SD | SD | SF | SF | p-Levels | |||
---|---|---|---|---|---|---|---|---|
Sire Breed 2 | SD | TX | SD | TX | SE | Dam | Sire | Int |
n (wethers) | 9 | 9 | 12 | 11 | ||||
Total carcass fat % | 31.15 | 28.63 | 29.03 | 27.54 | 2.38 | 0.04 | 0.012 | 0.50 |
Total primal fat % | 31.53 | 28.54 | 29.30 | 27.14 | 2.64 | 0.037 | 0.0041 | 0.63 |
Leg fat % | 29.82 | 27.02 | 26.45 | 27.66 | 3.79 | 0.26 | 0.51 | 0.10 |
Loin fat % | 35.80 | 30.28 | 33.76 | 29.30 | 4.60 | 0.31 | 0.0016 | 0.72 |
Rack fat % | 30.36 | 26.78 | 29.18 | 22.94 | 3.27 | 0.021 | 0.0001 | 0.21 |
Shoulder fat % | 32.46 | 30.81 | 31.45 | 27.13 | 2.62 | 0.0077 | 0.0009 | 0.12 |
Carcass lean rank 3 | 30.50 | 19.11 | 21.77 | 14.73 | 11.08 | 0.070 | 0.013 | 0.054 |
Yield grade rank 3 | 16.88 | 24.78 | 22.0 | 19.73 | 12.13 | 0.99 | 0.47 | 0.20 |
Ribeye area rank 3 | 32.75 | 21.00 | 26.08 | 6.45 | 7.30 | 0.0001 | 0.0001 | 0.098 |
Dam Breed 1 | SD | SD | SF | SF | p-Levels | |||
---|---|---|---|---|---|---|---|---|
Sire Breed 2 | SD | TX | SD | TX | SEM | Dam | Sire | Int |
n | 41 | 41 | 41 | 41 | ||||
Moisture, % | 74.07 c | 74.96 a | 74.45 b | 74.66 ab | 0.12 | 0.74 | 0.0001 | 0.0041 |
Total lipid, % | 3.15 | 2.37 | 2.83 | 2.26 | 0.12 | 0.084 | 0.0001 | 0.40 |
Muscle 3,4 | GM | LM | SM | ST | SEM | p-Level | ||
n | 41 | 41 | 41 | 41 | ||||
Moisture, % | 74.81 a | 74.55 a | 74.21 b | 74.57 a | 0.12 | 0.0043 | ||
Total lipid, % | 2.52 b | 2.50 b | 2.33 b | 3.26 a | 0.12 | 0.0001 |
Dam Breed 1 | SD | SD | SF | SF | p-Levels | |||
---|---|---|---|---|---|---|---|---|
Sire Breed 2 | SD | TX | SD | TX | SE | Dam | Sire | Int |
n | 41 | 41 | 41 | 41 | ||||
C14:0, % | 2.26 | 2.22 | 1.91 | 2.16 | 0.57 | 0.025 | 0.23 | 0.11 |
C15:0, % | 0.34 | 0.29 | 0.30 | 0.30 | 0.11 | 0.31 | 0.13 | 0.12 |
C16:0, % | 22.05 | 21.91 | 21.34 | 21.23 | 1.52 | 0.0050 | 0.62 | 0.96 |
C16:1, % | 1.53 | 1.53 | 1.35 | 1.38 | 0.21 | 0.0001 | 0.62 | 0.54 |
C17:0, % | 0.55 | 0.50 | 0.51 | 0.47 | 0.11 | 0.090 | 0.0082 | 0.68 |
C18:0, % | 18.35 b | 17.82 bc | 19.00 a | 17.52 c | 1.36 | 0.41 | 0.0001 | 0.028 |
C18:1t9, % | 0.14 | 0.16 | 0.22 | 0.16 | 0.19 | 0.20 | 0.51 | 0.24 |
C18:1t10, % | 0.16 | 0.10 | 0.10 | 0.16 | 0.21 | 0.88 | 0.97 | 0.077 |
C18:1t11, % | 2.30 a | 1.95 b | 2.17 a | 2.15 a | 0.44 | 0.66 | 0.0090 | 0.024 |
