A Scoping Review on GIS Technologies Applied to Farmed Fish Health Management
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Protocol and Eligibility Criteria
- Aquatic environments (freshwater, marine, and transitional environments);
- Diseases (listed by the World Organization for Animal Health (WOAH) [22], i.e., diseases with major economic impact);
- Epidemiological issues (animal health, disease surveillance, monitoring plans, and disease response);
- GIS issues (methodologies, applications, type of analysis, and software).
2.2. Information Sources and Literature Search
2.3. Selection of Sources of Evidence
- Does the title/abstract make reference to GIS technologies/applications, spatial analysis, or mapping procedures?
- Does the title/abstract make reference to the type of aquaculture farms or wild fish populations of interest for this review?
- Does the study describe an application of GIS technology within the aquaculture sector alone, in aquaculture sector interactions with the wild fish population, or in environmental issues that can affect farmed fish health?
- Does the study describe the support activities of veterinary services or farmed fish health services?
- Does the study describe surveillance activities or epidemiological investigation/analysis in the aquaculture sector alone or in aquaculture sector interactions with the wild fish population?
2.4. Data Charting Process and Data Items
- Bibliographic (DOI, title, authors, journal, year of publication, and keywords);
- Country/location (where the studies were conducted or to which they referred);
- Purpose of the study (e.g., disease surveillance, health status/outbreak investigation, or disease management support);
- Demographic (species investigated, diseases, type of environment, and population);
- Epidemiological and surveillance (farm, outbreak and environment, fish movement, and control methods);
- GIS application: purposes of GIS use (to visualise the study area, to visualize the analytical model results, to implement GIS methods);
- GIS methodology: operations and functions to elaborate data (centroid, Euclidean distance, seaway distance, buffer, point-in-polygon, data map algebra);
- Type of analysis: visualisation (data distribution, overlay), geostatistics estimation (kernel, kriging), clusterisation (k-function, Moran’s I, Knox test, nearest neighbour);
- Modelling: statistical or mathematical models (hydrodynamic model, particle-tracking model, scan statistic, basic reproduction number R0, logistic regression);
- GIS program: software to implement GIS applications and modelling (ArcGIS, QGIS, Microsoft Excel, R package, CrimeStat, SaTScan).
2.5. Text Mining and Research Area Modelling
2.6. Synthesis of Results
3. Results
3.1. Selection of Sources of Evidence
3.2. Characteristics and Results of Sources of Evidence
3.3. Characteristics and Analysis of the Research Clusters
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Silva, C.; Ferreira, J.G.; Bricker, S.B.; DelValls, T.A.; Martín-Díaz, M.L.; Yáñez, E. Site Selection for Shellfish Aquaculture by Means of GIS and Farm-Scale Models, with an Emphasis on Data-Poor Environments. Aquaculture 2011, 318, 444–457. [Google Scholar] [CrossRef]
