Comparative Mitogenomic Analysis of Two Snake Eels Reveals Irregular Gene Rearrangement and Phylogenetic Implications of Ophichthidae
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling, DNA Extraction, and High-Throughput Sequencing
2.2. Mitogenome Assembly and Annotation
2.3. Sequence Analysis
2.4. Phylogenetic Analysis
3. Results
3.1. Mitogenome Characteristics and Organization
3.2. Novel Gene Arrangement and the Possible Pathway
3.3. Protein Coding Genes (PCGs) and Codon Usages
3.4. Ribosomal and Transfer RNA Genes
3.5. Noncoding Regions
3.6. Selective Pressure Analysis of PCGs
3.7. Phylogenetic Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fricke, R.; Eschmeyer, W.N.; Van der Laan, R. (Eds.) Eschmeyer’s Catalog of Fishes: Genera, Species, References. 2022. Available online: http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp (accessed on 13 December 2022).
- McCosker, J.E. FAO Ophichthidae: Shrimp eels, worm eels and sand eels. In FAO Guide to the Living Resources of the Eastern Central Atlantic; Carpenter, K., Ed.; FAO: Rome, Italy, 2015; pp. 160–170. [Google Scholar]
- McCosker, J.E. The osteology, classification and relationships of the eel family Ophichthidae. Proc. Calif. Acad. Sci. 1977, 41, 1–123. [Google Scholar]
- Tang, W.Q.; Zhang, C.G. A taxonomic study on snake eel family Ophichthidae in China with the review of Ophichthidae (Pisces, Anguilliformes). J. Shanghai Fish. Univ. 2004, 13, 16–22. (In Chinese) [Google Scholar]
- Zukerkandl, E.; Pauling, L. Evolutionary divergence and convergence in proteins. In Evolving Genes and Proteins; Bryson, V., Vogel, H.J., Eds.; Academic Press: New York, NY, USA, 1965; pp. 97–166. [Google Scholar]
- Avise, J.C.; Arnold, J.; Ball, R.M.; Bermingham, E.; Lamb, T.; Neigel, J.E.; Reeb, C.A.; Saunders, N.C. Intraespecific phylogeography: The mitochondrial DNA bridge between population genetics and systematics. Ann. Rev. Ecol. Syst. 1987, 18, 489–522. [Google Scholar] [CrossRef]
- Scheffler, I.E. Mitochondrial, 2nd ed.; Wiley-Liss Publication: New York, NY, USA, 2007. [Google Scholar]
- Boore, J.L. Animal mitochondrial genomes. Nucleic Acids Res. 1999, 27, 1767–1780. [Google Scholar] [CrossRef] [Green Version]
- Su, X.; Wu, X.B.; Yan, P.; Cao, S.Y.; Hu, Y.L. Rearrangement of a mitochondrial tRNA gene of the concave-eared torrent frog, Amolops tormotus. Gene 2007, 394, 25–34. [Google Scholar] [CrossRef]
- Yuan, S.Q.; Yun, X.; Zheng, Y.C.; Zeng, X.M. Next-generation sequencing of mixed genomic DNA allows efficient assembly of rearranged mitochondrial genomes in Amolops chunganensis and Quasipaa boulengeri. Peerj 2016, 4, e2786. [Google Scholar] [CrossRef] [Green Version]
- Kumazawa, Y.; Ota, H.; Nishida, M.; Ozawa, T. Gene rearrangements in snake mitochondrial genomes: Highly concerted evolution of control-region-like sequences duplicated and inserted into a tRNA gene cluster. Mol. Biol. Evol. 1996, 13, 1242–1254. [Google Scholar] [CrossRef]
- Yan, J.; Li, H.; Zhou, K. Evolution of the mitochondrial genome in snakes: Gene rearrangements and phylogenetic relationships. BMC Genom. 2008, 9, 569. [Google Scholar] [CrossRef] [Green Version]
