Nutrient and Rumen Fermentation Studies of Indian Pasture Legumes for Sustainable Animal Feed Utilisation in Semiarid Areas
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Sites
2.2. Sample Collection and Processing of Forage Legumes
2.3. Chemical Analyses
2.4. Carbohydrate and Protein Fractionation
- (a)
- CA: rapidly degradable carbohydrates (CHOs), including sugars.
- (b)
- CB1: intermediately degradable starch and pectin.
- (c)
- CB2: slowly degradable cell wall.
- (d)
- CC: unavailable/lignin-bound cell wall.
2.5. Dry Matter Intake, Digestibility and Energy Calculations
2.6. Estimation of Minerals
2.7. Donor Animals and Inoculum Preparation
2.8. In Vitro Incubations
2.9. Methane Measurements
2.10. Data Analysis
3. Results
3.1. Chemical Composition
3.2. Protein and Carbohydrate Fractions
3.3. Energy, Energy Efficiency, Intake, Digestibility and Relative Feed Value of Legumes
3.4. Minerals
3.5. Fermentation Pattern
3.6. Gas, Methane and Loss of Energy as Methane
4. Discussion
4.1. Chemical Composition
4.2. Protein and Carbohydrate Fractions
4.3. Energy, Energy Efficiency, Intake, Digestibility and Relative Feed Value of Legumes
4.4. Minerals
4.5. Fermentation Pattern
4.6. Gas, Methane Production and Loss of Energy as Methane
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Russelle, M.P. Alfalfa: After an 8000-year journey, the “Queen of Forages” stands poised to enjoy renewed popularity. Am. Sci. 2001, 89, 252–261. [Google Scholar] [CrossRef]
- Olalekan, A.J.; Bosede, B.F. Comparative study on chemical composition and functional properties of three Nigerian legumes (jack beans, pigeon pea and cowpea). J. Emerg. Trends Eng. Appl. Sci. 2010, 1, 89–95. [Google Scholar]
- Amiri, F. Comparison of nutritive values of grasses and legume species using forage quality index. Songklanakarin J. Sci. Technol. 2012, 34, 577–586. [Google Scholar]
- Wattiaux, M.; Howard, T. Technical Dairy Guide: Nutrition and Feeding; University of Wisconsin: Madison, WI, USA, 2001. [Google Scholar]
- Muir, J.P.; Pitman, W.D.; Dubeux, J.C., Jr.; Foster, J.L. The future of warm-season, tropical and subtropical forage legumes in sustainable pastures and rangelands. Afr. J. Range Forage Sci. 2014, 31, 187–198. [Google Scholar] [CrossRef]
- Schultze-Kraft, R.; Rao, I.M.; Peters, M.; Clements, R.J.; Bai, C.; Liu, G. Tropical forage legumes for environmental benefits: An overview. Trop. Grassl.-Forrajes Trop. 2018, 6, 1–14. [Google Scholar] [CrossRef]
- Soussana, J.-F.; Lemaire, G. Coupling carbon and nitrogen cycles for environmentally sustainable intensification of grasslands and crop-livestock systems. Agric. Ecosyst. Environ. 2014, 190, 9–17. [Google Scholar] [CrossRef]
- Dewhurst, R.J.; Delaby, L.; Moloney, A.; Boland, T.; Lewis, E. Nutritive value of forage legumes used for grazing and silage. Ir. J. Agric. Food Res. 2009, 48, 167–187. [Google Scholar]
- Kleen, J.; Taube, F.; Gierus, M. Agronomic performance and nutritive value of forage legumes in binary mixtures with perennial ryegrass under different defoliation systems. J. Agric. Sci. 2011, 149, 73–84. [Google Scholar] [CrossRef]
- Virgona, J.; Harris, C.; Kemp, S.; Evans, J.; Salmon, R. Australian Legume Research–synthesis and future directions. Crop Pasture Sci. 2012, 63, 918–926. [Google Scholar] [CrossRef]
- Foster, J.; Adesogan, A.; Carter, J.; Blount, A.; Myer, R.; Phatak, S. Intake, digestibility, and nitrogen retention by sheep supplemented with warm-season legume hays or soybean meal. J. Anim. Sci. 2009, 87, 2891–2898. [Google Scholar] [CrossRef]
- Eckard, R.; Grainger, C.; De Klein, C. Options for the abatement of methane and nitrous oxide from ruminant production: A review. Livest. Sci. 2010, 130, 47–56. [Google Scholar] [CrossRef]
- Puchala, R.; Min, B.; Goetsch, A.; Sahlu, T. The effect of a condensed tannin-containing forage on methane emission by goats. J. Anim. Sci. 2005, 83, 182–186. [Google Scholar] [CrossRef] [PubMed]
