Differential Toxicity Responses between Hepatopancreas and Gills in Litopenaeus vannamei under Chronic Ammonia-N Exposure
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Experimental Animals
2.3. Experimental Treatments
2.4. Sampling and Calculations
WG (%) = (WG1 − WG0)/WG0 × 100%
SGR (% d−1) = [(WG1 − WG0)]/(T1 − T0) × 100%
2.5. Histological Examination of the Two Tissues
2.6. Assessment of Enzyme Activities
2.7. Transcriptome Sequencing
2.8. Transcriptome Analysis
2.9. Data Validation via qPCR
2.10. Data Analysis
3. Results
3.1. Survival Rate and Growth Performance
3.2. Histological Analysis of the Two Tissues
3.3. Enzyme Activities of the Two Tissues
3.4. Assembly, Read Mapping, and Sequence Alignment
3.5. DEG Analysis in the Two Tissues under Ammonia-N Exposure
3.6. GO and KEGG Enrichment Analysis
3.7. Validation of RNA-Seq Data by qPCR
4. Discussion
4.1. Survival Rate and Growth Performance under Ammonia-N Exposure
4.2. Tissue Damage and Physiological Responses
4.3. Comparison Analysis between the Two Tissues
4.4. DEGs Involved in Lipids Metabolism and Serine Proteases
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jescovitch, L.N.; Ullman, C.; Rhodes, M.; Davis, D.A. Effects of different feed management treatments on water quality for Pacific white shrimp Litopenaeus vannamei. Aquac. Res. 2018, 49, 526–531. [Google Scholar] [CrossRef]
- Zhao, M.M.; Yao, D.F.; Li, S.K.; Zhang, Y.; Aweya, J.J. Effects of ammonia on shrimp physiology and immunity: A review. Rev. Aquac. 2020, 12, 2194–2211. [Google Scholar] [CrossRef]
- Lee, C.T.; Chen, I.T.; Yang, Y.T.; Ko, T.P.; Huang, Y.T.; Huang, J.T.; Huang, M.F.; Lin, S.J.; Chen, C.Y.; Lin, S.S.; et al. The opportunistic marine pathogen Vibrio parahaemolyticus becomes virulent by acquiring a plasmid that expresses a deadly toxin. Proc. Natl. Acad. Sci. USA 2015, 112, E5445. [Google Scholar] [CrossRef] [PubMed]
- Romano, N.; Zeng, C.S. Toxic effects of ammonia, nitrite, and nitrate to decapod crustaceans: A review on factors influencing their toxicity, physiological consequences, and coping mechanisms. Rev. Fish. Sci. 2013, 21, 1–21. [Google Scholar] [CrossRef]
- Li, Y.M.; Xiang, Y.Q.; Jiang, Q.C.; Yang, Y.; Huang, Y.Y.; Fan, W.J.; Zhao, Y.L. Comparison of immune defense and antioxidant capacity between broodstock and hybrid offspring of juvenile shrimp (Macrobrachium nipponense): Response to acute ammonia stress. Anim. Genet. 2022, 53, 380–392. [Google Scholar] [CrossRef] [PubMed]
- Zheng, K. Screening of Ammonia Nitrogen Degrading Strains and Evaluation of Their Nitrogen Removal Efficiency; Shandong Agricultural University: Taian, China, 2023. [Google Scholar]
- Olowe, K.O.; Kumarasamy, M. Development of the hybrid cells in series model to simulate ammonia nutrient pollutant transport along the Umgeni River. Environ. Sci. Pollut. Res. 2017, 24, 22967–22979. [Google Scholar] [CrossRef]
- Iwata, K.; Kajimura, M.; Sakamoto, T. Functional ureogenesis in the gobiid fish Mugilogobius abei. J. Exp. Biol. 2000, 203, 3703–3715. [Google Scholar] [CrossRef]
- Zhou, J.; Liu, C.; Yang, Y.M.; Yang, Y.; Gu, Z.F.; Wang, A.M.; Liu, C.S. Effects of long-term exposure to ammonia on growth performance, immune response, and body biochemical composition of juvenile ivory shell, Babylonia areolata. Aquaculture 2023, 562, 738857. [Google Scholar] [CrossRef]
