Preselecting Variants from Large-Scale Genome-Wide Association Study Meta-Analyses Increases the Genomic Prediction Accuracy of Growth and Carcass Traits in Large White Pigs
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Phenotypes
2.2. Genotyping and Imputation
2.3. Variant Selection Based on Genome-Wide Association Meta-Analysis
2.4. Genomic Prediction Models
2.4.1. GBLUP
2.4.2. GFBLUP
2.4.3. TABLUP
2.4.4. BLUP|GA
2.4.5. GTBLUP
2.4.6. Evaluation of the Accuracy of GEBV
3. Results
3.1. The Impact of Alternative Strategy for Preselecting Variants on Genome Prediction
3.2. The Impact of Different Proportion of Selected Top SNPs on Genome Prediction
3.3. The Impact of Different Models of Selected Top SNPs on Genome Prediction
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, S.Q.; Du, M.; Tu, Y.; You, W.J.; Chen, W.T.; Liu, G.L.; Li, J.Y.; Wang, Y.Z.; Lu, Z.Q.; Wang, T.H.; et al. Fermented mixed feed alters growth performance, carcass traits, meat quality and muscle fatty acid and amino acid profiles in finishing pigs. Anim. Nutr. 2023, 12, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Ruan, D.; Zhuang, Z.; Ding, R.; Qiu, Y.; Zhou, S.; Wu, J.; Xu, C.; Hong, L.; Huang, S.; Zheng, E.; et al. Weighted single-step GWAS identified candidate genes associated with growth traits in a Duroc pig population. Genes 2021, 12, 117. [Google Scholar] [CrossRef] [PubMed]
- Jibrila, I.; Vandenplas, J.; ten Napel, J.; Bergsma, R.; Veerkamp, R.F.; Calus, M.P.L. Impact of genomic preselection on subsequent genetic evaluations with ssGBLUP using real data from pigs. Genet. Sel. Evol. 2022, 54, 48. [Google Scholar] [CrossRef] [PubMed]
- Abdollahi-Arpanahi, R.; Lourenco, D.; Misztal, I. A comprehensive study on size and definition of the core group in the proven and young algorithm for single-step GBLUP. Genet. Sel. Evol. 2022, 54, 34. [Google Scholar] [CrossRef]
- Meuwissen, T.H.; Hayes, B.J.; Goddard, M.E. Prediction of total genetic value using genome-wide dense marker maps. Genetics 2001, 157, 1819–1829. [Google Scholar] [CrossRef] [PubMed]
- VanRaden, P.M.; Van Tassell, C.P.; Wiggans, G.R.; Sonstegard, T.S.; Schnabel, R.D.; Taylor, J.F.; Schenkel, F.S. Invited review: Reliability of genomic predictions for North American Holstein bulls. J. Dairy Sci. 2009, 92, 16–24. [Google Scholar] [CrossRef]
- Lillehammer, M.; Meuwissen, T.H.E.; Sonesson, A.K. Genomic selection for maternal traits in pigs. J. Anim. Sci. 2011, 89, 3908–3916. [Google Scholar] [CrossRef]
- Cleveland, M.A.; Hickey, J.M.; Forni, S. A Common Dataset for Genomic Analysis of Livestock Populations. G3 2012, 2, 429–435. [Google Scholar] [CrossRef]
- Sevillano, C.A.; ten Napel, J.; Guimaraes, S.E.F.; Silva, F.F.; Calus, M.P.L. Effects of alleles in crossbred pigs estimated for genomic prediction depend on their breed-of-origin. BMC Genom. 2018, 19, 740. [Google Scholar] [CrossRef]
- Meuwissen, T.; Goddard, M. Accurate prediction of genetic values for complex traits by whole-genome resequencing. Genetics 2010, 185, 623–631. [Google Scholar] [CrossRef]
- Iheshiulor, O.O.M.; Woolliams, J.A.; Yu, X.J.; Wellmann, R.; Meuwissen, T.H.E. Within- and across-breed genomic prediction using whole-genome sequence and single nucleotide polymorphism panels. Genet. Sel. Evol. 2016, 48, 15. [Google Scholar] [CrossRef]