- Shanku, E.; Getiso, A.; Mijena, D.; Ijara, F. Integration of annual forage legume with maize for better feed availability of livestock in maize dominated mixed farming system of Southern Region, Ethiopia. Int. J. Agric. Sci. Food Technol. 2022, 8, 173–177. [Google Scholar]
- Graham, P.H.; Vance, C.P. Legumes: Importance and constraints to greater use. Plant Physiol. 2003, 131, 872–877. [Google Scholar] [CrossRef]
- Thomas, D.; Sumberg, J. A review of the evaluation and use of tropical forage legumes in sub-Saharan Africa. Agric. Ecosyst. Environ. 1995, 54, 151–163. [Google Scholar] [CrossRef]
- Lewis, G.; Schrire, B.; Mackinder, B.; Lock, M. Legumes of the World. Royal Botanic Gardens, Kew. Edinb. J. Bot. 2005, 62, 195–196. [Google Scholar]
- Valarini, M.; Possenti, R. Research note: Nutritive value of a range of tropical forage legumes. Trop. Grassl. 2006, 40, 183. [Google Scholar]
- Zhao, D.; MacKown, C.T.; Starks, P.J.; Kindiger, B.K. Interspecies variation of forage nutritive value and nonstructural carbohydrates in perennial cool-season grasses. Agron. J. 2008, 100, 837–844. [Google Scholar] [CrossRef]
- Guo, X.; Wilmshurst, J.F.; Li, Z. Comparison of laboratory and field remote sensing methods to measure forage quality. Int. J. Environ. Res. Public Health 2010, 7, 3513–3530. [Google Scholar] [CrossRef]
- Kassi, A.L.; Newbold, C.; Wallace, R. Chemical composition and degradation characteristics of foliage of some African multipurpose trees. Anim. Feed Sci. Technol. 2000, 86, 27–37. [Google Scholar]
- Ahmad, M.S.; Mehmood, M.A.; Al Ayed, O.S.; Ye, G.; Luo, H.; Ibrahim, M.; Rashid, U.; Nehdi, I.A.; Qadir, G. Kinetic analyses and pyrolytic behavior of Para grass (Urochloa mutica) for its bioenergy potential. Bioresour. Technol. 2017, 224, 708–713. [Google Scholar] [CrossRef] [PubMed]
- Van Soest, P.V.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Sniffen, C.J.; O’Connor, J.D.; Van Soest, P.J.; Fox, D.G.; Russell, J.B. A net carbohydrate and protein system for evaluating cattle diets: II. Carbohydrate and protein availability. J. Anim. Sci. 1992, 70, 3562–3577. [Google Scholar] [PubMed]
- Caballero, R.; Alzueta, C.; Ortiz, L.T.; Rodríguez, M.L.; Barro, C.; Rebolé, A. Carbohydrate and protein fractions of fresh and dried common vetch at three maturity stages. Agron. J. 2001, 93, 1006–1013. [Google Scholar] [CrossRef]
- Sastry, V.; Kamra, D.; Pathak, N. Laboratory Manual of Animal Nutrition; Indian Veterinary Research Institute: Izatnagar, India, 1999; p. 255. [Google Scholar]
- Licitra, G.; Hernandez, T.M.; Van Soest, P.J. Standardization of procedures for nitrogen fractionation of ruminant feeds. Anim. Feed Sci. Technol. 1996, 57, 347–358. [Google Scholar] [CrossRef]
- Undersander, D.; Mertens, D.; Thiex, N. Forage Analyses. In Information Systems Division; National Agricultural Library (United States of America) NAL/USDA: Beltsville, MD, USA, 1993. [Google Scholar]
- Fonnesbeck, P.V.; Clark, D.H.; Garret, W.N.; Speth, C.F. Predicting energy utilization from alfalfa hay from the Western Region. Proc. Am. Anim. Sci. (West. Sect.) 1984, 35, 305–308. [Google Scholar]
- Khalil, J.; Sawaya, W.N.; Hyder, S.Z. Nutrient composition of Atriplex leaves grown in Saudi Arabia. Rangel. Ecol. Manag. J. Range Manag. Arch. 1986, 39, 104–107. [Google Scholar] [CrossRef]
- Koli, P.; Kumar, J.; Singh, B.B.; Kumar, S. Mineral profiling and Phytochemical assessment of Lepidium sativum seeds from tropical western India. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 3720–3728. [Google Scholar] [CrossRef]
- Theodorou, M.K.; Williams, B.A.; Dhanoa, M.S.; McAllan, A.B.; France, J. A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Anim. Feed Sci. Technol. 1994, 48, 185–197. [Google Scholar] [CrossRef]
- Tavendale, M.H.; Meagher, L.P.; Pacheco, D.; Walker, N.; Attwood, G.T.; Sivakumaran, S. Methane production from in vitro rumen incubations with Lotus pedunculatus and Medicago sativa, and effects of extractable condensed tannin fractions on methanogenesis. Anim. Feed Sci. Technol. 2005, 123, 403–419. [Google Scholar] [CrossRef]