- Zhang, T.X.; Yan, Z.G.; Zheng, X.; Wang, S.P.; Fan, J.T.; Liu, Z.T. Effects of acute ammonia toxicity on oxidative stress, DNA damage and apoptosis in digestive gland and gill of Asian clam (Corbicula fluminea). Fish Shellfish Immunol. 2020, 99, 514–525. [Google Scholar] [CrossRef]
- Koo, J.G.; Kim, S.G.; Jee, J.H.; Kim, J.M.; Bai, S.C.; Kang, J.C. Effects of ammonia and nitrite on survival, growth and moulting in juvenile tiger crab, Orithyia sinica (Linnaeus). Aquac. Res. 2005, 36, 79–85. [Google Scholar] [CrossRef]
- Hardikar, R.; Haridevi, C.K.; Ram, A.; Khandeparker, R.; Amberkar, U.; Chauhan, M. Inter-annual variability of phytoplankton assemblage and Tetraspora gelatinosa bloom from anthropogenically affected harbour, Veraval, India. Env. Monit. Assess. 2019, 191, 87. [Google Scholar] [CrossRef] [PubMed]
- Li, H.Y.; Li, Q.Y.; Wang, S.; He, J.G.; Li, C.Z. Ammonia nitrogen stress increases susceptibility to bacterial infection via blocking IL-1R–Relish axis mediated antimicrobial peptides expression in shrimp. Aquaculture 2023, 563, 738934. [Google Scholar] [CrossRef]
- Cheng, C.H.; Yang, F.F.; Ling, R.Z.; Liao, S.A.; Miao, Y.T.; Ye, C.X.; Wang, A.L. Effects of ammonia exposure on apoptosis, oxidative stress and immune response in pufferfish (Takifugu obscurus). Aquat. Toxicol. 2015, 164, 61–71. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.Y.; Yang, C.; Zhang, T.T.; Liang, H.L.; Ma, Y.C.; Wu, Z.X.; Sun, W.T. Immune defense, detoxification, and metabolic changes in juvenile Eriocheir sinensis exposed to acute ammonia. Aquat. Toxicol. 2021, 240, 105989. [Google Scholar] [CrossRef] [PubMed]
- Liang, Z.X.; Liu, R.; Zhao, D.P.; Wang, L.L.; Sun, M.Z.; Wang, M.Q.; Song, L.S. Ammonia exposure induces oxidative stress, endoplasmic reticulum stress and apoptosis in hepatopancreas of pacific white shrimp (Litopenaeus vannamei). Fish Shellfish Immunol. 2016, 54, 523–528. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Deng, Q.Z.; Yang, H.; Wang, J.Y.; Wang, M. Oxidative Stress of Cadmium and Lead at Environmentally Relevant Concentrations on Hepatopancreas of Macrobrachium nipponensis and Their Mixture Interactivity: Implications for Water Quality Criteria Amendment. Int. J. Environ. Res. Public Health 2023, 20, 360. [Google Scholar] [CrossRef] [PubMed]
- Lushchak, V.I. Environmentally induced oxidative stress in aquatic animals. Aquat. Toxicol. 2011, 101, 13–30. [Google Scholar] [CrossRef]
- Wang, J.; Liu, J. Investigating the differences in metabolism, and the unfolded protein and apoptosis gene responses in two strains of the Pacific white shrimp, Penaeus vannamei Boone, 1931 (Decapoda, Penaeoidea) under ammonia stress. Crustaceana 2023, 96, 157–178. [Google Scholar] [CrossRef]
- Miranda-Filho, K.C.; Leaes Pinho, G.L.; Wasielesky, W.; Bianchini, A., Jr. Long-term ammonia toxicity to the pink-shrimp Farfantepenaeus paulensis. Comp. Biochem. Physiol. C-Toxicol. Pharmacol. 2009, 150, 377–382. [Google Scholar] [CrossRef]
- Romano, N.; Zeng, C. Survival, osmoregulation and ammonia-N excretion of blue swimmer crab, Portunus pelagicus, juveniles exposed to different ammonia-N and salinity combinations. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2010, 151, 222–228. [Google Scholar] [CrossRef]
