Mass Balance Studies of Robenidine Hydrochloride in the Body of Channel Catfish (Ictalurus punctatus)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Animals
2.2. Reagents
2.3. Drug Treatment and Sample Collection
2.4. Sample Preparation
2.5. Instrument Conditions
2.6. Preparation of Standard Curves and Determination of Recovery and Precision
2.7. Data Processing
3. Results and Analyses
3.1. Applicability of Testing Methods
3.2. The Rate of Dissipation of ROBH in Water
3.3. Recovery of ROBH and Its Metabolites In Vitro and In Vivo in the Channel Catfish
4. Discussion
4.1. Selection of Extraction Methods
4.2. Metabolic Pattern of ROBH in the Channel Catfish
4.3. Mass Balance Studies of ROBH in the Channel Catfish
4.4. Recovery of ROBH in Animals
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yin, M.; Zhang, H.B.; Tao, Y.; Yao, J.M.; Liu, H.; Win, H.H.; Huo, L.L.; Jiang, B.; Chen, J.X. Optimization of an Evaluation Method for Anti-Babesia microti Drug Efficacy. Acta Trop. 2022, 225, 106179. [Google Scholar] [CrossRef] [PubMed]
- Mei, Y.; Jiang, T.; Zou, Y.; Wang, Y.; Zhou, J.; Li, J.; Liu, L.; Tan, J.; Wei, L.; Li, J.; et al. FDA Approved Drug Library Screening Identifies Robenidine as a Repositionable Antifungal. Front. Microbiol. 2020, 11, 996. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.L.; Millard, B.J. Fine structural changes in Eimeria tenella, from infections in chick embryos and chickens, after exposure to the anticoccidial drug robenidene. Parasitology 1972, 65, 309–316. [Google Scholar] [CrossRef] [PubMed]
- Wong, D.T.; Horng, J.S.; Wilkinson, J.R. Robenzidene, an inhibitor of oxidative phosphorylation. Biochem. Biophys. Res. Commun. 1972, 46, 621–627. [Google Scholar] [CrossRef] [PubMed]
- Kantor, S.; Kennett, R.L.; Waletzky, E.; Tomcufcik, A.S. 1,3-Bis(p-chlorobenzylideneamino)guanidine hydrochloride (robenzidene): New poultry anticoccidial agent. Science 1970, 168, 373. [Google Scholar] [CrossRef] [PubMed]
- Yuejun, L. Progress on the anticoccidial effect of robenidine hydrochloride. Jiangxi J. Anim. Husb. Vet. Med. 2023, 2023, 36–38. [Google Scholar]
- Joyner, L.P.; Norton, C.C. The drug-sensitivity of recently isolated strains of Eimeria meleagrimitis and a laboratory strain of Eimeria adenoeides in turkeys to ethopabate. Res. Vet. Sci. 1973, 14, 279–284. [Google Scholar] [CrossRef]
- Molnár, K.; Ostoros, G. Efficacy of some anticoccidial drugs for treating coccidial enteritis of the common carp caused by Goussia carpelli (Apicomplexa: Eimeriidae). Acta Vet. Hung. 2015, 55, 67. [Google Scholar] [CrossRef]
- Lin, L.; Song, S.; Wu, X.; Liu, L.; Kuang, H.; Xiao, J.; Xu, C. Determination of robenidine in shrimp and chicken samples using the indirect competitive enzyme-linked immunosorbent assay and immunochromatographic strip assay. Analyst 2021, 146, 721–729. [Google Scholar] [CrossRef]
- Bories, G.; Brantom, P.; Barberà, J.B.d.; Chesson, A.; Cocconcelli, P.S.; Debski, B.; Dierick, N.; Franklin, A.; Gropp, J.; Halle, I. Proposal for MRLs and withdrawal period for Cycostat66G for chickens and turkeys for fattening—Scientific Opinion of the Panel on Additives and Products or Substances used in Animal Feed. EFSA J. 2008, 6, 798. [Google Scholar]
- Chen, Y.; Yang, J.; Tan, A.; Yin, X.; Song, X.; Lu, S. Residue and Degradation Dynamics Analysis of Robenidinein Chicken Manure. Prog. Vet. Med. 2023, 44, 62–69. [Google Scholar]
- Zheng, X.; Guo, L.; Zhao, S.; Li, X.; Lei, X.; Zhong, L. Determination of Robenidine and Its Metabolites in Animal Derived Food by UPLC-MS/MS. China Anim. Husb. Vet. Med. 2020, 47, 1961–1970. [Google Scholar]