- Santoso, B.; Mwenya, B.; Sar, C.; Takahashi, J. Methane production and energy partition in sheep fed timothy silage-or hay-based diets. J. Ilmu Ternak Vet. 2007, 12, 27–33. [Google Scholar]
- Getachew, G.; Makkar, H.; Becker, K. Tropical browses: Contents of phenolic compounds, in vitro gas production and stoichiometric relationship between short chain fatty acid and in vitro gas production. J. Agric. Sci. 2002, 139, 341–352. [Google Scholar] [CrossRef]
- Blümmel, M.; Steingaβ, H.; Becker, K. The relationship between in vitro gas production, in vitro microbial biomass yield and 15N incorporation and its implications for the prediction of voluntary feed intake of roughages. Br. J. Nutr. 1997, 77, 911–921. [Google Scholar] [CrossRef] [PubMed]
- Herrero, M.; Jessop, N. In Vitro Gas Production of Tropical Pasture Legumes. In Proceedings of the XVIII International Grassland Congress, Winnipeg, MB, Canada, 8–19 June 1997; pp. 63–64. [Google Scholar]
- Tona, G.; Ogunleke, F.; Asaolu, A.; Yusuf, A.; Olasusi, E. In vitro evaluation of grass and legume/browse species grazed by west african dwarf goats in South-Western Nigeria. IOSR J. Agric. Vet. Sci. 2017, 10, 70–75. [Google Scholar] [CrossRef]
- Musco, N.; Koura, I.B.; Tudisco, R.; Awadjihè, G.; Adjolohoun, S.; Cutrignelli, M.I.; Mollica, M.P.; Houinato, M.; Infascelli, F.; Calabrò, S. Nutritional characteristics of forage grown in south of Benin. Asian-Australas. J. Anim. Sci. 2016, 29, 51. [Google Scholar]
- Mokoboki, H.; Ndlovu, L.; Ayisi, K. Chemical and physical parameters of forage legume species introduced in the Capricorn region of Limpopo Province, South Africa. S. Afr. J. Anim. Sci. 2002, 32, 247–255. [Google Scholar]
- Deshmukh, S.; Jadhav, V. Bromatological and mineral assessment of Clitoria ternatea Linn. leaves. Energy (KJ) 2014, 6, 244–246. [Google Scholar]
- Silva, D.L.; Oliveira, K.P.; Aroeira, L.J.; Chaves, D.F.; Ponciano, M.F.; Braga, A.P.; Júnior, D.M.L. Chemical composition of Caatinga potential forages species. Trop. Subtrop. Agroecosyst. 2015, 18, 267–272. [Google Scholar]
- Suha Uslu, O.; Kurt, O.; Kaya, E.; Kamalak, A. Effect of species on chemical composition, metabolizable energy, organic matter digestibility and methane production of some legume plants grown in Turkey. J. Appl. Anim. Res. 2018, 46, 1158–1161. [Google Scholar] [CrossRef]
- Carvalho, M.; Quesenberry, K. Agronomic evaluation of Arachis pintoi (Krap. and Greg.) germplasm in Florida. Arch. Zootec. 2012, 61, 19–29. [Google Scholar] [CrossRef]
- Ferreira, A.L.; Maurício, R.M.; Fernandes, F.D.; Carvalho, M.A.; Ramos, A.K.B.; Junior, R.G. Ranking contrasting genotypes of forage peanut based on nutritive value and fermentation kinetics. Anim. Feed Sci. Technol. 2012, 175, 16–23. [Google Scholar] [CrossRef]
- Li, M.; Zi, X.; Zhou, H.; Hou, G.; Cai, Y. Chemical composition and in vitro digestibility of Stylosanthes guianensis varieties. Grassl. Sci. 2014, 60, 125–129. [Google Scholar] [CrossRef]
- Ali, A.; Abdullah, L.; Karti, P.D.; Chozin, M.; Astuti, D. Production, competition indices, and nutritive values of Setaria splendida, Centrosema pubescens, and Clitoria ternatea in mixed cropping systems in peatland. Media Peternak. 2013, 36, 209. [Google Scholar] [CrossRef]
- da Silva Cabral, L.; Filho, S.d.C.V.; Muniz, P.A.; Malafaia, R.d.P.L.; da Silva, J.F.C.; Vieira, R.A.M.; Pereira, E.S. Frações protéicas de alimentos tropicais e suas taxas de digestão estimadas pela incubação com proteases ruminais. Rev. Bras. Zootec. 2000, 29, 2316–2324. [Google Scholar]
- Van Soest, P. Nutritional Ecology of The Ruminants; Cornell University: Ithaca, NY, USA, 1994. [Google Scholar]
- Buxton, D.R.; Fales, S.L. Plant environment and quality. In Forage Quality, Evaluation, and Utilization; American Society of Agronomy: Madison, WI, USA, 1994; pp. 155–199. [Google Scholar]