- Henriksson, P.J.G.; Rico, A.; Troell, M.; Klinger, D.H.; Buschmann, A.H.; Saksida, S.; Chadag, M.V.; Zhang, W. Unpacking Factors Influencing Antimicrobial Use in Global Aquaculture and Their Implication for Management: A Review from a Systems Perspective. Sustain. Sci. 2018, 13, 1105–1120. [Google Scholar] [CrossRef] [PubMed]
- Troell, M.; Naylor, R.L.; Metian, M.; Beveridge, M.; Tyedmers, P.H.; Folke, C.; Arrow, K.J.; Barrett, S.; Crépin, A.S.; Ehrlich, P.R.; et al. Does Aquaculture Add Resilience to the Global Food System? Proc. Natl. Acad. Sci. USA 2014, 111, 13257–13263. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Sahoo, P.K. Markers for Selection of Disease Resistance in Fish: A Review. Aquac. Int. 2014, 22, 1793–1812. [Google Scholar] [CrossRef]
- Borrego, J.J.; Valverde, E.J.; Labella, A.M.; Castro, D. Lymphocystis Disease Virus: Its Importance in Aquaculture. Rev. Aquac. 2017, 9, 179–193. [Google Scholar] [CrossRef]
- Li, D.; Li, X.; Wang, Q.; Hao, Y. Advanced Techniques for the Intelligent Diagnosis of Fish Diseases: A Review. Animals 2022, 12, 2938. [Google Scholar] [CrossRef]
- Gentry, R.R.; Froehlich, H.E.; Grimm, D.; Kareiva, P.; Parke, M.; Rust, M.; Gaines, S.D.; Halpern, B.S. Mapping the Global Potential for Marine Aquaculture. Nat. Ecol. Evol. 2017, 1, 1317–1324. [Google Scholar] [CrossRef]
- Dixon, P.; Paley, R.; Alegria-Moran, R.; Oidtmann, B. Epidemiological Characteristics of Infectious Hematopoietic Necrosis Virus (IHNV): A Review. Vet. Res. 2016, 47, 63. [Google Scholar] [CrossRef]
- Bang Jensen, B.; Dean, K.R.; Huseby, R.B.; Aldrin, M.; Qviller, L. Realtime Case Study Simulations of Transmission of Pancreas Disease (PD) in Norwegian Salmonid Farming for Disease Control Purposes. Epidemics 2021, 37, 100502. [Google Scholar] [CrossRef]
- Aldrin, M.; Huseby, R.B.; Jansen, P.A. Space-Time Modelling of the Spread of Pancreas Disease (PD) within and between Norwegian Marine Salmonid Farms. Prev. Vet. Med. 2015, 121, 132–141. [Google Scholar] [CrossRef]
- Mardones, J.I.; Dorantes-Aranda, J.J.; Nichols, P.D.; Hallegraeff, G.M. Fish Gill Damage by the Dinoflagellate Alexandrium Catenella from Chilean Fjords: Synergistic Action of ROS and PUFA. Harmful Algae 2015, 49, 40–49. [Google Scholar] [CrossRef]
- Guerrero-Cabrera, L.; Luna Olivera, B.C.; Villavicencio-Pulido, J.G.; Ortiz Luna, R.J. Proximity and Density of Neighboring Farms and Water Supply, as Risk Factors for Bacteriosis: A Case Study of Spatial Risk Analysis in Tilapia and Rainbow Trout Farms of Oaxaca, Mexico. Aquaculture 2020, 520, 734955. [Google Scholar] [CrossRef]
- Arechavala-Lopez, P.; Uglem, I.; Sanchez-Jerez, P.; Fernandez-Jover, D.; Bayle-Sempere, J.T.; Nilsen, R. Movements of Grey Mullet Liza Aurata and Chelon Labrosus Associated with Coastal Fish Farms in the Western Mediterranean Sea. Aquac. Environ. Interact. 2010, 1, 127–136. [Google Scholar] [CrossRef]
- Mengistu, T.S.; Haile, A.W. Review on the Application of Geographical Information Systems (GIS) in Veterinary Medicine. Int. J. Vet. Health Sci. Res. 2017, 5, 176–182. [Google Scholar] [CrossRef]
- Jijón, A.F.; Costa, R.; Nicova, K.; Furnari, G. Review of the Use of GIS in Public Health and Food Safety; EFSA Supporting Publications: Parma, Italy, 2022; p. 7639E. [Google Scholar] [CrossRef]
- Falconer, L.; Middelboe, A.L.; Kaas, H.; Ross, L.G.; Telfer, T.C. Use of Geographic Information Systems for Aquaculture and Recommendations for Development of Spatial Tools. Rev. Aquac. 2020, 12, 664–677. [Google Scholar] [CrossRef]