- Zhang, W.X.; Xia, S.L.; Zhu, J.; Miao, L.H.; Ren, M.C.; Lin, Y.; Ge, X.P.; Sun, S.M. Growth performance, physiological response and histology changes of juvenile blunt snout bream, Megalobrama amblycephala exposed to chronic ammonia. Aquaculture 2019, 506, 424–436. [Google Scholar] [CrossRef]
- Mohd-Shamsudin, M.I.; Kang, Y.; Zhao, L.L.; Tan, T.T.; Kwong, Q.B.; Liu, H.; Zhang, G.J.; Othman, R.Y.; Bhassu, S. In-Depth Tanscriptomic Analysis on Giant Freshwater Prawns. PLoS ONE 2013, 8, e60839. [Google Scholar] [CrossRef]
- Benli, A.C.K.; Koeksal, G.; Oezkul, A. Sublethal ammonia exposure of Nile tilapia (Oreochromis niloticus L.): Effects on gill, liver and kidney histology. Chemosphere 2008, 72, 1355–1358. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Shi, X.; Liu, Z.; Sun, J.; Sun, T.; Lei, M. Histological, Physiological and Transcriptomic Analysis Reveal the Acute Alkalinity Stress of the Gill and Hepatopancreas of Litopenaeus vannamei. Mar. Biotechnol. 2023, 25, 588–602. [Google Scholar] [CrossRef] [PubMed]
- Zhu, T.; Jin, M.; Hou, Y.; Li, C.; Luo, J.; Sun, P.; Zhou, Q. Effects of different dietary lipid sources on growth performance, antioxidant enzyme activities and biochemical composition of juvenile swimming crab, Portunus trituberculatus. Aquac. Nutr. 2019, 25, 1440–1450. [Google Scholar] [CrossRef]
- Zhang, X.X.; Yuan, J.B.; Zhang, X.J.; Yu, Y.; Li, F.H. Comparative transcriptomic analysis unveils a network of energy reallocation in Litopenaeus vannamei responsive to heat-stress. Ecotoxicol. Environ. Saf. 2022, 238, 113600. [Google Scholar] [CrossRef]
- Wang, L.; Liu, J.Y. Analysis of hybrid combining ability for growth and multiple stress tolerance traits in the Pacific white shrimp, Litopenaeus vannamei. Front. Anim. Sci. 2022, 3, 948251. [Google Scholar] [CrossRef]
- Shi, X.; Xiao, R.; Qiu, L.G.; Zhou, H.L. Comparative study on sensitivity of ammonia nitrogen at different life stages of Litopenaeus vannamei. Mar. Sci. 2017, 42, 88–93. [Google Scholar]
- Lu, X.; Luan, S.; Dai, P.; Luo, K.; Chen, B.; Cao, B.; Sun, L.; Yan, Y.; Kong, J. Insights into the molecular basis of immunosuppression and increasing pathogen infection severity of ammonia toxicity by transcriptome analysis in pacific white shrimp Litopenaeus vannamei. Fish Shellfish Immunol. 2019, 88, 528–539. [Google Scholar] [CrossRef]
- Dong, X.X.; Liu, Q.G.; Kan, D.G.; Zhao, W.H.; Guo, H.S.; Lv, L.L. Effects of ammonia-N exposure on the growth, metabolizing enzymes, and metabolome of Macrobrachium rosenbergii. Ecotoxicol. Environ. Saf. 2020, 189, 110046. [Google Scholar] [CrossRef]
- Huang, W.B.; Yan, X.B.; Liu, H.; Tan, B.P.; Suo, X.X.; Pan, S.M.; Li, T.; Yang, Y.Z.; Dong, X.H. Effects of vitamin E supplementation of a high-lipid diet on the growth and biochemical parameters of hybrid groupers (♀Epinephelus fuscoguttatus ×♂E. lanceolatus). Front. Mar. Sci. 2022, 9, 924018. [Google Scholar] [CrossRef]
- Liang, Z.; Chen, T.; Yang, F.; Li, S.; Zhang, S.; Guo, H. Toxicity of chronic waterborne zinc exposure in the hepatopancreas of white shrimp Litopenaeus vannamei. Chemosphere 2022, 309, 136553. [Google Scholar] [CrossRef]