- Mlay, P.S.; Pereka, A.; Chikula Phiri, E.; Balthazary, S.; Igusti, J.; Hvelplund, T.; Riis Weisbjerg, M.; Madsen, J. Feed value of selected tropical grasses, legumes and concentrates. Vet. Arh. 2006, 76, 53–63. [Google Scholar]
- Carvalho, G.G.P.d.; Garcia, R.; Pires, A.J.V.; Pereira, O.G.; Fernandes, F.É.P.; Obeid, J.A.; Carvalho, B.M.A.d. Carbohydrate fractioning of elephantgrass silage wilted or enriched with cocoa meal. Rev. Bras. Zootec. 2007, 36, 1000–1005. [Google Scholar] [CrossRef]
- Singh, S.; Kushwaha, B.; Nag, S.; Mishra, A.; Singh, A.; Anele, U. In vitro ruminal fermentation, protein and carbohydrate fractionation, methane production and prediction of twelve commonly used Indian green forages. Anim. Feed Sci. Technol. 2012, 178, 2–11. [Google Scholar] [CrossRef]
- Teixeira, D.A.A.; de Pinho Costa, K.A.; de Castro Dias, M.B.; Guimarães, K.C.; Epifanio, P.S.; Fernandes, P.B. Protein and carbohydrate fractionation of silages made from maize, Urochloa species and their mixtures. Trop. Grassl. Forrajes Trop. 2022, 10, 134–142. [Google Scholar] [CrossRef]
- Ribeiro, K.G.; Pereira, O.G.; Valadares Filho, S.d.C.; Garcia, R.; Cabral, L.d.S. Characterization of the protein and the carbohydrate fractions, and the respective degradation rates of Tifton 85 bermudagrass hay at different regrowth ages. Rev. Bras. De Zootec. 2001, 30, 589–595. [Google Scholar] [CrossRef]
- Adewole, A.H.; Famuyide, I.M.; McGaw, L.J.; Selepe, M.A.; October, N. Antifungal Compounds from the Leaves of Rhynchosia minima. Chem. Biodivers. 2022, 19, e202200837. [Google Scholar] [CrossRef]
- Osman, I.M.; Acar, R.; Babikir, E.S.N. Exploiting indigenous plants species to rehabilitate degraded rangelands of sudan using rhynchosia minima (L.) DC. In Proceedings of the 1st International Conference on Sustainable Ecological Agriculture (1st ISEA), Konya, Türkiye, 12–14 May 2022; p. 157. [Google Scholar]
- Teferedegne, B. New perspectives on the use of tropical plants to improve ruminant nutrition. Proc. Nutr. Soc. 2000, 59, 209–214. [Google Scholar] [CrossRef] [PubMed]
- Romney, D.; Gill, M. Intake of forages. In Forage Evaluation in Ruminant Nutrition; CAB International: Wallingford, UK, 2000; pp. 43–62. [Google Scholar]
- Warly, L.; Fariani, A.; Ichinohe, T.; Fujihara, T. Study on nutritive value of tropical forages in North Sumatra, Indonesia. Asian-Australas. J. Anim. Sci. 2004, 17, 1518–1523. [Google Scholar]
- Aydın, N.; Mut, Z.; Mut, H.; Ayan, İ. Effect of autumn and spring sowing dates on hay yield and quality of oat (Avena sativa L.) genotypes. J. Anim. Veter-Adv. 2010, 9, 1539–1545. [Google Scholar] [CrossRef]
- Fernandes, F.D.; Ramos, A.K.; Carvalho, M.A.; Maciel, G.A.; ASSIS, G.M.D.; Braga, G.J. Forage yield and nutritive value of Arachis spp. genotypes in the Brazilian savanna. Trop. Grassl.-Forrajes Trop. 2017, 5, 19–28. [Google Scholar] [CrossRef]
- Nasrullah, M.N.; Niimi, M.; Akashi, R.; Kawamura, O. Nutritive evaluation of forage plants grown in South Sulawesi, Indonesia II. Mineral Composition. Asian-Australas. J. Anim. Sci. 2004, 17, 63–67. [Google Scholar] [CrossRef]
- Gama, T.d.C.M.; Volpe, E.; Lempp, B. Biomass accumulation and chemical composition of Massai grass intercropped with forage legumes on an integrated crop-livestock-forest system. Rev. Bras. De Zootec. 2014, 43, 279–288. [Google Scholar] [CrossRef]
- Melesse, A.; Steingass, H.; Schollenberger, M.; Rodehutscord, M. Screening of common tropical grass and legume forages in Ethiopia for their nutrient composition and methane production profile in vitro. Trop. Grassl.-Forrajes Trop. 2017, 5, 163–175. [Google Scholar] [CrossRef]
- Sébastien, A.; Jérôme, B.; Claude, A.; Soumanou, T.S.; Marcel, H.; Brice, S. Variety and environmental effects on crude protein concentration and mineral composition of Arachis pintoi (Kaprovickas & Gregory) in Benin (West Africa). J. Appl. Biol. Biotechnol. 2013, 1, 024–028. [Google Scholar]