- Yatabe, T.; More, S.J.; Geoghegan, F.; McManus, C.; Hill, A.E.; Martínez-López, B. Characterization of the Live Salmonid Movement Network in Ireland: Implications for Disease Prevention and Control. Prev. Vet. Med. 2015, 122, 195–204. [Google Scholar] [CrossRef]
- Amirpour Haredasht, S.; Tavornpanich, S.; Jansen, M.D.; Lyngstad, T.M.; Yatabe, T.; Brun, E.; Martínez-López, B. A Stochastic Network-Based Model to Simulate the Spread of Pancreas Disease (PD) in the Norwegian Salmon Industry Based on the Observed Vessel Movements and Seaway Distance between Marine Farms. Prev. Vet. Med. 2019, 167, 174–181. [Google Scholar] [CrossRef]
- Zimmermann, E.W.; Purchase, C.F.; Fleming, I.A.; Brattey, J. Dispersal of Wild and Escapee Farmed Atlantic Cod (Gadus Morhua) in Newfoundland. Can. J. Fish. Aquat. Sci. 2013, 70, 747–755. [Google Scholar] [CrossRef]
- McGinnis, S.; Kerans, B.L. Land Use and Host Community Characteristics as Predictors of Disease Risk. Landsc. Ecol. 2013, 28, 29–44. [Google Scholar] [CrossRef]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.J.; Horsley, T.; Weeks, L.; et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef]
- World Organisation for Animal Health. Diseases listed by the OIE. In Aquatic Animal Health Code, 24th ed.; World Organisation for Animal Health: Paris, France, 2022; pp. 5–6. [Google Scholar]
- Nalon, E.; Contiero, B.; Gottardo, F.; Cozzi, G. The Welfare of Beef Cattle in the Scientific Literature From 1990 to 2019: A Text Mining Approach. Front. Vet. Sci. 2021, 7, 588749. [Google Scholar] [CrossRef] [PubMed]
- Samsing, F.; Johnsen, I.; Dempster, T.; Oppedal, F.; Treml, E.A. Network Analysis Reveals Strong Seasonality in the Dispersal of a Marine Parasite and Identifies Areas for Coordinated Management. Landsc. Ecol. 2017, 32, 1953–1967. [Google Scholar] [CrossRef]
- Aldrin, M.; Lyngstad, T.M.; Kristoffersen, A.B.; Storvik, B.; Borgan, Ø.; Jansen, P.A. Modelling the Spread of Infectious Salmon Anaemia among Salmon Farms Based on Seaway Distances between Farms and Genetic Relationships between Infectious Salmon Anaemia Virus Isolates. J. R. Soc. Interface 2011, 8, 1346–1356. [Google Scholar] [CrossRef]
- Moriarty, M.; Tulett, D.; Rabe, B.; Murray, A.G. Bio-Physical Models for the Management of Micropathogens in Scottish Aquaculture: A Preliminary View to Farming Further Offshore. Mar. Ecol. Prog. Ser. 2021, 679, 133–147. [Google Scholar] [CrossRef]
- Bacher, K.; Gordoa, A.; Sagué, O. Spatial and Temporal Extension of Wild Fish Aggregations at Sparus Aurata and Thunnus Thynnus Farms in the North-Western Mediterranean. Aquac. Environ. Interact. 2012, 2, 239–252. [Google Scholar] [CrossRef]
- Murray, A.G.; Munro, L.A.; Wallace, I.S.; Berx, B.; Pendrey, D.; Fraser, D.; Raynard, R.S. Epidemiological Investigation into the Re-Emergence and Control of an Outbreak of Infectious Salmon Anaemia in the Shetland Islands, Scotland. Dis. Aquat. Organ. 2010, 91, 189–200. [Google Scholar] [CrossRef] [PubMed]
- Finstad, B.; Sandvik, A.D.; Ugedal, O.; Vollset, K.W.; Karlsen, Ø.; Davidsen, J.G.; Sægrov, H.; Lennox, R.J. Development of a Risk Assessment Method for Sea Trout in Coastal Areas Exploited for Aquaculture. Aquac. Environ. Interact. 2021, 13, 133–144. [Google Scholar] [CrossRef]