- Kumazawa, Y.; Miura, S.; Yamada, C.; Hashiguchi, Y. Gene rearrangements in gekkonid mitochondrial genomes with shuffling, loss, and reassignment of tRNA genes. BMC Genom. 2014, 15, 930. [Google Scholar] [CrossRef] [Green Version]
- Singh, T.R.; Shneor, O.; Huchon, D. Bird mitochondrial gene order: Insight from 3 warbler mitochondrial genomes. Mol. Biol. Evol. 2008, 25, 475. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.P.; Lin, Q.X.; Fang, W.Z.; Chen, X.L. The complete mitochondrial genomes of sixteen ardeid birds revealing the evolutionary process of the gene rearrangements. BMC Genom. 2014, 15, 573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eberhard, J.R.; Wright, T.F. Rearrangement and evolution of mitochondrial genomes in parrots. Mol. Phylogenet. Evol. 2016, 94, 34–46. [Google Scholar] [CrossRef] [PubMed]
- Campbell, N.J.; Barker, S.C. An unprecedented major rearrangement in an arthropod mitochondrial genome. Mol. Biol. Evol. 1998, 12, 1786–1787. [Google Scholar] [CrossRef] [Green Version]
- Tyagi, K.; Kumar, V.; Poddar, N.; Prasad, P.; Tyagi, I.; Kundu, S.; Chandra, K. The gene arrangement and phylogeny using mitochondrial genomes in spiders (Arachnida: Araneae). Int. J. Biol. Macromol. 2020, 146, 488–496. [Google Scholar] [CrossRef]
- Shi, W.; Dong, X.L.; Wang, Z.M.; Miao, X.G.; Wang, S.Y.; Kong, X.Y. Complete mitogenome sequences of four flatfishes (Pleuronectiformes) reveal a novel gene arrangement of L-strand coding genes. BMC Evol. Biol. 2013, 13, 173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, W.; Miao, X.G.; Kong, X.Y. A novel model of double replications and random loss accounts for rearrangements in the mitogenome of Sssamariscus latus (Teleostei: Pleuronectiformes). BMC Genom. 2014, 15, 352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gong, L.; Shi, W.; Yang, M.; Li, D.H.; Kong, X.Y. Novel gene arrangement in the mitochondrial genome of Bothus myriaster (Pleuronectiformes: Bothidae): Evidence for the dimer-mitogenome and non-random loss model. Mitochondrial DNA 2016, 27, 3089–3092. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.R.; Kong, X.Y.; Chen, S.X.; Shi, W. Mechanisms of gene rearrangement in 13 bothids based on comparison with a newly completed mitogenome of the three spot flounder, Grammatobothus polyophthalmus (Pleuronectiformes: Bothidae). BMC Genom. 2019, 20, 792. [Google Scholar] [CrossRef]
- Gong, L.; Lu, X.T.; Luo, H.R.; Zhang, Y.; Shi, W.; Liu, L.Q.; Lü, Z.M.; Liu, B.J.; Jiang, L.H. Novel gene rearrangement pattern in Cynoglossus melampetalus mitochondrial genome: New gene order in genus Cynoglossus (Pleuronectiformes: Cynoglossidae). Int. J. Biol. Macromol. 2020, 149, 1232–1240. [Google Scholar] [CrossRef]
- Zhuang, X.; Cheng, C.H.C. ND6 gene “lost” and found: Evolution of mitochondrial gene rearrangement in Antarctic notothenioids. Mol. Biol. Evol. 2010, 27, 1391–1403. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.Y.; Lin, W.W.; Kao, H.W. The complete mitochondrial genome of the mackerel icefish, Champsocephalus gunnari (Actinopterygii: Channichthyidae), with reference to the evolution of mitochondrial genomes in Antarctic notothenioids. Zool. J. Linn. Soc. Lond. 2012, 165, 521–533. [Google Scholar] [CrossRef] [Green Version]