- Cui, Y.T.; Ren, X.Y.; Li, J.; Zhai, Q.Q.; Feng, Y.Y.; Xu, Y.; Ma, L. Effects of ammonia-N stress on metabolic and immune function via the neuroendocrine system in Litopenaeus vannamei. Fish Shellfish Immunol. 2017, 64, 270–275. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Z.G.; Wang, C.D.; Yao, G.Y.; Zhang, K.X.; Zhan, J.Q.; Lu, W.G.; Zhong, M.C.; Liufu, S.M.; Fang, J.X. Growth performance and model fitting of the selected strain of scallop “Hongmo No. 1” cultivated during different seasons. Aquaculture 2024, 578, 740104. [Google Scholar] [CrossRef]
- Camargo, J.A.; Alonso, A.; Salamanca, A. Nitrate toxicity to aquatic animals: A review with new data for freshwater in-vertebrates. Chemosphere 2005, 58, 1255–1267. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, N.C.; Bonetti, C.; Seiffer, W.Q. Hydrological and water quality indices as management tools in marine shrimp culture. Aquaculture 2011, 318, 425–433. [Google Scholar] [CrossRef]
- Li, Y.; De, J.; Jiang, Q.; Yang, Y.; Xu, W.; Du, X.; Zhao, Y. Comparison of lipid metabolism between broodstock and hybrid offspring in the hepatopancreas of juvenile shrimp (Macrobrachium nipponense): Response to chronic ammonia stress. Anim. Genet. 2022, 53, 393–404. [Google Scholar] [CrossRef]
- Jamshidizadeh, S.; Biuki, N.A.; Yousefzadi, M.; Aramideh, A. Response of Pacific whiteleg shrimp (Litopenaeus vannamei) on exposure to aflatoxin in feed. Aquac. Res. 2019, 50, 1973–1984. [Google Scholar] [CrossRef]
- Ou, H.X.; Liang, J.H.; Liu, J.Y. Effects of acute ammonia exposure on oxidative stress, endoplasmic reticulum stress and apoptosis in the kuruma shrimp (Marsupenaeus japonicus). Aquac. Rep. 2022, 27, 101383. [Google Scholar] [CrossRef]
- Correa, L.L.; Oliveira Sousa, E.M.O.; Flores Silva, L.V.F.; Adriano, E.A.; Brito Oliveira, M.S.B.; Tavares-Dias, M. Histopathological alterations in gills of Amazonian shrimp Macrobrachium amazonicum parasitized by isopod Probopyrus bithynis (Bopyridae). Dis. Aquat. Org. 2018, 129, 117–122. [Google Scholar] [CrossRef]
- Guo, H.; Liang, Z.; Zheng, P.H.; Li, L.; Xian, J.A.; Zhu, X.W. Effects of nonylphenol exposure on histological changes, apoptosis and time-course transcriptome in gills of white shrimp Litopenaeus vannamei. Sci. Total Environ. 2021, 781, 146731. [Google Scholar] [CrossRef]
- Wei, S.S.; Zhang, J.; Chen, W.X.; Shen, A.F.; Zhou, D.S.; Zheng, J.X.; Thiam, H.; Ding, Z.H.; Limbu, S.M.; Kong, Y.Q. Adverse effects of chronic ammonia stress on juvenile oriental river prawn (Macrobrachium nipponense) and alteration of glucose and ammonia metabolism. Environ. Toxicol. 2023, 38, 545–554. [Google Scholar] [CrossRef]
- Prakash, S.; Kumar, A.; Okla, M.K.; Ahmad, A.; Zahid, K.A.; Al-ghamdi, A.A.; Beemster, G.; AbdElgawad, H. Physiological responses of the symbiotic shrimp Ancylocaris brevicarpalis and its host sea anemone Stichodactyla haddoni to ocean acidification. Mar. Pollut. Bull. 2022, 175, 113287. [Google Scholar] [CrossRef]
- Huang, M.; Zhou, Y.G.; Liu, C.Y.; Davis, D.A.; Li, L.; Gao, Q.F.; Dong, S.L. Fatty acid composition, osmolality, Na+, K+-ATPase activity, cortisol content and antioxidant status of rainbow trout (Oncorhynchus mykiss) in response to various dietary levels of eicosapentaenoic acid and docosahexaenoic acid. Aquac. Res. 2020, 51, 2777–2789. [Google Scholar] [CrossRef]