- Mardones, F.O.; Jansen, P.A.; Valdes-Donoso, P.; Jarpa, M.; Lyngstad, T.M.; Jimenez, D.; Carpenter, T.E.; Perez, A.M. Within-Farm Spread of Infectious Salmon Anemia Virus (ISAV) in Atlantic Salmon Salmo Salar Farms in Chile. Dis. Aquat. Organ. 2013, 106, 7–16. [Google Scholar] [CrossRef]
- Romero, J.F.; Gardner, I.A.; Saksida, S.; McKenzie, P.; Garver, K.; Price, D.; Thakur, K. Simulated Waterborne Transmission of Infectious Hematopoietic Necrosis Virus among Farmed Salmon Populations in British Columbia, Canada Following a Hypothetical Virus Incursion. Aquaculture 2022, 548, 737658. [Google Scholar] [CrossRef]
- Kristoffersen, A.B.; Bang Jensen, B.; Jansen, P.A. Risk Mapping of Heart and Skeletal Muscle Inflammation in Salmon Farming. Prev. Vet. Med. 2013, 109, 136–143. [Google Scholar] [CrossRef]
- Jansen, P.A.; Kristoffersen, A.B.; Viljugrein, H.; Jimenez, D.; Aldrin, M.; Stien, A. Sea Lice as a Density-Dependent Constraint to Salmonid Farming. Proc. R. Soc. B 2012, 279, 2330–2338. [Google Scholar] [CrossRef]
- Arriagada, G.; Sanchez, J.; Stryhn, H.; Vanderstichel, R.; Campistó, J.L.; Ibarra, R.; St-Hilaire, S. A Multivariable Assessment of the Spatio-Temporal Distribution of Pyrethroids Performance on the Sea Lice Caligus Rogercresseyi in Chile. Spat. Spatio-Temporal Epidemiol. 2018, 26, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Peacock, S.J.; Krkošek, M.; Bateman, A.W.; Lewis, M.A. Estimation of Spatiotemporal Transmission Dynamics and Analysis of Management Scenarios for Sea Lice of Farmed and Wild Salmon. Can. J. Fish. Aquat. Sci. 2020, 77, 55–68. [Google Scholar] [CrossRef]
- Parent, M.I.; Stryhn, H.; Hammell, K.L.; Fast, M.D.; Grant, J.; Vanderstichel, R. Estimating the Dispersal of Lepeophtheirus Salmonis Sea Lice within and among Atlantic Salmon Sites of the Bay of Fundy, New Brunswick. J. Fish. Dis. 2021, 44, 1971–1984. [Google Scholar] [CrossRef] [PubMed]
- Middlemas, S.J.; Fryer, R.J.; Tulett, D.; Armstrong, J.D. Relationship between Sea Lice Levels on Sea Trout and Fish Farm Activity in Western Scotland. Fish. Manag. Ecol. 2013, 20, 68–74. [Google Scholar] [CrossRef]
- Patanasatienkul, T.; Sanchez, J.; Rees, E.E.; Pfeiffer, D.; Revie, C.W. Space-Time Cluster Analysis of Sea Lice Infestation (Caligus Clemensi and Lepeophtheirus Salmonis) on Wild Juvenile Pacific Salmon in the Broughton Archipelago of Canada. Prev. Vet. Med. 2015, 120, 219–231. [Google Scholar] [CrossRef]
- Mardones, F.O.; Martinez-Lopez, B.; Valdes-Donoso, P.; Carpenter, T.E.; Perez, A.M. The Role of Fish Movements and the Spread of Infectious Salmon Anemia Virus (ISAV) in Chile, 2007–2009. Prev. Vet. Med. 2014, 114, 37–46. [Google Scholar] [CrossRef]
- Vanderstichel, R.; St-Hilaire, S.; Ibarra, R.; Lyngstad, T.M.; Rees, E.; Medina, M.H. Space-Time Cluster Analysis of the Non-Pathogenic Infectious Salmon Anemia Virus (HPR0 ISAV) in Chile, 2011–2012. Aquaculture 2015, 437, 120–126. [Google Scholar] [CrossRef]
- Kristoffersen, A.B.; Qviller, L.; Helgesen, K.O.; Vollset, K.W.; Viljugrein, H.; Jansen, P.A. Quantitative Risk Assessment of Salmon Louse-Induced Mortality of Seaward-Migrating Post-Smolt Atlantic Salmon. Epidemics 2018, 23, 19–33. [Google Scholar] [CrossRef]
- Tavornpanich, S.; Paul, M.; Viljugrein, H.; Abrial, D.; Jimenez, D.; Brun, E. Risk Map and Spatial Determinants of Pancreas Disease in the Marine Phase of Norwegian Atlantic Salmon Farming Sites. BMC Vet. Res. 2012, 8, 172. [Google Scholar] [CrossRef]