- Miya, M.; Nishida, M. Organization of the mitochondrial genome of a deep-sea fish, Gonostoma gracile (Teleostei: Stomiiformes): First example of transfer RNA gene rearrangements in bony Fishes. Mar. Biotechnol. 1999, 1, 416–426. [Google Scholar] [CrossRef]
- Inoue, J.G.; Miya, M.; Tsukamoto, K.; Nishida, M. Evolution of the deep-sea gulper eel mitochondrial genomes: Large-scale gene rearrangements originated within the eels. Mol. Biol. Evol. 2003, 20, 1917–1924. [Google Scholar] [CrossRef] [Green Version]
- Obermiller, L.E.; Pfeiler, E. Phylogenetic relationships of elopomorph fishes inferred from mitochondrial ribosomal DNA sequences. Mol. Phylogenet. Evol. 2003, 26, 202–214. [Google Scholar] [CrossRef]
- Wang, C.H.; Kuo, C.H.; Mok, H.K.; Lee, S.C. Molecular phylogeny of elopomorph fishes inferred from mitochondrial 12S ribosomal RNA sequences. Zool. Scr. 2003, 32, 231–241. [Google Scholar] [CrossRef]
- Inoue, J.G.; Miya, M.; Tsukamoto, K.; Nishida, M. Mitogenomic evidence for the monophyly of elopomorph fishes (Teleostei) and the evolutionary origin of the leptocephalus larva. Mol. Phylogenet. Evol. 2004, 32, 274–286. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.N.; López, J.A.; Lavoué, S.; Miya, M.; Chen, W.J. Phylogeny of the Elopomorpha (Teleostei): Evidence from six nuclear and mitochondrial markers. Mol. Phylogenet. Evol. 2014, 70, 152–161. [Google Scholar] [CrossRef] [PubMed]
- Dornburg, A.; Friedman, M.; Near, T.J. Phylogenetic analysis of molecular and morphological data highlights uncertainty in the relationships of fossil and living species of Elopomorpha (Actinopterygii: Teleostei). Mol. Phylogenet. Evol. 2015, 89, 205–218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sankoff, D.; Leduc, G.; Antoine, N.; Paquin, B.; Cedergren, L.R. Gene order comparisons for phylogenetic inference: Evolution of the mitochondrial genome. Proc. Natl. Acad. Sci. USA 1992, 89, 6575–6579. [Google Scholar] [CrossRef] [Green Version]
- Rawlings, T.A.; Collins, T.M.; Bieler, R. A major mitochondrial gene rearrangement among closely related species. Mol. Biol. Evol. 2001, 18, 1604–1609. [Google Scholar] [CrossRef] [Green Version]
- Mortazavi, F.; Stankiewicz, A.J.; Zhdanova, I.V. Looking through brains with fast passive CLARITY: Zebrafish, rodents, non-human primates and humans. Bio-Protocol 2019, 9, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Maniatis, T.; Fritsch, E.F.; Sambrook, J. Molecular Cloning: A Laboratory Manual; Cold Spring Harbor Laboratory Press: New York, NY, USA, 1982. [Google Scholar]
- Bolger, A.M.; Marc, L.; Bjoern, U. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 15, 2114–2120. [Google Scholar] [CrossRef] [PubMed]
- Jin, J.J.; Yu, W.B.; Yang, J.B.; Song, Y.; Li, D.Z. GetOrganelle: A fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biol. 2020, 21, 241. [Google Scholar] [CrossRef] [PubMed]
- Walker, B.J.; Abeel, T.; Shea, T.; Priest, M.; Earl, A.M. Pilon: An integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE 2014, 9, e112963. [Google Scholar] [CrossRef] [PubMed]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef] [PubMed]