C18:1c9, % | 38.83 | 37.29 | 38.91 | 36.62 | 2.39 | 0.44 | 0.0001 | 0.32 |
C18:1c11, % | 0.78 | 0.88 | 0.82 | 0.96 | 0.10 | 0.0001 | 0.0001 | 0.28 |
C18:2 c9,12, % | 4.64 | 5.89 | 5.28 | 6.59 | 1.24 | 0.0009 | 0.0001 | 0.88 |
C18:3 c9,12,15, % | 1.06 b | 1.01 b | 1.05 b | 1.16 a | 0.22 | 0.043 | 0.34 | 0.026 |
C20, % | 0.10 b | 0.11 a | 0.11 a | 0.09 b | 0.020 | 0.40 | 0.44 | 0.0001 |
CLA, c9t11, % | 0.56 a | 0.48 b | 0.49 b | 0.51 ab | 0.11 | 0.31 | 0.22 | 0.014 |
C20:2, % | 0.04 | 0.05 | 0.06 | 0.07 | 0.059 | 0.080 | 0.14 | 0.69 |
C20:3, % | 0.18 | 0.24 | 0.18 | 0.23 | 0.084 | 0.74 | 0.0001 | 0.50 |
C20:4, % | 1.54 | 2.08 | 1.69 | 2.04 | 0.50 | 0.51 | 0.0001 | 0.26 |
C20:5, % | 0.38 b | 0.38 b | 0.37 b | 0.48 a | 0.13 | 0.033 | 0.0061 | 0.013 |
C22:5, % | 0.51 | 0.56 | 0.51 | 0.63 | 0.15 | 0.11 | 0.0005 | 0.14 |
C22:6, % | 0.17 | 0.21 | 0.16 | 0.18 | 0.052 | 0.023 | 0.0003 | 0.56 |
Identified, % | 96.47 | 95.69 | 96.55 | 95.13 | 1.94 | 0.44 | 0.0005 | 0.31 |
SFA, % | 42.76 | 42.07 | 42.37 | 41.02 | 1.98 | 0.023 | 0.0014 | 0.29 |
OCFA, % | 0.89 | 0.79 | 0.81 | 0.77 | 0.18 | 0.11 | 0.016 | 0.26 |
MUFA, % | 40.36 | 38.82 | 40.25 | 38.00 | 2.41 | 0.23 | 0.0001 | 0.36 |
PUFA, n-6, % | 6.41 | 8.27 | 7.2 | 8.94 | 1.75 | 0.0091 | 0.0001 | 0.81 |
PUFA, n-3, % | 2.12 b | 2.16 b | 2.09 b | 2.46 a | 0.51 | 0.13 | 0.012 | 0.049 |
Ratio n-6:n-3 | 3.05 c | 3.84 a | 3.48 b | 3.74 ab | 0.73 | 0.15 | 0.0001 | 0.021 |
Total fatty acids, g/100g muscle | 1.77 | 1.36 | 1.60 | 1.29 | 0.53 | 0.16 | 0.0001 | 0.58 |
Muscle 1,2 | GM | LM | SM | ST | SEM | p-Level |
---|---|---|---|---|---|---|
n | 41 | 41 | 41 | 41 | ||
C14:0, % | 2.14 b | 1.95 b | 2.06 b | 2.41 a | 0.091 | 0.0044 |
C15:0, % | 0.32 b | 0.25 c | 0.30 b | 0.36 a | 0.016 | 0.0001 |
C16:0, % | 20.84 c | 21.96 b | 20.95 c | 22.78 a | 0.24 | 0.0001 |
C16:1, % | 1.40 b | 1.38 b | 1.50 a | 1.52 a | 0.033 | 0.0029 |
C17:0, % | 0.51 | 0.50 | 0.50 | 0.54 | 0.018 | 0.18 |
C18:0, % | 18.95 a | 18.73 a | 17.28 b | 17.74 b | 0.22 | 0.0001 |
C18:1t9, % | 0.21 a | 0.11 b | 0.23 a | 0.12 b | 0.031 | 0.0052 |
C18:1t10, % | 0.16 ab | 0.080 b | 0.091 b | 0.20 a | 0.033 | 0.028 |
C18:1t11, % | 2.28 | 2.03 | 2.10 | 2.16 | 0.071 | 0.088 |