- Mardones, F.O.; Perez, A.M.; Valdes-Donoso, P.; Carpenter, T.E. Farm-Level Reproduction Number during an Epidemic of Infectious Salmon Anemia Virus in Southern Chile in 2007–2009. Prev. Vet. Med. 2011, 102, 175–184. [Google Scholar] [CrossRef] [PubMed]
- Meyer, A.; Sadler, R.; Bannister-Tyrrell, M.; Gallardo Lagno, A.L.; Stegeman, A.; Cameron, A. Is between-Farm Water-Borne Pathogen Dissemination an Important Driver in the Epidemiology of Salmonid Rickettsial Septicaemia in Chile? Aquaculture 2021, 530, 735751. [Google Scholar] [CrossRef]
- Manca Zeichen, M.; Ciotoli, G.; Archina, M. Geospatial Analysis for Fish Farming across Tyrrhenian Coast (Tuscany, Central Italy). Ocean Coast. Manag. 2022, 226, 106261. [Google Scholar] [CrossRef]
- Foreman, M.G.G.; Guo, M.; Garver, K.A.; Stucchi, D.; Chandler, P.; Wan, D.; Morrison, J.; Tuele, D. Modelling Infectious Hematopoietic Necrosis Virus Dispersion from Marine Salmon Farms in the Discovery Islands, British Columbia, Canada. PLoS ONE 2015, 10, e0130951. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Benito, C.V.; Navarro, G.; Caballero, I. Using Copernicus Sentinel-2 and Sentinel-3 Data to Monitor Harmful Algal Blooms in Southern Chile during the COVID-19 Lockdown. Mar. Pollut. Bull. 2020, 161, 111722. [Google Scholar] [CrossRef] [PubMed]
- Middlemas, S.J.; Raffell, J.A.; Hay, D.W.; Hatton-Ellis, M.; Armstrong, J.D. Temporal and Spatial Patterns of Sea Lice Levels on Sea Trout in Western Scotland in Relation to Fish Farm Production Cycles. Biol. Lett. 2010, 6, 548–551. [Google Scholar] [CrossRef]
- Davie, A.W.; Pera, J.B. The Fish Health Risk Indicator: Linking Water Quality and River Flow Data with Fish Health to Improve Our Predictive Capacity around Fish Death Events. Mar. Freshw. Res. 2022, 73, 193–199. [Google Scholar] [CrossRef]
- Thrush, M.A.; Peeler, E.J. A Model to Approximate Lake Temperature from Gridded Daily Air Temperature Records and Its Application in Risk Assessment for the Establishment of Fish Diseases in the UK. Transbound. Emerg. Dis. 2013, 60, 460–471. [Google Scholar] [CrossRef]
- Jonkers, A.R.T.; Sharkey, K.J.; Thrush, M.A.; Turnbull, J.F.; Morgan, K.L. Epidemics and Control Strategies for Diseases of Farmed Salmonids: A Parameter Study. Epidemics 2010, 2, 195–206. [Google Scholar] [CrossRef]
- Bastardo, A.; Ravelo, C.; Romalde, J.L. Phylogeography of Yersinia Ruckeri Reveals Effects of Past Evolutionary Events on the Current Strain Distribution and Explains Variations in the Global Transmission of Enteric Redmouth (ERM) Disease. Front. Microbiol. 2015, 6, 1198. [Google Scholar] [CrossRef]
- Bhattacharya, M.; Chini, D.S.; Kar, A.; Patra, B.C.; Malick, R.C.; Kumar Das, B. Assessment and Modeling of Fish Diversity Related to Water Bodies of Bankura District, West Bengal, India, for Sustainable Management of Culture Practices. Environ. Dev. Sustain. 2020, 22, 971–984. [Google Scholar] [CrossRef]
- Fletcher, D.H.; Gillingham, P.K.; Britton, J.R.; Blanchet, S.; Gozlan, R.E. Predicting Global Invasion Risks: A Management Tool to Prevent Future Introductions. Sci. Rep. 2016, 6, 26316. [Google Scholar] [CrossRef] [PubMed]
- Hjortaas, M.J.; Bang Jensen, B.; Taksdal, T.; Olsen, A.B.; Lillehaug, A.; Trettenes, E.; Sindre, H. Genetic Characterization of Salmonid Alphavirus in Norway. J. Fish Dis. 2016, 39, 249–257. [Google Scholar] [CrossRef] [PubMed]