- Juknevičius, S.; Sabienė, N. The content of mineral elements in some grasses and legumes. Ekologija 2007, 53, 44–52. [Google Scholar]
- McCrabb, G.; Berger, K.; Magner, T.; May, C.; Hunter, R. Inhibiting methane production in Brahman cattle by dietary supplementation with a novel compound and the effects on growth. Aust. J. Agric. Res. 1997, 48, 323–329. [Google Scholar] [CrossRef]
- Anele, U.; Südekum, K.-H.; Hummel, J.; Arigbede, O.; Oni, A.; Olanite, J.; Böttger, C.; Ojo, V.; Jolaosho, A. Chemical characterization, in vitro dry matter and ruminal crude protein degradability and microbial protein synthesis of some cowpea (Vigna unguiculata L. Walp) haulm varieties. Anim. Feed Sci. Technol. 2011, 163, 161–169. [Google Scholar] [CrossRef]
- Hungate, R. The Rumen and Its Microbes; Academic Press: New York, NY, USA; London, UK, 1966. [Google Scholar]
- Keller, M.; Scheurer, A.; Reidy, B.; Liesegang, A.; Amelchanka, S.L.; Kreuzer, M.; Giller, K. Nitrogen and energy losses and methane emissions from beef cattle fed diets with gradual replacement of maize silage and concentrate with grass silage and corn-cob mix. Animal 2023, 17, 100722. [Google Scholar] [CrossRef]
- Mirzaei-Aghsaghali, A.; Maheri-Sis, N. Factors affecting mitigation of methane emission from ruminants I: Feeding strategies. Asian J. Anim. Vet. Adv. 2011, 6, 888–908. [Google Scholar] [CrossRef]
- Singh, S.; Koli, P.; Bhadoria, B.K.; Agarwal, M.; Lata, S.; Ren, Y.; Du, X. Proanthocyanidins Modulate Rumen Enzyme Activities and protein utilization in vitro. Molecules 2022, 27, 5870. [Google Scholar] [CrossRef]
- Singh, S.; Kundu, S.S. Effect of tropical browse leaves supplementation on rumen enzymes of sheep and goats fed Dichanthium annulatum grass-based diets. Trop. Anim. Health Prod. 2010, 42, 1181–1187. [Google Scholar] [CrossRef]
- Koli, P.; Singh, S.; Bhadoria, B.K.; Agarwal, M.; Lata, S.; Ren, Y. Sequential Extraction of Proanthocyanidin Fractions from Ficus Species and Their Effects on Rumen Enzyme Activities In Vitro. Molecules 2022, 27, 5153. [Google Scholar] [CrossRef]
- Lopez, V.M.; Florentino, B.; Barlaz, M.A. Chemical composition and methane potential of commercial food wastes. Waste Manag. 2016, 56, 477–490. [Google Scholar] [CrossRef]
- Banik, B.; Durmic, Z.; Erskine, W.; Ghamkhar, K.; Revell, C. In vitro ruminal fermentation characteristics and methane production differ in selected key pasture species in Australia. Crop Pasture Sci. 2013, 64, 935–942. [Google Scholar] [CrossRef]
- Bezabih, M.; Pellikaan, W.; Tolera, A.; Khan, N.; Hendriks, W. Chemical composition and in vitro total gas and methane production of forage species from the M id R ift V alley grasslands of E thiopia. Grass Forage Sci. 2014, 69, 635–643. [Google Scholar] [CrossRef]
- Boga, M.; Yurtseven, S.; Kilic, U.; Aydemir, S.; Polat, T. Determination of nutrient contents and in vitro gas production values of some legume forages grown in the Harran plain saline soils. Asian-Australas. J. Anim. Sci. 2014, 27, 825. [Google Scholar] [CrossRef]
- Maccarana, L.; Cattani, M.; Tagliapietra, F.; Bailoni, L.; Schiavon, S. Influence of main dietary chemical constituents on the in vitro gas and methane production in diets for dairy cows. J. Anim. Sci. Biotechnol. 2016, 7, 54. [Google Scholar] [CrossRef] [PubMed]
- Bueno, I.C.; Brandi, R.A.; Franzolin, R.; Benetel, G.; Fagundes, G.M.; Abdalla, A.L.; Louvandini, H.; Muir, J.P. In vitro methane production and tolerance to condensed tannins in five ruminant species. Anim. Feed Sci. Technol. 2015, 205, 1–9. [Google Scholar] [CrossRef]
- Cone, J.W.; Van Gelder, A.H.; Bachmann, H. Influence of inoculum source on gas production profiles. Anim. Feed Sci. Technol. 2002, 99, 221–231. [Google Scholar] [CrossRef]
- Jayanegara, A.; Togtokhbayar, N.; Makkar, H.P.S.; Becker, K. Tannins determined by various methods as predictors of methane production reduction potential of plants by an in vitro rumen fermentation system. Anim. Feed Sci. Technol. 2009, 150, 230–237. [Google Scholar] [CrossRef]