- Lowe, T.M.; Chan, P.P. tRNAscan-SE on-line: Search and contextual analysis of transfer RNA genes. Nucleic Acids Res. 2016, 44, 54–57. [Google Scholar] [CrossRef]
- Kerpedjiev, P.; Hammer, S.; Hofacker, I.L. Forna (force-directed RNA): Simple and effective online RNA secondary structure diagrams. Bioinformatics 2015, 31, 3377–3379. [Google Scholar] [CrossRef] [Green Version]
- Zuker, M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 2003, 31, 3406–3415. [Google Scholar] [CrossRef]
- Liu, W.Z.; Xie, Y.B.; Ma, J.Y.; Luo, X.T.; Nie, P.; Zuo, Z.X.; Lahrmann, U.; Zhao, Q.; Zheng, Y.Y.; Zhao, Y.; et al. IBS: An illustrator for the presentation and visualization of biological sequences. Bioinformatics 2015, 31, 3359–3361. [Google Scholar] [CrossRef] [Green Version]
- Perna, N.T.; Kocher, T.D. Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes. J. Mol. Evol. 1995, 41, 353–358. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, J.; Zhao, X.Q.; Wang, J.; Wong, G.K.; Yu, J. KaKs_Calculator: Calculating Ka and Ks through model selection and model averaging. Genom.Proteom. Bioinf. 2006, 4, 259–263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miya, M.; Takeshima, H.; Endo, H.; Ishiguro, N.B.; Inoue, J.G.; Mukai, T.; Satoh, T.P.; Yamaguchi, M.; Kawaguchi, A.; Mabuchi, K. Major patterns of higher teleostean phylogenies: A new perspective based on 100 complete mitochondrial DNA sequences. Mol. Phylogenet. Evol. 2003, 26, 121–138. [Google Scholar] [CrossRef] [PubMed]
- Luo, A.; Zhang, A.B.; Ho, S.Y.; Xu, W.J.; Zhu, C.D. Potential efficacy of mitochondrial genes for animal DNA barcoding: A case study using eutherian mammals. BMC Genom. 2011, 12, 84. [Google Scholar] [CrossRef] [Green Version]
- Burland, T.G. DNASTAR’s Lasergene Sequence Analysis Software; Humana Press: Totowa, NJ, USA, 2000; pp. 71–91. [Google Scholar]
- Piontkivska, H. Efficiencies of maximum likelihood methods of phylogenetic inferences when different substitution models are used. Mol. Phylogenet. Evol. 2004, 31, 865–873. [Google Scholar] [CrossRef] [PubMed]
- Xia, X.H. DAMBE 5: A Comprehensive software package for data analysis in molecular biology and evolution. Mol. Biol. Evol. 2013, 30, 1720–1728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guindon, S.; Dufayard, J.F.; Lefort, V.; Anisimova, M.; Hordijk, W.; Gascuel, O. New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Syst. Biol. 2010, 59, 307–321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Satoh, T.P.; Miya, M.; Mabuchi, K.; Nishida, M. Structure and variation of the mitochondrial genome of fishes. BMC Genom. 2016, 17, 719. [Google Scholar] [CrossRef] [Green Version]
- Ojala, D.; Montoya, J.; Attardi, G. tRNA punctuation model of RNA processing in human mitochondria. Nature 1981, 290, 470–474. [Google Scholar] [CrossRef]
- Sharp, P.M.; Tuohy, T.M.; Mosurski, K.R. Codon usage in yeast: Cluster analysis clearly dierentiates highly and lowly expressed genes. Nucleic Acids Res. 1986, 14, 5125–5143. [Google Scholar] [CrossRef] [Green Version]