- Theuerkauff, D.; Rivera-ingraham, G.A.; Mercky, Y.; Lejeune, M.; Lignot, J.H.; Sucre, E. Effects of domestic effluent discharges on mangrove crab physiology: Integrated energetic, osmoregulatory and redox balances of a key engineer species. Aquat. Toxicol. 2018, 196, 90–103. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.R.; Yang, J.L.; Chen, M.Q.; Fu, Z.Y.; Sun, J.; Yu, G.; Wang, A.M.; Ma, Z.H.; Gu, Z.F. Physical Responses of Pinctada fucata to Salinity Stress. Front. Mar. Sci. 2022, 8, 792179. [Google Scholar] [CrossRef]
- Ma, D.Y.; Yang, H.S.; Sun, L.N.; Chen, M.Y. Transcription profiling using RNA-Seq demonstrates expression differences in the body walls of juvenile albino and normal sea cucumbers Apostichopus japonicus. Chin. J. Oceanol. Limnol. 2014, 32, 34–46. [Google Scholar] [CrossRef]
- Pelava, A.; Schneider, C.; Watkins, N.J. The importance of ribosome production, and the 5S RNP-MDM2 pathway, in health and disease. Biochem. Soc. Trans. 2016, 44, 1086–1090. [Google Scholar] [CrossRef] [PubMed]
- Orsolic, I.; Jurada, D.; Pullen, N.; Oren, M.; Eliopoulos, A.G.; Volarevic, S. The relationship between the nucleolus and cancer: Current evidence and emerging paradigms. Semin. Cancer Biol. 2016, 37–38, 36–50. [Google Scholar] [CrossRef] [PubMed]
- Somasundaram, S.; Abraham, J.S.; Maurya, S.; Toteja, R.; Gupta, R.; Makhija, S. Expression and molecular characterization of stress-responsive genes (hsp70 and Mn-sod) and evaluation of antioxidant enzymes (CAT and GPx) in heavy metal exposed freshwater ciliate, Tetmemena sp. Mol. Biol. Rep. 2019, 46, 4921–4931. [Google Scholar] [CrossRef]
- Huang, Y.Y.; Wang, G.D.; Liu, J.S.; Zhang, L.L.; Huang, S.Y.; Wang, Y.L.; Yang, Z.W.; Ge, H. Analysis of transcriptome difference between rapid-growing and slow-growing in Penaeus vannamei. Gene 2021, 787, 145642. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhang, D.Z.; Zhang, L.; Wang, Z.F.; Shen, J. New Insight on Vitality Differences for the Penaeid Shrimp, Fenneropenaeus chinensis, in Low Salinity Environment Through Transcriptomics. Front. Ecol. Evol. 2022, 10, 716018. [Google Scholar] [CrossRef]
- Ma, R.R.; Zhou, G.X.; Feng, D.Y.; Fang, W.H.; Chen, T.N.; Hu, K. Transcriptome analysis of Penaeus vannamei hepatopancreas reveals differences in toxicity mechanisms between phoxim and prometryne. Fish Shellfish Immunol. 2020, 105, 274–285. [Google Scholar] [CrossRef] [PubMed]
- Aleman, J.R.; Little, S.C.; Capelson, M. Using Single Molecule RNA FISH to Determine Nuclear Export and Transcription Phenotypes in Drosophila Tissues. Methods Mol. Biol. 2022, 2502, 113–125. [Google Scholar]
- Morgan, K.J.; Doggett, K.; Geng, F.; Mieruszynski, S.; Whitehead, L.; Smith, K.A.; Hogan, B.M.; Simons, C.; Baillie, G.J.; Molania, R.; et al. ahctf1 and kras mutations combine to amplify oncogenic stress and restrict liver overgrowth in a zebrafish model of hepatocellular carcinoma. Elife 2023, 12, e73407. [Google Scholar] [CrossRef]
- Palacios, V.; Kimble, G.C.; Tootle, T.L.; Buszczak, M. Importin-9 regulates chromosome segregation and packaging in Drosophila germ cells. J. Cell Sci. 2021, 134, jcs258391. [Google Scholar] [CrossRef]