- Singh, S.; Bhadoria, B.K.; Koli, P.; Lata, S. Seasonal variation in chemical and biochemical constituents of tropical top feed species: Components in silvipasture system. Range Manag. Agrofor. 2021, 42, 312–319. [Google Scholar]
- Singh, S.; Bhadoria, B.K.; Koli, P.; Singh, A. Nutritional evaluation of top foliages for livestock feeding in semi arid region of India. Indian J. Anim. Sci. 2019, 89, 1389–1398. [Google Scholar] [CrossRef]
Annual species | Dolichos biflorus (DB), horse gram; Lablab purpures (LLP), Lablab bean; Macroptilium atropurpureum (MA) purple bush bean; Rhynchosia minima (RM), burn-mouth vine; and Stylosanthas hamata (SH), Caribbean stylo. |
Perennial species | Arachis glabrata (AG), perennial peanut; Arachis hagenbackii (AH); Atylosia scarabaeoides (AS), showy pigeonpea; Clitoria ternatea-white (CT-W), white butterfly pea vine, Clitoria ternatea-blue (CT-B), butterfly pea; Centrosoma pubescene (CPb), fodder pea; Desmenthus virgatus (DV), hedge lucerne; Stylosanthas scabra (SSc), shrubby stylo; Stylosanthas scofield (SSco), Brazilian lucerne; Stylosanthas seabrana (SSe), cattinga stylo; and Stylosanthus viscosa (SV), sticky stylo. |
Legumes | OM | CP | EE | NDF | ADF | Cellulose | Lignin | Hemi Cellulose |
---|---|---|---|---|---|---|---|---|
AG | 873 b | 123 f | 20.2 ab | 479 b | 381 cd | 2725 e | 101 ef | 976 a |
AH | 878 c | 116 e | 23.4 abc | 478 b | 342 b | 273 e | 68.1 ab | 136 bcd |
CP | 905 g | 172 i | 27.5 cd | 549 cde | 380 c | 266 c | 103 ef | 169 d |
DB | 897 f | 88 b | 28.1 cd | 730 h | 414 ef | 325 e | 82.4 bcd | 316 g |
CT-w | 919 i | 146 h | 48.3 f | 566 f | 396 cde | 270 c | 124 gh | 171 d |
SSe | 930 L | 80 a | 26.6 cd | 604 g | 501 g | 365 g | 134 i | 103 ab |
SH | 923 j | 93 c | 27.0 cd | 624 g | 403 e | 297 d | 99.2 e | 221 e |
SSc | 915 h | 92 c | 43.2 ef | 548 cde | 423 f | 345 f | 72.9 abc | 124 abc |
SSco | 886 d | 95 c | 18.5 a | 529 cd | 401 de | 307 de | 83.8 bc | 129 abc |
SV | 927 k | 105 d | 24.6 bcd | 545 cde | 407 ef | 320 g | 80.7 bc | 139 bcd |
MA | 855 a | 141 g | 24.9 bcd | 482 b | 382 cd | 271 e | 105 ef | 99.0 a |
AS | 894 e | 105 d | 29.7 d | 439 a | 342 b | 213 b | 115 fg | 98.2 a |
DV | 928 kl | 143 gh | 63.8 g | 519 c | 266 a | 177 a | 73.5 abc | 253 ef |
RM | 934 m | 143 gh | 41.5 e | 595 fg | 337 b | 229 b | 1027 ef | 258 f |
CT-b | 937 n | 183 j | 46.6 f | 544 cde | 396 cde | 296 d | 94.6 de | 147 cd |
LLP | 896 e | 180 j | 40.3 e | 556 de | 335 b | 267 c | 62.7 a | 220 e |
Mean | 906 | 125.4 | 33.4 | 549 | 382 | 28.09 | 93.9 | 168 |
SEM | 2.12 | 0.283 | 0.421 | 1.002 | 1.51 | 6.93 | 1.69 | 2.87 |
Significance | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
Legumes | Carbohydrate and Its Fractions | Protein Fractions | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
tCHO | SC | NSC | CA | CB1 | CB2 | CC | PA | PB1 | PB2 | PB3 | PC | |
AG | 730 e | 424 bc | 306 ghi | 470 f | 71 g | 127 bc | 315 gh | 223 de | 394 fg | 161 cd | 116 cd | 98.8 d |
AH | 739 f | 430 bcd | 309 ghi | 439 ef | 57 e | 282 gh | 221 a | 228 de | 374 ef | 224 e | 92.8 bc | 81.5 c |
CP | 705 c | 457 cde | 248 def | 459 ef | 48 cd | 153 cd | 349 def | 214 cd | 185 b | 305 g | 202 ef | 93.7 d |
DB | 781 i | 683 h | 976 a | 143 a | 52 d | 551 j | 253 a | 324 h | 123 a | 300 g | 118 cd | 134 fg |
CT-w | 725 de | 500 f | 225 cd | 429 ef | 37 a | 121 bc | 428 g | 211 c | 437 h | 91.5 b | 208 f | 52.9 a |
SSe | 823 L | 561 g | 261 ef | 358 c | 43 b | 208 def | 391 fg | 184 b | 352 e | 172 d | 178 e | 113 e |
SH | 802 k | 589 g | 213 bc | 278 b | 61 e | 365 i | 297 bc | 277 g | 232 c | 346 h | 60.8 a | 83.7 c |
SSc | 780 j | 483 ef | 296 gh | 406 de | 37 a | 332 hi | 224 a | 236 ef | 182 b | 292 g | 139 d | 150 h |
SSco | 773 i | 454 cde | 319 hi | 431 ef | 58 e | 251 efg | 260 ab | 238 ef | 194 b | 179 d | 246 g | 142 gh |
SV | 797 k | 464 de | 333 i | 414 de | 65 f | 277 fgh | 243 a | 214 cd | 265 d | 138 c | 254 g | 129 f |