- Lü, Z.M.; Zhu, K.H.; Jiang, H.; Lu, X.T.; Liu, B.J.; Ye, Y.Y.; Jiang, L.H.; Liu, L.Q.; Gong, L. Complete mitochondrial genome of Ophichthus brevicaudatus reveals novel gene order and phylogenetic relationships of Anguilliformes. Int. J. Biol. Macromol. 2019, 135, 609–618. [Google Scholar] [CrossRef]
- Seutin, G.; Lang, B.F.; Mindell, D.P.; Morais, R. Evolution of the WANCY region in amniote mitochondrial DNA. Mol. Biol. Evol. 1994, 11, 329–340. [Google Scholar] [PubMed] [Green Version]
- Wong, T.N.; Clayton, D.A. In vitro replication of human mitochondria DNA: Accurate initiation at the origin of light-strand synthesis. Cell 1985, 42, 951–958. [Google Scholar] [CrossRef] [PubMed]
- Hixson, J.E.; Wong, T.W.; Clayton, D.A. Both the conserved stem-loop and divergent 5’-flanking sequences are required for initiation at the human mitochondrial origin of light-strand DNA replication. J. Biol Chem. 1986, 261, 2384–2390. [Google Scholar] [CrossRef] [PubMed]
- Kryazhimskiy, S.; Plotkin, J.B. The population genetics of dN/dS. PLoS Genet. 2008, 4, e1000304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hassanin, A.; Leger, N.; Deutsch, J. Evidence for multiple reversals of asymmetric mutational constraints during the evolution of the mitochondrial genome of metazoa, and consequences for phylogenetic inferences. Syst. Biol. 2005, 54, 277–298. [Google Scholar] [CrossRef] [PubMed]
- Yu, P.; Zhou, L.; Zhou, X.Y.; Yang, W.T.; Zhang, J.; Zhang, X.J.; Wang, Y.; Gui, J.F. Unusual AT-skew of Sinorhodeus microlepis mitogenome provides new insights into mitogenome features and phylogenetic implications of bitterling fishes. Int. J. Biol. Macromol. 2019, 129, 339–350. [Google Scholar] [CrossRef]
- Chai, H.N.; Du, Y.Z.; Zhai, B.P. Characterization of the complete mitochondrial genomes of Cnaphalocrocis medinalis and Chilo suppressalis (Lepidoptera: Pyralidae). Int. J. Biol. Sci. 2012, 8, 561–579. [Google Scholar] [CrossRef] [Green Version]
- Sun, S.E.; Cheng, J.; Sun, S.; Sha, Z.L. Complete mitochondrial genomes of two deep-sea pandalid shrimps, Heterocarpus ensifer and Bitias brevis: Insights into the phylogenetic position of Pandalidae (Decapoda:Caridea). J. Oceanol. Limnol. 2020, 38, 816–825. [Google Scholar] [CrossRef]
- Gong, L.; Shi, W.; Si, L.Z.; Kong, X.Y. Rearrangement of mitochondrial genome in fishes. Zool. Res. 2013, 34, 666–673. (In Chinese) [Google Scholar]
- Inoue, J.G.; Miya, M.; Tsukamoto, K.; Nishida, M. Complete mitochondrial DNA sequence of Conger myriaster (Teleostei: Anguilliformes): Novel gene order for vertebrate mitochondrial genomes and the phylogenetic implications for Anguilliform families. J. Mol. Evol. 2001, 52, 311–320. [Google Scholar] [CrossRef]
- San Mauro, D.; Gower, D.J.; Zardoya, R.; Wilkinson, M. A hotspot of gene order rearrangement by tandem duplication and random loss in the vertebrate mitochondrial genome. Mol. Biol. Evol. 2006, 23, 227–234. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Zhu, K.H.; Liu, Y.F.; Zhang, H.; Gong, L.; Jiang, L.H.; Liu, L.Q.; Lü, Z.M.; Liu, B.J. Novel gene rearrangement in the mitochondrial genome of Muraenesox cinereus and the phylogenetic relationship of Anguilliformes. Sci. Rep. 2021, 11, 2411. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.J.; Conroy, J.; Howell, W.H.; Kocher, T.D. Structure and evolution of teleost mitochondrial control regions. J. Mol. Evol. 1995, 41, 54–66. [Google Scholar] [CrossRef] [PubMed]