- Bo, Q.; Chen, L.; Liu, Y.H.; Chang, C.J.; Ying, X.L.; Li, F.L.; Cheng, L.G. Analysis of Ran related to pesticide resistance in Drosophila Kc cells. Gene 2018, 663, 131–137. [Google Scholar] [CrossRef]
- Kim, Y.H.; Huh, G.H. Members of the ran family of stress-inducible small GTP-binding proteins are differentially regulated in sweetpotato plants. J. Plant Biotechnol. 2013, 40, 1–9. [Google Scholar] [CrossRef]
- Wang, W.; Yang, S.P.; Wang, C.G.; Shi, L.L.; Guo, H.; Chan, S.M. Gill transcriptomes reveal involvement of cytoskeleton remodeling and immune defense in ammonia stress response in the banana shrimp Fenneropenaeus merguiensis. Fish Shellfish Immunol. 2017, 71, 319–328. [Google Scholar] [CrossRef]
- Xiao, J.; Li, Q.Y.; Tu, J.P.; Chen, X.L.; Chen, X.H.; Liu, Q.Y.; Liu, H.; Zhou, X.Y.; Zhao, Y.Z.; Wang, H.L. Stress response and tolerance mechanisms of ammonia exposure based on transcriptomics and metabolomics in Litopenaeus vannamei. Ecotoxicol. Env. Saf. 2019, 180, 491–500. [Google Scholar] [CrossRef]
- Wang, X.; Wang, L.; Yao, C.; Qiu, L.; Zhang, H.; Zhi, Z.; Song, L. Alternation of immune parameters and cellular energy allocation of Chlamys farreri under ammonia-N exposure and Vibrio anguillarum challenge. Fish Shellfish Immunol. 2012, 32, 741–749. [Google Scholar] [CrossRef]
- Gibbons, T.C.; Metzger, D.C.H.; Healy, T.M.; Schulte, P.M. Gene expression plasticity in response to salinity acclimation in threespine stickleback ecotypes from different salinity habitats. Mol. Ecol. 2017, 26, 2711–2725. [Google Scholar] [CrossRef]
- Wang, T.; Shan, H.W.; Geng, Z.X.; Yu, P.; Ma, S. Dietary supplementation with freeze-dried Ampithoe sp. enhances the ammonia-N tolerance of Litopenaeus vannamei by reducing oxidative stress and endoplasmic reticulum stress and regulating lipid metabolism. Aquac. Rep. 2020, 16, 100264. [Google Scholar] [CrossRef]
- Sun, Y.; Luo, G.; Zhao, L.; Huang, L.; Qin, Y.; Su, Y.; Yan, Q. Integration of RNAi and RNA-seq Reveals the Immune Responses of Epinephelus coioides to sigX Gene of Pseudomonas plecoglossicida. Front. Immunol. 2018, 9, 1624. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.A.; Pan, W.M.; Zhang, H.H.; Song, Y.; Chen, J.; Xiang, Y.; Gu, B.; Li, S.Z.; Du, R.L.; Zhang, X.D. Cancer testis antigen 55 deficiency attenuates colitis-associated colorectal cancer by inhibiting NF-kappa B signaling. Cell Death Dis. 2019, 10, 304. [Google Scholar] [CrossRef] [PubMed]
Group | Survival Rate (%) | Body Length (mm) | Weight Gain (%) | Specific Growth Rate (% d−1) |
---|---|---|---|---|
Experimental | 85.00 ± 1.00 a | 2.86 ± 0.28 a | 234.04 ± 0.50 a | 15.94 ± 0.01 a |
Control | 89.17 ± 0.58 a | 3.97 ± 0.15 b | 416.99 ± 0.47 b | 25.31 ± 0.01 b |
Gene Names | log2FC | Description (KEGG) | Description (GO) |
---|---|---|---|
Hepatopancreas in treated vs. control groups | |||
LOC113820612 | 9.50639 | chloroplastic-like | / |
LOC113807369 | 6.40349 | transmembrane protease serine 13-like | / |
LOC113803831 | 5.52520 | techylectin-5A-like | / |
ctrb1 | 5.52161 | chymotrypsin BII-like | serine-type endopeptidase activity (MF-up) |
LOC113802089 | 5.46694 | alcohol dehydrogenase [NADP(+)]-like | |
alpi.1 | 5.36745 | alkaline phosphatase-like | hydrolase activity, acting on ester bonds (MF-UP) |
tubb6 | 5.24083 | tubulin beta chain-like | hydrolase activity, acting on acid anhydrides (MF-Down) |