C18:1c9, % | 35.93 b | 39.00 a | 38.07 a | 38.65 a | 0.38 | 0.0001 |
C18:1c11, % | 0.86 b | 0.84 b | 0.91 a | 0.84 b | 0.016 | 0.0020 |
C18:2 c9,12, % | 6.47 a | 5.10 b | 6.02 a | 4.81 b | 0.20 | 0.0001 |
C18:3 c9,12,15, % | 1.19 a | 1.01 b | 1.07 b | 1.01 b | 0.035 | 0.0009 |
C20, % | 0.11 a | 0.10 b | 0.11 a | 0.10 b | 0.0030 | 0.0001 |
CLA, c9t11, % | 0.53 | 0.48 | 0.51 | 0.54 | 0.018 | 0.091 |
C20:2, % | 0.049 b | 0.043 b | 0.099 a | 0.040 b | 0.0093 | 0.0001 |
C20:3, % | 0.26 a | 0.20 b | 0.19 b | 0.18 b | 0.013 | 0.0001 |
C20:4, % | 2.13 a | 1.69 b | 2.02 a | 1.52 b | 0.080 | 0.0001 |
C20:5, % | 0.45 a | 0.38 bc | 0.44 ab | 0.34 c | 0.020 | 0.0004 |
C22:5, % | 0.61 a | 0.52 b | 0.57 ab | 0.52 b | 0.024 | 0.027 |
C22:6, % | 0.20 a | 0.16 b | 0.20 a | 0.16 b | 0.0083 | 0.0001 |
Identified, % | 95.60 b | 96.49 a | 95.21 b | 96.54 a | 0.31 | 0.0043 |
SFA, % | 42.04 b | 42.73 ab | 40.40 c | 43.03 a | 0.31 | 0.0001 |
OCFA, % | 0.82 b | 0.74 c | 0.79 bc | 0.90 a | 0.030 | 0.0023 |
MUFA, % | 37.33 b | 40.37 a | 39.56 a | 40.17 a | 0.38 | 0.0001 |
PUFA, n-6, % | 8.91 a | 7.03 b | 8.33 a | 6.55 b | 0.28 | 0.0001 |
PUFA, n-3, % | 2.45 a | 2.07 b | 2.28 ab | 2.03 b | 0.081 | 0.0008 |
Ratio n-6:n-3 | 3.64 ab | 3.41 bc | 3.84 a | 3.21 c | 0.12 | 0.0001 |
Total fatty acids, g/100 g muscle | 1.38 b | 1.75 a | 1.09 c | 1.81 a | 0.084 | 0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Justice, S.M.; Jesch, E.; Duckett, S.K. Effects of Dam and Sire Breeds on Lamb Carcass Quality and Composition in Pasture-Based Systems. Animals 2023, 13, 3560. https://doi.org/10.3390/ani13223560
Justice SM, Jesch E, Duckett SK. Effects of Dam and Sire Breeds on Lamb Carcass Quality and Composition in Pasture-Based Systems. Animals. 2023; 13(22):3560. https://doi.org/10.3390/ani13223560
Chicago/Turabian StyleJustice, S. Maggie, Elliot Jesch, and Susan K. Duckett. 2023. "Effects of Dam and Sire Breeds on Lamb Carcass Quality and Composition in Pasture-Based Systems" Animals 13, no. 22: 3560. https://doi.org/10.3390/ani13223560
APA StyleJustice, S. M., Jesch, E., & Duckett, S. K. (2023). Effects of Dam and Sire Breeds on Lamb Carcass Quality and Composition in Pasture-Based Systems. Animals, 13(22), 3560. https://doi.org/10.3390/ani13223560