- Zhou, H.; Zhao, Y.; Zhang, Y.; Sun, H.; Tong, W. The Pharmacokinetics of Robenidine hydrochloride in Crucian Carp (Carassius auratus gibelio). J. Shanghai Ocean. Univ. 2018, 27, 916–923. [Google Scholar]
- Liu, Y.; Song, Y.; Cheng, B.; Dong, J.; Xu, N.; Zhou, S.; Yang, Q.; Ai, X. Development and Validation of a HPLC-HESI-MS/MS Method for Simultaneous Determination of Robenidine Hydrochloride and Its Metabolites in Fish and Exploration of Their Kinetic Regularities in Grass Carp. Food Anal. Methods 2019, 13, 516–529. [Google Scholar] [CrossRef]
- Gong, J.; Wang, Y.; Li, X.; Luo, R.; Zhang, J.; Luo, X. A ModifiedQuEChERS Method Rapidly Determination of Robenidine in Eggs and Chicken. Food Ind. 2022, 43, 312–315. [Google Scholar]
- Chen, X.; Li, L.; Ye, Z.; Liu, J.; Huang, R.; Zhao, F. Fast Determination of Robenidine Residues in Chicken Meat and Livers by Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS). China Port Sci. Technol. 2021, 3, 36–42. [Google Scholar]
- Penner, N.; Klunk, L.J.; Prakash, C. Human radiolabeled mass balance studies: Objectives, utilities and limitations. Biopharm. Drug Dispos. 2009, 30, 185–203. [Google Scholar] [CrossRef]
- Zulalian, J.; Gatterdam, P.E. Absorption, excretion, and metabolism of robenz, robenidine hydrochloride (1,3-bis(p-chlorobenzylideneamino)guanidine hydrochloride), in the rat. J. Agric. Food Chem. 1973, 21, 794–797. [Google Scholar] [CrossRef]
- Zulalian, J.; Champagne, D.A.; Wayne, R.S.; Blinn, R.C. Absorption, excretion, and metabolism of 1,3-bis(p-chlorobenzylideneamino)guanidine hydrochloride (Robenz robenidine hydrochloride) in the chicken. J. Agric. Food Chem. 1975, 23, 724–730. [Google Scholar] [CrossRef]
- Chang, S.H.; Lai, Y.H.; Huang, C.N.; Peng, G.J.; Liao, C.D.; Kao, Y.M.; Tseng, S.H.; Wang, D.Y. Multi-residue analysis using liquid chromatography tandem mass spectrometry for detection of 20 coccidiostats in poultry, livestock, and aquatic tissues. J. Food Drug Anal. 2019, 27, 703–716. [Google Scholar] [CrossRef]
- Dubois, M.; Pierret, G.; Delahaut, P. Efficient and sensitive detection of residues of nine coccidiostats in egg and muscle by liquid chromatography-electrospray tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2004, 813, 181–189. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Liu, Y.; Su, Z.; Ding, H.; Ai, X. Pharmacokinetics of robenidine hydrochloride in plasma of channel catfish (Ictalurus punctatus) at different water temperatures. Acta Agric. Zhejiangensis 2018, 30, 1640–1646. [Google Scholar]
- Moretti, S.; Fioroni, L.; Giusepponi, D.; Pettinacci, L.; Saluti, G.; Galarini, R. Development and validation of a multiresidue liquid chromatography/tandem mass spectrometry method for 11 coccidiostats in feed. J. AOAC Int. 2013, 96, 1245–1257. [Google Scholar] [CrossRef] [PubMed]
- Sorribas, V.; Arruebo, M.P.; Alvarado, F.; Alcalde, A.I. Action of robenidine on the intestinal transport and digestion of nutrients in rabbit. Eur. J. Pharmacol. 1993, 248, 137–144. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.X.; Liu, Y.T.; Ding, H.; Su, Z.J.; Ai, X.H. Pharmacokinetics and elimination regularity of robenidine hudrochloride residues in ictalurus punctatus. Acta Hydrobiol. Sin. 2019, 43, 869–874. [Google Scholar]
- Tulliez, J.E.; Durand, E.F.; Bories, G.F. Metabolic fate and pharmacokinetics of tissue residues of the anticoccidial drug robenidine in the rabbit. Incidence of coprophagy on its bioavailability. J. Agric. Food Chem. 1982, 30, 1071–1075. [Google Scholar] [CrossRef] [PubMed]