LOC113812240 | 5.18027 | methylenetetrahydrofolate reductase-like | / |
LOC113820103 | 5.00419 | mucin-12-like | / |
kcp | 4.96579 | basic proline-rich protein-like | / |
LOC113802550 | −13.28640 | triosephosphate isomerase B-like | / |
LOC113827511 | −12.04027 | C-type lectin domain family 17, member A-like | / |
LOC113824334 | −8.99337 | arylsulfatase B-like | / |
mmp3 | −8.66135 | inactive pancreatic lipase-related protein 1-like | / |
LOC113807283 | −8.26976 | ovochymase-2-like | / |
LOC113816677 | −7.90349 | small integral membrane protein 8-like | / |
LOC113802551 | −7.60858 | triosephosphate isomerase-like | / |
LOC113810108 | −7.00134 | anti-lipopolysaccharide factor-like | / |
slc46a1 | −6.93143 | solute carrier family 46-member 1 | / |
mrpl2 | −6.76469 | 39S ribosomal protein L2, mitochondrial-like | ribonucleoprotein complex (CC-Down) |
Gill in treated vs. control groups | |||
wdr54 | 8.28549 | trypsin-1-like | serine hydrolase activity (MF-Down) |
LOC113819943 | 8.23980 | lactosylceramide 4-alpha-galactosyltransferase-like | / |
LOC113817714 | 7.89112 | glutamate-gated chloride channel subunit beta-like | / |
LOC113822681 | 7.45779 | large subunit ribosomal RNA | / |
hacd2 | 7.41957 | 1-acyl-sn-glycerol-3-phosphate acyltransferase epsilon-like | transferase activity, transferring acyl groups (MF-UP) |
LOC113800217 | 7.39103 | CAP-Gly domain-containing linker protein 4-like | / |
LOC113819942 | 7.27277 | lactosylceramide 4-alpha-galactosyltransferase-like | / |
cyp27c1 | 7.24919 | probable cytochrome P450 49a1 | oxidoreductase activity, acting on paired donors, with incorporation or reduction of molecular oxygen (MF-UP) |
LOC113823234 | 7.09559 | facilitated trehalose transporter Tret1-like | / |
fbxo32 | 6.99950 | F-box only protein 32-like | / |
LOC113820879 | −7.57815 | galanin receptor type 1-like | / |
LOC113820814 | −6.84140 | ETS-related transcription factor Elf-1-like | / |
znf143 | −6.46198 | protein SpAN-like | endopeptidase activity (MF-Down) |
LOC113819193 | −6.27849 | myosin heavy chain, muscle-like | / |
cs | −6.15781 | gastric triacylglycerol lipase-like | / |
LOC113830294 | −6.01273 | cuticle protein 7-like | / |
LOC113818578 | −6.00421 | histone-lysine N-methyltransferase, H3 lysine-79 specific-like | / |
LOC113830353 | −5.97509 | extensin-like | / |
ct55 | −5.95853 | trypsin-1-like | serine-type endopeptidase activity (MF-Down) |
LOC113830353 | −5.95598 | carbohydrate sulfotransferase 10-like | / |
Genes | Hepatopancreas in Treated vs. Control Groups | Gills in Treated vs. Control Groups |
---|---|---|
paramyosin (prm) | / | up |
tropomyosin (tpm) | down | / |
flotillin (flot) | / | up |
titin (ttn) | up | up |
beta tubulin (tub) | down | up |
KEGGID | Funnation Description | Gene Names |
---|---|---|
Hepatopancreas in treated vs. control groups | ||
pvm03010 | Ribosome | LOC113826494, mrpl2, LOC113826493, LOC113822410, rsl24d11, rpl37, rpl7, rps27a, LOC113803764, rpl32, LOC113817813, LOC113822082, mrps6, LOC113812878, rpl29, rplp2, LOC113826804, LOC113817249, LOC113830328, LOC113827080, mrpl12, rpl36, rpl19, rps26 |
pvm03050 | Proteasome | LOC113803698, psma4, psma1, psma2, psma3, psmd3, LOC113807430, psmb3, LOC113830026 |