- Druet, T.; Macleod, I.M.; Hayes, B.J. Toward genomic prediction from whole-genome sequence data: Impact of sequencing design on genotype imputation and accuracy of predictions. Heredity 2014, 112, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Zhang, Z.Y.; Ma, P.P.; Wang, Z.; Wang, Q.S.; Zhang, Z.; Pan, Y.C. The effect of high-density genotypic data and different methods on joint genomic prediction: A case study in large white pigs. Anim. Genet. 2023, 54, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, Z.W.; Wu, J.; Qiu, Y.B.; Ruan, D.L.; Ding, R.R.; Xu, C.E.; Zhou, S.P.; Zhang, Y.L.; Liu, Y.Y.; Ma, F.C.; et al. Improving the accuracy of genomic prediction for meat quality traits using whole genome sequence data in pigs. J. Anim. Sci. Biotechnol. 2023, 14, 67. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.Y.; Kemp, R.A.; Stothard, P.; Wang, Z.Q.; Boddicker, N.; Krivushin, K.; Dekkers, J.; Plastow, G. Genomic evaluation of feed efficiency component traits in Duroc pigs using 80K, 650K and whole-genome sequence variants. Genet. Sel. Evol. 2018, 50, 14. [Google Scholar] [CrossRef] [PubMed]
- Fang, F.; Li, J.L.; Guo, M.; Mei, Q.S.; Yu, M.; Liu, H.M.; Legarra, A.; Xiang, T. Genomic evaluation and genome-wide association studies for total number of teats in a combined American and Danish Yorkshire pig populations selected in China. J. Anim. Sci. 2022, 100, skac174. [Google Scholar] [CrossRef]
- Li, Y.H.; Chang, M.; Schrodi, S.J.; Callis-Duffin, K.P.; Matsunami, N.; Civello, D.; Bui, N.; Catanese, J.J.; Leppert, M.F.; Krueger, G.G.; et al. The 5q31 variants associated with psoriasis and Crohn’s disease are distinct. Hum. Mol. Genet. 2008, 17, 2978–2985. [Google Scholar] [CrossRef]
- Li, H.W.; Zhu, B.; Xu, L.; Wang, Z.Z.; Xu, L.; Zhou, P.N.; Gao, H.; Guo, P.; Chen, Y.; Gao, X.; et al. Genomic prediction using LD-based haplotypes inferred from high-density chip and imputed sequence variants in Chinese Simmental beef cattle. Front. Genet. 2021, 12, 665382. [Google Scholar] [CrossRef]
- Brondum, R.F.; Su, G.; Janss, L.; Sahana, G.; Guldbrandtsen, B.; Boichard, D.; Lund, M.S. Quantitative trait loci markers derived from whole genome sequence data increases the reliability of genomic prediction. J. Dairy Sci. 2015, 98, 4107–4116. [Google Scholar] [CrossRef]
- Veerkamp, R.F.; Bouwman, A.C.; Schrooten, C.; Calus, M.P.L. Genomic prediction using preselected DNA variants from a GWAS with whole-genome sequence data in Holstein-Friesian cattle. Genet. Sel. Evol. 2016, 48, 95. [Google Scholar] [CrossRef]
- Ros-Freixedes, R.; Johnsson, M.; Whalen, A.; Chen, C.Y.; Valente, B.D.; Herring, W.O.; Gorjanc, G.; Hickey, J.M. Genomic prediction with whole-genome sequence data in intensely selected pig lines. Genet. Sel. Evol. 2022, 54, 65. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.F.; Zhang, Y.; Liu, T.N.; Jiang, B.; Li, Z.Y.; Qu, Y.P.; Chen, Y.S.; Li, Z.C. Utilizing variants identified with multiple genome-wide association study methods optimizes genomic selection for growth traits in pigs. Animals 2023, 13, 722. [Google Scholar] [CrossRef] [PubMed]
- Jang, S.; Tsuruta, S.; Leite, N.G.; Misztal, I.; Lourenco, D. Dimensionality of genomic information and its impact on genome-wide associations and variant selection for genomic prediction: A simulation study. Genet. Sel. Evol. 2023, 55, 49. [Google Scholar] [CrossRef]