- Adams, T.; Black, K.; MacIntyre, C.; MacIntyre, I.; Dean, R. Connectivity Modelling and Network Analysis of Sea Lice Infection in Loch Fyne, West Coast of Scotland. Aquac. Environ. Interact. 2012, 3, 51–63. [Google Scholar] [CrossRef]
- Stene, A.; Viljugrein, H.; Yndestad, H.; Tavornpanich, S.; Skjerve, E. Transmission Dynamics of Pancreas Disease (PD) in a Norwegian Fjord: Aspects of Water Transport, Contact Networks and Infection Pressure among Salmon Farms. J. Fish Dis. 2014, 37, 123–134. [Google Scholar] [CrossRef]
- Adams, T.P.; Aleynik, D.; Black, K.D. Temporal Variability in Sea Lice Population Connectivity and Implications for Regional Management Protocols. Aquac. Environ. Interact. 2016, 8, 585–596. [Google Scholar] [CrossRef]
- Gaete-Carrasco, A.; Rosenfeld, C.; Gallardo, A. Epidemiological Analysis of the Active Programme for Piscirickettsia of the National Fisheries and Aquaculture Service of Chile. Rev. Sci. Tech. 2019, 38, 837–849. [Google Scholar] [CrossRef]
- Jensen, B.B.; Ersbøll, A.K.; Korsholm, H.; Skall, H.F.; Olesen, N.J. Spatio-Temporal Risk Factors for Viral Haemorrhagic Septicaemia (VHS) in Danish Aquaculture. Dis. Aquat. Organ. 2014, 109, 87–97. [Google Scholar] [CrossRef]
- Katselis, G.; Tsolakos, K.; Theodorou, J.A. Mapping of Greek Marine Finfish Farms and Their Potential Impact on the Marine Environment. J. Mar. Sci. Eng. 2022, 10, 286. [Google Scholar] [CrossRef]
- Eisen, L.; Eisen, R.J. Using Geographic Information Systems and Decision Support Systems for the Prediction, Prevention, and Control of Vector-Borne Diseases. Annu. Rev. Entomol. 2011, 56, 41–61. [Google Scholar] [CrossRef]
- Candeloro, L.; Ippoliti, C.; Iapaolo, F.; Monaco, F.; Morelli, D.; Cuccu, R.; Fronte, P.; Calderara, S.; Vincenzi, S.; Porrello, A.; et al. Predicting WNV Circulation in Italy Using Earth Observation Data and Extreme Gradient Boosting Model. Remote Sens. 2020, 12, 3064. [Google Scholar] [CrossRef]
- Fletcher-Lartey, S.M.; Caprarelli, G. Application of GIS Technology in Public Health: Successes and Challenges. Parasitology 2016, 143, 401–415. [Google Scholar] [CrossRef] [PubMed]
- Dion, E.; VanSchalkwyk, L.; Lambin, E.F. The Landscape Epidemiology of Foot-and-Mouth Disease in South Africa: A Spatially Explicit Multi-Agent Simulation. Ecol. Model. 2011, 222, 2059–2072. [Google Scholar] [CrossRef]
- Stevenson, M.A.; Wilesmith, J.W.; Ryan, J.B.M.; Morris, R.S.; Lawson, A.B.; Pfeiffer, D.U.; Lin, D. Descriptive Spatial Analysis of the Epidemic of Bovine Spongiform Encephalopathy in Great Britain to June 1997. Vet. Rec. 2000, 147, 379–384. [Google Scholar] [CrossRef]
- Gimpel, A.; Stelzenmüller, V.; Töpsch, S.; Galparsoro, I.; Gubbins, M.; Miller, D.; Murillas, A.; Murray, A.G.; Pınarbaşı, K.; Roca, G.; et al. A GIS-Based Tool for an Integrated Assessment of Spatial Planning Trade-Offs with Aquaculture. Sci. Total Environ. 2018, 627, 1644–1655. [Google Scholar] [CrossRef] [PubMed]
- Rova, S.; Pranovi, F.; Müller, F. Provision of Ecosystem Services in the Lagoon of Venice (Italy): An Initial Spatial Assessment. Ecohydrol. Hydrobiol. 2015, 15, 13–25. [Google Scholar] [CrossRef]
- Eby, L.A.; Pierce, R.; Sparks, M.; Carim, K.; Podner, C. Multiscale Prediction of Whirling Disease Risk in the Blackfoot River Basin, Montana: A Useful Consideration for Restoration Prioritization? Trans. Am. Fish. Soc. 2015, 144, 753–766. [Google Scholar] [CrossRef]