pvm03040 | Spliceosome | lsm8, snrpa1, LOC113820651, sf3b5, alyref, LOC113802307, snrpb, ppih, LOC113803628, snrpg, sf3a3, tra2b, LOC113823506, u2af1, sf3b6, snrpc, LOC113820949, lsm3 |
pvm00670 | One carbon pool by folate | LOC113812240, mtr, shmt1, atic, dhfr |
pvm00531 | Glycosaminoglycan degradation | LOC113824334, xpnpep2, shisa7, LOC113804791, sgsh |
pvm01240 | Biosynthesis of cofactors | psat1, alpi.1, akr1b1.1, LOC113802089, ugdh, LOC113826969, shmt1, dhfr, si:ch73-334d15.1, ak6, LOC113828810, LOC113802542, LOC113823260, LOC113807674, LOC113807126, coq7 |
pvm00040 | Pentose and glucuronate interconversions | akr1b1.1, LOC113802089, ugdh, si:ch73-334d15.1, sord, asrgl1 |
pvm00600 | Sphingolipid metabolism | cpxm1a, xpnpep2, LOC113829078, LOC113806775, LOC113810646, LOC113824094, LOC113804791, smpd1 |
pvm03008 | Ribosome biogenesis in eukaryotes | LOC113826178, ak6, LOC113828897, LOC113816393, LOC113801028, LOC113826254, dkc1, LOC113816679, rrp7a |
Gill in treated vs. control groups | ||
pvm00512 | Mucin type O-glycan biosynthesis | galnt3, plbd1, LOC113806687, LOC113806752, LOC113801114, LOC113826876, LOC113814026 |
pvm03013 | Nucleocytoplasmic transport | LOC113821023, kpnb3, kidins220a, nup58N, ran, LOC113814257, LOC113811339, LOC113822864, ipo7, nup153, ipo9, LOC113807607 |
pvm00100 | Steroid biosynthesis | LOC113822972, LOC113810916, cs |
KEGGID | Funnation Description | Gene Names |
---|---|---|
LA vs. LAC | ||
pvm00565 | Ether lipid metabolism | LOC113829078 |
pvm00600 | Sphingolipid metabolism | cpxm1a, xpnpep2, LOC113829078, LOC113806775, LOC113810646, LOC113824094, LOC113804791, smpd1 |
pvm00564 | Glycerophospholipid metabolism | LOC113808891, LOC113810367, PCYT2, LOC113802189, LOC113805268, LOC113814898 |
pvm00561 | Glycerolipid metabolism | akr1b1.1, LOC113802089 |
LB vs. LBC | ||
pvm00565 | Ether lipid metabolism | agps, LOC113821399, LOC113824844 |
pvm00600 | Sphingolipid metabolism | gba, asah1 |
pvm00564 | Glycerophospholipid metabolism | hacd2, LOC113821399 |
pvm00561 | Glycerolipid metabolism | LOC113823713, hacd2, LOC113819701, LOC113817093 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Liu, J.; Zhuo, H.; Lin, L.; Li, J.; Fu, S.; Xue, H.; Wen, H.; Zhou, X.; Guo, C.; et al. Differential Toxicity Responses between Hepatopancreas and Gills in Litopenaeus vannamei under Chronic Ammonia-N Exposure. Animals 2023, 13, 3799. https://doi.org/10.3390/ani13243799
Zhang Y, Liu J, Zhuo H, Lin L, Li J, Fu S, Xue H, Wen H, Zhou X, Guo C, et al. Differential Toxicity Responses between Hepatopancreas and Gills in Litopenaeus vannamei under Chronic Ammonia-N Exposure. Animals. 2023; 13(24):3799. https://doi.org/10.3390/ani13243799
Chicago/Turabian StyleZhang, Yuan, Jianyong Liu, Hongbiao Zhuo, Lanting Lin, Jinyan Li, Shuo Fu, Haiqiong Xue, Haimin Wen, Xiaoxun Zhou, Chaoan Guo, and et al. 2023. "Differential Toxicity Responses between Hepatopancreas and Gills in Litopenaeus vannamei under Chronic Ammonia-N Exposure" Animals 13, no. 24: 3799. https://doi.org/10.3390/ani13243799
APA StyleZhang, Y., Liu, J., Zhuo, H., Lin, L., Li, J., Fu, S., Xue, H., Wen, H., Zhou, X., Guo, C., & Wu, G. (2023). Differential Toxicity Responses between Hepatopancreas and Gills in Litopenaeus vannamei under Chronic Ammonia-N Exposure. Animals, 13(24), 3799. https://doi.org/10.3390/ani13243799