- Botelho, M.E.; Lopes, M.S.; Mathur, P.K.; Knol, E.F.; Guimaraes, S.E.F.; Marques, D.B.D.; Lopes, P.S.; Silva, F.F.; Veroneze, R. Applying an association weight matrix in weighted genomic prediction of boar taint compounds. J. Anim. Breed. Genet. 2021, 138, 442–453. [Google Scholar] [CrossRef] [PubMed]
- Jang, S.; Ros-Freixedes, R.; Hickey, J.M.; Chen, C.Y.; Herring, W.O.; Holl, J.; Misztal, I.; Lourenco, D. Multi-line ssGBLUP evaluation using preselected markers from whole-genome sequence data in pigs. Front. Genet. 2023, 14, 1163626. [Google Scholar] [CrossRef] [PubMed]
- Jang, S.; Ros-Freixedes, R.; Hickey, J.M.; Chen, C.Y.; Holl, J.; Herring, W.O.; Misztal, I.; Lourenco, D. Using pre-selected variants from large-scale whole-genome sequence data for single-step genomic predictions in pigs. Genet. Sel. Evol. 2023, 55, 55. [Google Scholar] [CrossRef] [PubMed]
- Tiezzi, F.; Maltecca, C. Accounting for trait architecture in genomic predictions of US Holstein cattle using a weighted realized relationship matrix. Genet. Sel. Evol. 2015, 47, 24. [Google Scholar] [CrossRef] [PubMed]
- Ren, D.Y.; An, L.X.; Li, B.J.; Qiao, L.Y.; Liu, W.Z. Efficient weighting methods for genomic best linear-unbiased prediction (BLUP) adapted to the genetic architectures of quantitative traits. Heredity 2021, 126, 320–334. [Google Scholar] [CrossRef]
- Su, G.; Christensen, O.F.; Janss, L.; Lund, M.S. Comparison of genomic predictions using genomic relationship matrices built with different weighting factors to account for locus-specific variances. J. Dairy Sci. 2014, 97, 6547–6559. [Google Scholar] [CrossRef]
- Zhang, Z.; Ober, U.; Erbe, M.; Zhang, H.; Gao, N.; He, J.L.; Li, J.Q.; Simianer, H. Improving the accuracy of whole genome prediction for complex traits using the results of genome wide association studies. PLoS ONE 2014, 9, e93017. [Google Scholar] [CrossRef]
- Genetic Evaluation of South China Breeding Pigs. Available online: http://www.breeding.cn (accessed on 22 February 2022).
- Browning, B.L.; Browning, S.R. Genotype imputation with millions of reference samples. Am. J. Hum. Genet. 2016, 98, 116–126. [Google Scholar] [CrossRef] [PubMed]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.I.; Daly, M.J.; et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef] [PubMed]
- de los Campos, G.; Vazquez, A.I.; Fernando, R.; Klimentidis, Y.C.; Sorensen, D. Prediction of complex human traits using the genomic best linear unbiased predictor. PLoS Genet. 2013, 9, e1003608. [Google Scholar] [CrossRef] [PubMed]
- Speed, D.; Hemani, G.; Johnson, M.R.; Balding, D.J. Improved heritability estimation from genome-wide SNPs. Am. J. Hum. Genet. 2012, 91, 1011–1021. [Google Scholar] [CrossRef] [PubMed]
- VanRaden, P.M. Efficient methods to compute genomic predictions. J. Dairy Sci. 2008, 91, 4414–4423. [Google Scholar] [CrossRef] [PubMed]
- Sarup, P.; Jensen, J.; Ostersen, T.; Henryon, M.; Sorensen, P. Increased prediction accuracy using a genomic feature model including prior information on quantitative trait locus regions in purebred Danish Duroc pigs. BMC Genet. 2016, 17, 11. [Google Scholar] [CrossRef] [PubMed]
- Clifford, D.; McCullagh, P. The Regress Function. The Newsletter of the R Project Volume 6/2, 6 May 2006. Available online: https://cran.r-project.org/web/packages/regress/regress.pdf (accessed on 1 April 2023).