- Hedberg, N.; Kautsky, N.; Hellström, M.; Tedengren, M. Spatial Correlation and Potential Conflicts between Sea Cage Farms and Coral Reefs in South East Asia. Aquaculture 2015, 448, 418–426. [Google Scholar] [CrossRef]
- Gokul, E.A.; Raitsos, D.E.; Gittings, J.A.; Hoteit, I. Developing an atlas of harmful algal blooms in the red sea: Linkages to local aquaculture. Remote Sens. 2020, 12, 3695. [Google Scholar] [CrossRef]
Environment | GIS Methods or Techniques | Study Objectives | References |
---|---|---|---|
Marine | Euclidean distance | Dispersal pathway; estimation of infestation pressure | [24] |
Seaway distance | Dispersal pathway; disease spread | [25] | |
Euclidean distance; buffer | Simulation scenario model; risk assessment; disease management practice | [26] | |
Spatiotemporal model; spatial distribution; acoustic telemetry | [19] | ||
Spatiotemporal analysis | [27] | ||
Spatial and temporal model; spatial distribution; risk assessment | [28,29] | ||
Seaway distance; buffer | Spatiotemporal model; stochastic model; risk map; disease spread | [10] | |
Spatiotemporal analysis; risk factor assessment; surveillance support | [30] | ||
Simulation scenario model; stochastic model; disease management practice | [31] | ||
Spatiotemporal model; risk factor assessment and map | [32] | ||
Seaway distance; kernel density | Spatial and spatiotemporal model; spatial distribution; disease spread and management | [33,34] | |
Euclidean distance; grid calculation | Spatiotemporal model; risk assessment; disease management | [35] | |
Seaway distance; centroid; kernel density | Spatial clustering and dispersal pathway; estimation of infestation pressure | [36] | |
Euclidean distance; nearest neighbour; grid calculation | Spatial planning; risk assessment | [37] | |
Seaway distance; nearest neighbour; kernel density | Stochastic model; risk factor assessment and map; disease spread | [18] | |
Seaway distance; Thiessen polygon; classification | Spatiotemporal analysis; spatial distribution; risk assessment and map | [38] | |
Nearest neighbour; centroid; Haversine distance | Risk factor assessment; disease study | [39] | |
Seaway distance; Euclidean distance; kernel density; raster map | Spatiotemporal analysis; risk factor assessment and map; epidemiology of infectious diseases; surveillance support | [40] | |
Seaway distance; buffer; map algebra; kernel density | Spatial and temporal model; spatial distribution; risk assessment | [41] | |
Seaway distance; buffer; kriging; raster map | Spatiotemporal model; risk map; disease spread | [42] | |
Seaway distance; Euclidean distance; buffer; centroid; nearest neighbour | Risk factor assessment; epidemiology of infectious diseases; surveillance support | [43] | |
Seaway distance; Euclidean distance; buffer; kernel density; raster map | Spatiotemporal model; risk factor assessment; epidemiology of infectious diseases | [44] | |
Basic and hydrographic cartography | Spatial multi-criteria decision analysis | [45] | |
None | Simulation scenario model; risk map; disease management practice | [46] | |
Manipulation of satellite images; monitoring of algae bloom | [47] | ||
Spatial analysis; spatial distribution | [48] | ||
Freshwater | Grid calculation; map algebra | Spatiotemporal analysis; risk assessment and map; surveillance support | [49,50] |