- Shao, R.; Barker, S.C.; Mitani, H.; Yayoi, A.; Masahito, F. Evolution of duplicate control regions in the mitochondrial genomes of metazoa: A case study with Australasian Ixodes ticks. Mol. Biol. Evol. 2005, 22, 620–629. [Google Scholar] [CrossRef]
- Eberhard, J.R.; Wright, T.F.; Bermingham, E. Duplication and concerted evolution of the mitochondrial control region in the parrot genus Amazona. Mol. Biol. Evol. 2001, 18, 1330–1342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbott, C.L.; Double, M.C.; Trueman, J.W.H.; Robinson, A.; Cockburn, A. An unusual source of apparent mitochondrial heteroplasmy: Duplicate mitochondrial control regions in Thalassarche albatrosses. Mol. Ecol. 2005, 14, 3605–3613. [Google Scholar] [CrossRef]
- Morris-Pocock, J.A.; Taylor, S.A.; Birt, T.P.; Friesen, V.L. Concerted evolution of duplicated mitochondrial control regions in three related seabird species. BMC Evol. Biol. 2010, 10, 14. [Google Scholar] [CrossRef] [Green Version]
- Zheng, C.F.; Nie, L.W.; Wang, J.; Zhou, H.X.; Hou, H.Z.; Wang, H.; Liu, J.J. Recombination and evolution of duplicate control regions in the mitochondrial genome of the Asian big headed turtle, Platysternon megacephalum. PLoS ONE 2013, 8, e82854. [Google Scholar] [CrossRef] [Green Version]
- Kumazawa, Y.; Ota, H.; Nishida, M.T. Ozawa, The complete nucleotide sequence of a snake (Dinodon semicarinatus) mitochondrial genome with two identical control regions. Genetics 1998, 150, 313–329. [Google Scholar] [CrossRef]
- Gomes, C.; Rodrigues-Filho, L.F.D.S.; Sodré, D.; Neckel-Oliveira, S.; Gordo, M.; Gallati, U.; Sequeira, F.; Vallinoto, M. Concerted evolution in the mitochondrial control region of the Amazon small-bodied frog Pseudopaludicola canga (Anura, Leiuperidae). Mitochondrial DNA A 2016, 27, 4270–4273. [Google Scholar] [CrossRef]
- Lee, J.S.; Miya, M.; Lee, Y.S.; Kim, C.G.; Park, E.H.; Aoki, Y.; Nishida, M. The complete DNA sequence of the mitochondrial genome of the self-fertilizing fish Rivulus marmoratus (Cyprinodontiformes, Rivulidae) and the first description of duplication of a control region in fish. Gene 2001, 280, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Li, D.H.; Wei, S.; Munroe, T.A.; Gong, L.; Kong, X.Y. Concerted evolution of duplicate control regions in the mitochondria of species of the flatfish family Bothidae (Teleostei: Pleuronectiformes). PLoS ONE 2015, 10, e0134580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, Y.B.; Cheng, Q.Q. Study on molecular taxonomy of genus Pampus base on complete mitochondrial genome structure. Mar. Fish. 2022, 44, 31–44. (In Chinese) [Google Scholar]
- Boore, J.L. The Duplication/Random Loss Model for Gene Rearrangement Exemplified by Mitochondrial Genomes of Deuterostome Animals, Comparative Genomics; Springer: Dordrecht, The Netherlands, 2000; pp. 133–147. [Google Scholar]