- Pocrnic, I.; Lourenco, D.A.L.; Masuda, Y.; Misztal, I. Accuracy of genomic BLUP when considering a genomic relationship matrix based on the number of the largest eigenvalues: A simulation study. Genet. Sel. Evol. 2019, 51, 75. [Google Scholar] [CrossRef] [PubMed]
- van den Berg, I.; Xiang, R.D.; Jenko, J.; Pausch, H.; Boussaha, M.; Schrooten, C.; Tribout, T.; Gjuvsland, A.B.; Boichard, D.; Nordbo, O.; et al. Meta-analysis for milk fat and protein percentage using imputed sequence variant genotypes in 94,321 cattle from eight cattle breeds. Genet. Sel. Evol. 2020, 52, 37. [Google Scholar] [CrossRef]
- Winkler, T.W.; Day, F.R.; Croteau-Chonka, D.C.; Wood, A.R.; Locke, A.E.; Magi, R.; Ferreira, T.; Fall, T.; Graff, M.; Justice, A.E.; et al. Quality control and conduct of genome-wide association meta-analyses. Nat. Protoc. 2014, 9, 1192–1212. [Google Scholar] [CrossRef]
- Akbarzadeh, M.; Dehkordi, S.R.; Roudbar, M.A.; Sargolzaei, M.; Guity, K.; Sedaghati-khayat, B.; Riahi, P.; Azizi, F.; Daneshpour, M.S. GWAS findings improved genomic prediction accuracy of lipid profile traits. Sci. Rep. 2021, 11, 5780. [Google Scholar] [CrossRef]
- He, Z.X.; Li, S.; Li, W.; Ding, J.Q.; Zheng, M.Q.; Li, Q.H.; Fahey, A.G.; Wen, J.; Liu, R.R.; Zhao, G.P. Comparison of genomic prediction methods for residual feed intake in broilers. Anim. Genet. 2022, 53, 466–469. [Google Scholar] [CrossRef] [PubMed]
- Do, D.N.; Strathe, A.B.; Ostersen, T.; Jensen, J.; Mark, T.; Kadarmideen, H.N. Genome-wide association study reveals genetic architecture of eating behavior in pigs and its implications for humans obesity by comparative mapping. PLoS ONE 2013, 8, e71509. [Google Scholar] [CrossRef] [PubMed]
Traits 1 | Number | Minimum | Maximum | Average | SD | CV |
---|---|---|---|---|---|---|
ADG100/g | 1026 | 443 | 764 | 589 | 49 | 8 |
BFT100/mm | 1026 | 3.82 | 18.8 | 9.522 | 2.257 | 23.702 |
DAYS100/d | 1026 | 129.08 | 222.43 | 168.773 | 13.982 | 8.285 |
The Proportion of Selected Top SNPs | ADG100 1 | BFT100 1 | DAYS100 1 | |||
---|---|---|---|---|---|---|
Chip | WGS | Chip | WGS | Chip | WGS | |
0.1% | - | 854 | - | 858 | - | 856 |
0.3% | - | 2562 | - | 2574 | - | 2569 |
0.5% | - | 4270 | - | 4290 | - | 4281 |
1% | 382 | 8541 | 382 | 8580 | 383 | 8563 |
5% | 1912 | 42,704 | 1908 | 42,898 | 191 | 42,814 |
10% | 3824 | 85,409 | 3816 | 85,797 | 3833 | 85,629 |
20% | 7648 | 170,818 | 7632 | 171,594 | 7666 | 171,257 |
40% | 15,297 | 341,636 | 15,264 | 343,188 | 15,332 | 342,514 |
60% | 22,945 | 512,453 | 22,897 | 514,781 | 22,999 | 513,771 |
80% | 30,594 | 683,271 | 30,529 | 686,375 | 30,665 | 685,028 |
100% | 38,242 | 854,089 | 38,161 | 857,969 | 38,332 | 856,285 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, C.; Chang, C.; Zhang, W.; Ren, D.; Cai, X.; Zhou, T.; Shi, S.; Wu, X.; Si, J.; Yuan, X.; et al. Preselecting Variants from Large-Scale Genome-Wide Association Study Meta-Analyses Increases the Genomic Prediction Accuracy of Growth and Carcass Traits in Large White Pigs. Animals 2023, 13, 3746. https://doi.org/10.3390/ani13243746
Wei C, Chang C, Zhang W, Ren D, Cai X, Zhou T, Shi S, Wu X, Si J, Yuan X, et al. Preselecting Variants from Large-Scale Genome-Wide Association Study Meta-Analyses Increases the Genomic Prediction Accuracy of Growth and Carcass Traits in Large White Pigs. Animals. 2023; 13(24):3746. https://doi.org/10.3390/ani13243746
Chicago/Turabian StyleWei, Chen, Chengjie Chang, Wenjing Zhang, Duanyang Ren, Xiaodian Cai, Tianru Zhou, Shaolei Shi, Xibo Wu, Jinglei Si, Xiaolong Yuan, and et al. 2023. "Preselecting Variants from Large-Scale Genome-Wide Association Study Meta-Analyses Increases the Genomic Prediction Accuracy of Growth and Carcass Traits in Large White Pigs" Animals 13, no. 24: 3746. https://doi.org/10.3390/ani13243746
APA StyleWei, C., Chang, C., Zhang, W., Ren, D., Cai, X., Zhou, T., Shi, S., Wu, X., Si, J., Yuan, X., Li, J., & Zhang, Z. (2023). Preselecting Variants from Large-Scale Genome-Wide Association Study Meta-Analyses Increases the Genomic Prediction Accuracy of Growth and Carcass Traits in Large White Pigs. Animals, 13(24), 3746. https://doi.org/10.3390/ani13243746