- Chunna, T.M.G. Studies on the excretion of robenidine hydrochloride in rabbit urine and feces. J. South China Agric. Univ. 2015, 36, 8–12. [Google Scholar]
Chemicals | Spiked Level (μg/kg or μg/L) | Water | Tissues | ||||
---|---|---|---|---|---|---|---|
Recovery Rate (%) | Intra-Day RSD (%) | Inter-Day RSD (%) | Recovery Rate (%) | Intra-Day RSD (%) | Inter-day RSD (%) | ||
ROBH | 20 | 77–123 | 1.4 | 3.42 | 95–129 | 3.1 | 0.61 |
100 | 82–120 | 1.1 | 6.21 | 76–110 | 3.4 | 0.74 | |
200 | 99–101 | 1.6 | 5.10 | 87–116 | 1.6 | 6.54 | |
PCBA | 20 | 74–115 | 1.7 | 6.81 | 80–97 | 3 | 7.68 |
100 | 90–100 | 1.0 | 3.50 | 77–95 | 0.5 | 4.99 | |
200 | 97–101 | 0.8 | 4.32 | 75–98 | 0.5 | 3.3 | |
PCHA | 20 | 104–107 | 1.4 | 6.81 | 81–101 | 0.5 | 9.83 |
100 | 96–103 | 1.7 | 3.93 | 70–99 | 2.5 | 0.48 | |
200 | 96–100 | 1.6 | 6.86 | 72–95 | 0.8 | 8.53 |
Dose | Number | Time (h) | Total Amount of Recycling (µg) | Recovery (%) | Total Recovery (%) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Chemicals | 12 | 24 | 48 | 72 | 96 | 120 | 144 | |||||
1160 | 1 | PCBA | 33.2 | 243.4 | 7.1 | <LOD | <LOD | 19.7 | 157.5 | 460.7 | 39.72 | 76.88 |
PCHA | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | 0 | 0 | |||
ROBH | 236.8 | 24.9 | 23.3 | 24 | 24 | 24 | 74 | 431 | 37.16 | |||
1200 | 2 | PCBA | 57 | 87.2 | <LOD | 22.8 | 10.2 | 67.8 | 238.9 | 482.9 | 40.24 | 79.82 |
PCHA | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | 0 | 0 | |||
ROBH | 304 | 23 | 25 | 33.3 | <LOD | 35.7 | 46 | 475 | 39.58 | |||
800 | 3 | PCBA | 52.2 | 33.5 | 12.9 | 15.9 | <LOD | 22.1 | 231.8 | 332.4 | 4.16 | 80.65 |
PCHA | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | 0 | 0 | |||
ROBH | 129.1 | 144.2 | 163 | 163.4 | 222.5 | 18.2 | 72 | 312.7 | 39.09 | |||
1360 | 4 | PCBA | 70.7 | 183.9 | 14.7 | <LOD | <LOD | 47.9 | 59.1 | 570.9 | 41.98 | 81.38 |
PCHA | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | 0 | 0 | |||
ROBH | 214 | 168 | 72.8 | <LOD | 49.2 | 34 | 8.9 | 535.9 | 39.40 | |||
1000 | 5 | PCBA | 24.3 | 184.8 | <LOD | 41.2 | 10.9 | 27.2 | 218.4 | 502.8 | 50.28 | 83.75 |
PCHA | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | 0 | 0 | |||
ROBH | 155.6 | 48.1 | 10.8 | 24.1 | 10.6 | 40.2 | 45.3 | 334.7 | 33.47 | |||
800 | 6 | PCBA | 44.5 | 79.6 | 45.3 | <LOD | 17.8 | 43.4 | 131.1 | 361.7 | 45.21 | 83.69 |
PCHA | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | 0 | 0 | |||
ROBH | 130 | 25 | 15 | 23 | 25 | 39 | 60.8 | 307.8 | 38.48 | |||
1120 | 7 | PCBA | 55.3 | 125.1 | <LOD | 13.3 | 11.1 | 1.9 | 217.8 | 424.5 | 37.90 | 78.5 |
PCHA | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | 0 | 0 | |||
ROBH | 225.2 | 125.5 | 24.3 | 14.1 | 12.3 | <LOD | 53.6 | 454.7 | 40.60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Du, X.; Ai, X.; Liu, Y. Mass Balance Studies of Robenidine Hydrochloride in the Body of Channel Catfish (Ictalurus punctatus). Animals 2023, 13, 3745. https://doi.org/10.3390/ani13233745
Zhang L, Du X, Ai X, Liu Y. Mass Balance Studies of Robenidine Hydrochloride in the Body of Channel Catfish (Ictalurus punctatus). Animals. 2023; 13(23):3745. https://doi.org/10.3390/ani13233745
Chicago/Turabian StyleZhang, Lei, Xiangxuan Du, Xiaohui Ai, and Yongtao Liu. 2023. "Mass Balance Studies of Robenidine Hydrochloride in the Body of Channel Catfish (Ictalurus punctatus)" Animals 13, no. 23: 3745. https://doi.org/10.3390/ani13233745
APA StyleZhang, L., Du, X., Ai, X., & Liu, Y. (2023). Mass Balance Studies of Robenidine Hydrochloride in the Body of Channel Catfish (Ictalurus punctatus). Animals, 13(23), 3745. https://doi.org/10.3390/ani13233745