MA | 689 b | 415 b | 274 fg | 478 f | 85 h | 70 b | 367 ef | 165 a | 430 h | 252 f | 78.3 ab | 75.2 cd |
AS | 759 h | 367 a | 392 i | 589 g | 43 b | 4.3 a | 364 def | 250 f | 205 bc | 99.1 b | 330 h | 116 e |
DV | 721 d | 458 cde | 263 ef | 410 de | 49 cd | 296 gh | 245 a | 215 cd | 281 d | 310 g | 110 cd | 82.9 c |
RM | 749 g | 516 f | 233 cd | 375 cd | 45 bc | 254 efg | 326 cde | 210 c | 418 gh | 25.2 a | 245 g | 1015 d |
CT-b | 708 c | 453 cde | 254 def | 450 ef | 42 b | 187 cde | 321 cd | 205 c | 477 i | 33.8 a | 213 f | 71.6 b |
LLP | 676 a | 484 ef | 191 b | 356 b | 33 a | 388 i | 223 a | 215 cd | 177 b | 420 i | 76.8 ab | 111 e |
Mean | 747 | 484 | 263 | 405 | 52 | 242 | 302 | 226 | 295 | 209 | 167 | 102 |
SEM | 0.343 | 2.74 | 2.77 | 14.03 | 1.96 | 19.5 | 9.50 | 5.30 | 16.4 | 16.4 | 11.3 | 3.90 |
Significance | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
Legumes | TDN | DE | ME | NEL | NEM | NEG | DMI | DDM | RFV |
---|---|---|---|---|---|---|---|---|---|
AG | 553 de | 10.1 e | 8.32 d | 5.16 f | 6.16 e | 2.45 de | 2.51 g | 592 de | 114.94 ef |
AH | 604 f | 11.1 f | 9.11 e | 5.66 g | 6.74 f | 3.08 f | 2.51 g | 623 f | 121.26 fg |
CP | 555 e | 10.2 e | 8.36 d | 5.16 ef | 6.16 e | 2.50 e | 2.19 def | 593 e | 100.45 cd |
DB | 511 ab | 9.36 bc | 7.69 bc | 4.70 be | 5.62 bc | 1.96 bc | 1.64 a | 567 bc | 72.20 a |
CT-w | 534 cde | 9.82 cde | 8.03 cd | 4.95 cdef | 5.91 cde | 2.25 cde | 2.12 cd | 581 cde | 95.48 c |
SSe | 398 a | 7.28 a | 5.99 a | 3.54 a | 4.24 a | 0.58 a | 1.99 bc | 499 a | 76.80 a |
SH | 525 c | 9.65 cd | 7.90 c | 4.87 cde | 5.78 c | 2.12 c | 1.93 b | 575 c | 86.16 b |
SSc | 498 b | 9.150 b | 7.48 b | 4.58 b | 5.49 b | 1.83 b | 2.20 def | 559 b | 95.65 c |
SSco | 528 cd | 9.69 cde | 7.94 cd | 4.87 cde | 5.82 cd | 2.16 cd | 2.27 ef | 577 cd | 101.46 cd |
SV | 520 ab | 9.52 bc | 7.82 bc | 4.78 f | 5.74 c | 2.08 bc | 2.20 def | 572 bc | 97.68 c |
MA | 552 de | 10.1 de | 8.32 d | 5.12 bc | 6.12 de | 2.45 de | 2.50 g | 591 de | 114.36 e |
AS | 605 f | 11.1 f | 9.11 e | 5.66 g | 6.78 f | 3.08 f | 2.73 h | 623 f | 131.73 h |
DV | 703 g | 12.9 g | 10.6 f | 6.66 h | 7.95 g | 4.28 g | 2.31 f | 682 g | 122.22 g |
RM | 611 f | 11.2 f | 9.19 e | 5.74 e | 6.82 f | 3.16 f | 2.02 be | 627 f | 97.92 c |
CT-b | 534 cde | 9.77 cde | 8.03 cd | 4.95 b | 5.91 cde | 2.25 cde | 2.21 def | 580 cde | 99.45 cd |
LLP | 613 f | 11.2 f | 9.23 e | 5.74 e | 6.86 f | 3.20 f | 2.16 de | 627 f | 104.94 d |
Mean | 553 | 10.15 | 8.40 | 5.12 | 6.12 | 2.47 | 2.22 | 592 | 102.04 |
SEM | 2.04 | 0.029 | 0.029 | 0.021 | 0.025 | 0.025 | 0.011 | 1.22 | 0.548 |
Significance | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
Legumes | Cu | Zn | Fe | Mn | Ca | Mg |
---|---|---|---|---|---|---|
AG | 76.7 h | 65.8 g | 1150 cde | 47.5 c | 2.77 f | 0.59 j |
AH | 60.7 g | 61.1 g | 737 bc | 47.3 c | 2.74 f | 0.58 j |
CP | 28.7 ef | 42.2 e | 246 ab | 31.9 ab | 1.48 e | 0.37 e |
DB | 35.7 f | 31.9 bc | 1271 de | 70.5 ef | 1.37 e | 0.41 g |
CT-w | 24.9 cde | 41.7 de | 311 ab | 40.8 bc | 0.60 a | 0.37 f |
SSe | 14.9 ab | 35.0 | 215 ab | 20.3 a | 0.94 c | 0.24 e |
SH | 11.1 a | 26.7 ab | 259 ab | 77.37 f | 0.80 b | 0.25 ab |
SSc | 13.6 ab | 32.0 bc | 174 a | 22.1 a | 1.34 e | 0.28 bc |
SSco | 16.1 abc | 48.7 f | 1023 cd | 54.5 cd | 1.47 e | 0.29 cd |
SV | 12.4 ab | 20.8 a | 137 a | 27.2 a | 1.44 e | 0.46 h |
MA | 21.1 bcde | 30.1 bc | 1573 e | 61.4 e | 1.17 d | 0.34 ef |
AS | 18.5 abcd | 28.5 bc | 1288 de | 72.3 f | 0.93 c | 0.36 ef |
DV | 27.3 def | 27.1 ab | 32.8 a | 28.3 ab | 0.93 c | 0.88 k |
RM | 59. 6 g | 25.5 ab | 183 a | 18.6 a | 0.58 a | 0.32 de |
CT-b | 72.0 h | 35.3 cd | 31.5 a | 41.9 bc | 0.55 a | 0.53 i |
LLP | 62.8 g | 39.3 de | 39.4 a | 41.6 bc | 0.98 c | 0.44 gh |
Mean | 34.8 | 37.0 | 542 | 44.0 | 1.26 | 0.42 |
SEM | 0.726 | 0.544 | 41.41 | 1.08 | 0.11 | 0.003 |
Significance | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
Legumes | ME kJ/g | DMD | PF | SCFA mm/g | MBM mg/g | EMBP mg/g |