Euclidean distance; buffer; kernel density | Stochastic model; simulation model; spatial distribution; risk assessment and map | [51] | |
Geographical distribution; risk assessment | [52] | ||
Generalisation; raster; map algebra | Spatial analysis; spatial distribution | [53] | |
Euclidean distance; buffer; area calculation; overlay | Spatial and temporal analysis; risk assessment | [20] | |
Euclidean distance; centroid; raster; map algebra | Spatial model; spatial distribution; risk assessment and map | [54] | |
Euclidean distance; buffer; nearest neighbour; point-in-polygon; kriging; IDW | Spatiotemporal model; spatial distribution; risk assessment and map; epidemiology of infectious diseases; surveillance support | [12] | |
Marine—fjords | Buffer | Spatial distribution; risk factor assessment; phylogenetic analysis | [55] |
Seaway distance; buffer | Spatiotemporal model; simulation model; stochastic model; risk assessment and map | [9] | |
Seaway distance; buffer; centroid | Spatiotemporal model; simulation model; spatial distribution; spatial dispersal model | [56] | |
Seaway distance; buffer; kernel density | Simulation scenario model; risk factor assessment; disease management practice | [57] | |
Euclidean distance; buffer; centroid; nearest neighbour | Spatiotemporal model; simulation model; spatial dispersal model | [58] | |
Marine—freshwater | Euclidean distance; buffer | Spatiotemporal analysis; risk assessment; risk map; spatial epidemiology methods to limit the risk of disease introduction and spread; surveillance support | [17] |
Euclidean distance; buffer; centroid | Spatiotemporal analysis; risk assessment and map; descriptive analysis; epidemiology of infectious diseases; spatial epidemiology methods to limit the risk of disease introduction and spread; surveillance support | [59] | |
Euclidean distance; buffer; nearest neighbour | Spatiotemporal analysis; risk assessment; surveillance support | [60] | |
Marine—transitional | Euclidean distance; buffer | Geodata production and management; spatial distribution | [61] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dorotea, T.; Riuzzi, G.; Franzago, E.; Posen, P.; Tavornpanich, S.; Di Lorenzo, A.; Ferroni, L.; Martelli, W.; Mazzucato, M.; Soccio, G.; et al. A Scoping Review on GIS Technologies Applied to Farmed Fish Health Management. Animals 2023, 13, 3525. https://doi.org/10.3390/ani13223525
Dorotea T, Riuzzi G, Franzago E, Posen P, Tavornpanich S, Di Lorenzo A, Ferroni L, Martelli W, Mazzucato M, Soccio G, et al. A Scoping Review on GIS Technologies Applied to Farmed Fish Health Management. Animals. 2023; 13(22):3525. https://doi.org/10.3390/ani13223525
Chicago/Turabian StyleDorotea, Tiziano, Giorgia Riuzzi, Eleonora Franzago, Paulette Posen, Saraya Tavornpanich, Alessio Di Lorenzo, Laura Ferroni, Walter Martelli, Matteo Mazzucato, Grazia Soccio, and et al. 2023. "A Scoping Review on GIS Technologies Applied to Farmed Fish Health Management" Animals 13, no. 22: 3525. https://doi.org/10.3390/ani13223525
APA StyleDorotea, T., Riuzzi, G., Franzago, E., Posen, P., Tavornpanich, S., Di Lorenzo, A., Ferroni, L., Martelli, W., Mazzucato, M., Soccio, G., Segato, S., & Ferrè, N. (2023). A Scoping Review on GIS Technologies Applied to Farmed Fish Health Management. Animals, 13(22), 3525. https://doi.org/10.3390/ani13223525