---|---|---|---|---|---|---|
AG | 6.07 cd | 649 fg | 6.09 cde | 2.44 cd | 421 efg | 0.63 cd |
AH | 6.04 cd | 663 g | 6.35 cde | 2.41 cd | 445 g | 0.64 cd |
CP | 5.77 bcd | 513 b | 5.35 bc | 2.20 bcd | 306 bc | 0.60 bcd |
DB | 6.11 cd | 577 cd | 5.26 bc | 2.54 cd | 346 cde | 0.56 bcd |
CT-w | 4.86 ab | 559 cd | 7.05 de | 1.80 ab | 392 defg | 0.68 d |
SSe | 5.61 bc | 578 cd | 5.49 bc | 2.41 cd | 355 cdef | 0.59 bcd |
SH | 5.82 bcd | 641 fg | 6.20 cde | 2.37 cd | 417 defg | 0.63 cd |
SSc | 6.18 cd | 631 efg | 5.60 bcde | 2.61 de | 385 defg | 0.59 bcd |
SSco | 5.78 bcd | 646 fg | 6.25 cde | 2.42 cd | 424 efg | 0.63 cd |
SV | 5.84 bcd | 580 cd | 5.24 bc | 2.54 cd | 342 cd | 0.57 bcd |
MA | 5.59 bc | 594 cde | 7.08 e | 2.00 abc | 407 defg | 0.66 d |
AS | 4.49 a | 394 a | 5.53 bc | 1.64 a | 238 b | 0.58 bcd |
DV | 6.53 cd | 409 a | 3.45 a | 2.77 de | 142 a | 0.32 a |
RM | 6.25 cd | 547 bc | 4.82 abc | 2.60 cde | 302 bc | 0.53 bc |
CT-b | 6.43 cd | 602 de | 4.37 ab | 3.13 e | 301 bc | 0.48 b |
LLP | 6.73 d | 660 g | 5.56 bcd | 2.76 de | 402 defg | 0.58 bcd |
Mean | 5.88 | 578 | 5.61 | 2.42 | 352 | 0.58 |
SEM | 0.080 | 10.4 | 0.151 | 0.059 | 11.00 | 0.013 |
Significance | 0.001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
Legumes | Gas mL/g | CH4 mL/g | Gas mL/g DDM | CH4 mL/g DDM | CH4% Gas | CH4%DE | CH4% ME |
---|---|---|---|---|---|---|---|
AG | 110 cde | 15.2 d | 170 ab | 23.5 b | 13.9 bc | 5.77 ef | 7.03 ef |
AH | 109 cde | 15.1 d | 164 ab | 22.7 b | 13.9 bc | 5.23 cdef | 6.37 cdef |
CP | 99.1 bcd | 11.0 bc | 192 abc | 21.4 b | 11.1 abc | 4.14 abc | 5.04 abc |
DB | 114 de | 13.0 cd | 199 abc | 22.6 b | 11.5 abc | 5.31 def | 6.47 def |
CT-w | 81.3 b | 8.24 a | 145 a | 14.7 a | 10.1 ab | 3.23 a | 3.94 a |
SSe | 108 cde | 11.5 bc | 188 abc | 20.1 ab | 10.8 abc | 6.10 f | 7.43 f |
SH | 107 cde | 11.5 bc | 166 ab | 18.1 ab | 11.2 abc | 4.61 bcd | 5.61 bcd |
SSc | 117 de | 12.8 cd | 186 abc | 20.4 b | 11.3 abc | 5.37 def | 6.54 def |
SSco | 109 cde | 11.9 bc | 169 ab | 18.6 ab | 11.4 abc | 4.75 bcde | 5.79 bcde |
SV | 115 de | 11.4 bc | 197 abc | 19.7 ab | 10.0 a | 4.60 bcd | 5.60 bcd |
MA | 90.4 bc | 12.4 cd | 153 a | 21.0 b | 14.1 c | 4.72 bcde | 5.75 bcde |
AS | 55.4 a | 9.1 ab | 188 abc | 23.2 b | 12.5 abc | 3.17 a | 3.86 a |
DV | 122 def | 10.8 bc | 309 d | 26.4 c | 8.99 a | 3.24 a | 3.94 a |
RM | 117 de | 11.4 bc | 215 bc | 21.0 b | 9.72 a | 3.92 ab | 4.78 ab |
CT-b | 141 f | 13.4 cd | 235 c | 22.3 b | 9.51 a | 5.27 cdef | 6.42 cdef |
LLP | 124 ef | 12.8 cd | 190 abc | 19.4 ab | 10.4 abc | 4.49 bcd | 5.46 bcd |
Mean | 107 | 12.0 | 192 | 21.0 | 11.3 | 4.62 | 5.63 |
SEM | 1.80 | 0.219 | 5.86 | 0.495 | 0.315 | 0.134 | 0.163 |
Significance | <0.0001 | <0.0001 | <0.0001 | 0.010 | 0.041 | <0.0001 | <0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, S.; Singh, T.; Koli, P.; Anele, U.Y.; Bhadoria, B.K.; Choudhary, M.; Ren, Y. Nutrient and Rumen Fermentation Studies of Indian Pasture Legumes for Sustainable Animal Feed Utilisation in Semiarid Areas. Animals 2023, 13, 3676. https://doi.org/10.3390/ani13233676
Singh S, Singh T, Koli P, Anele UY, Bhadoria BK, Choudhary M, Ren Y. Nutrient and Rumen Fermentation Studies of Indian Pasture Legumes for Sustainable Animal Feed Utilisation in Semiarid Areas. Animals. 2023; 13(23):3676. https://doi.org/10.3390/ani13233676
Chicago/Turabian StyleSingh, Sultan, Tejveer Singh, Pushpendra Koli, Uchenna Y. Anele, Brijesh K. Bhadoria, Mukesh Choudhary, and Yonglin Ren. 2023. "Nutrient and Rumen Fermentation Studies of Indian Pasture Legumes for Sustainable Animal Feed Utilisation in Semiarid Areas" Animals 13, no. 23: 3676. https://doi.org/10.3390/ani13233676
APA StyleSingh, S., Singh, T., Koli, P., Anele, U. Y., Bhadoria, B. K., Choudhary, M., & Ren, Y. (2023). Nutrient and Rumen Fermentation Studies of Indian Pasture Legumes for Sustainable Animal Feed Utilisation in Semiarid Areas. Animals, 13(23), 3676. https://doi.org/10.3390/ani13233676