- Muse, S.V. Estimating synonymous and nonsynonymous substitution rates. Mol. Biol. Evol. 1996, 13, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Bielawski, J.P. Statistical methods for detecting molecular adaptation. Trends Ecol. Evol. 2000, 15, 496–503. [Google Scholar] [CrossRef]
- Lazarou, M.; Thorburn, D.R.; Ryan, M.T.; McKenzie, M. Assembly of mitochondrial complex I and defects in disease. BBA Mol. Cell Res. 2009, 1793, 78–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Efremov, R.G.; Baradaran, R.; Sazanov, L.A. The architecture of respiratory complex I. Nature 2010, 465, 441–445. [Google Scholar] [CrossRef]
- Mark, F.C.; Lucassen, M.; Strobel, A.; Barrera-Oro, E.; Papetti, C. Mitochondrial function in Antarctic nototheniids with ND6 translocation. PLoS ONE 2012, 7, e31860. [Google Scholar] [CrossRef] [Green Version]
- Xia, X.H.; Xie, Z.; Salemi, M.; Chen, L.; Wang, Y. An index of substitution saturation and its application. Mol. Phylogenet. Evol. 2003, 26, 1–7. [Google Scholar] [CrossRef]
- Liu, D. Study on Comparative Morphology of the Olfactory Organ and Phylogeny of the Snake-Eel Fishes from China. Master’s Thesis, Shanghai Ocean University, Shanghai, China, 2005. (In Chinese). [Google Scholar]
- Zhang, Z.L.; Lin, R.R.; Xing, B.P. Suitability analysis of mitochondrial COI gene used as DNA barcode for Ophichthyidae. J. Appl. Oceanogr. 2017, 36, 411–416. (In Chinese) [Google Scholar]
Gene | Direction | Strand | Start to End | Size/bp | Intergenic Length/bp | Start Codon | Stop Codon | Anticodon | Similarity/% |
---|---|---|---|---|---|---|---|---|---|
O. evermanni/O. erabo | O. evermanni/O. erabo | O. evermanni/O. erabo | O. evermanni/O. erabo | O. evermanni/O. erabo | O. evermanni/O. erabo | ||||
tRNA-Phe (F) | + | H | 1–68/1–69 | 68/69 | GAA/GAA | 85.5 | |||
12S rRNA | + | H | 69–1027/70–1036 | 959/967 | 86.5 | ||||
tRNA-Val (V) | + | H | 1028–1098/1037–1107 | 71/71 | TAC/TAC | 94.4 | |||
16S rRNA | + | H | 1099–2801/1108–2812 | 1703/1705 | 84.6 | ||||
tRNA-LeuUUA (L1) | + | H | 2802–2877/2813–2888 | 76/76 | TAA/TAA | 90.8 | |||
ND1 | + | H | 2878–3846/2889–3857 | 969/969 | ATG/ATG | TAA/TAG | 79.3 | ||
tRNA-Ile (I) | + | H | 3850–3922/3861–3933 | 73/73 | 3/3 | GAT/GAT | 89.0 | ||
tRNA-Gln (Q) | - | L | 3922–3992/3933–4003 | 71/71 | −1/−1 | TTG/TTG | 90.1 | ||
tRNA-Met (M) | + | H | 3992–4060/4003–4071 | 69/69 | −1/−1 | CAT/CAT | 85.5 | ||
ND2 | + | H | 4061–5117/4072–5128 | 1057/1057 | ATG/ATG | T--/T-- | 76.7 | ||
tRNA-Trp (W) | + | H | 5118–5186/5129–5200 | 69/72 | TCA/TCA | 86.1 | |||
tRNA-Ala (A) | - | L | 5188–5256/5202–5270 | 69/69 | 1/1 | TGC/TGC | 85.5 | ||
tRNA-Asn (N) | - | L | 5258–5330/5272–5344 | 73/73 | 1/1 | GTT/GTT | 94.5 | ||
OL | + | H | 5335–5368/5351–5376 | 34/26 | 4/6 | 61.8 | |||
tRNA-Cys (C) | - | L | 5375–5439/5394–5459 | 65/66 | 6/17 | GCA/GCA | 86.4 | ||
tRNA-Tyr (Y) | - | L | 5440–5510/5460–5530 | 71/71 | GTA/GTA | 85.9 | |||
CO I | + | H | 5512–7152/5532–7172 | 1641/1641 | 1/1 | GTG/GTG | TAG/TAA | 84.5 | |
tRNA-SerUCA (S1) | - | L | 7169–7239/7191–7261 | 71/71 | 16/18 | TGA/TGA | 95.8 | ||
tRNA-Asp (D) | + | H | 7245–7312/7267–7334 | 68/68 | 5/5 | GTC/GTC | 88.2 | ||
CO II | + | H | 7319–8009/7341–8031 | 691/691 | 6/6 | ATG/ATG | T--/T-- | 87.0 | |
tRNA-Lys (K) | + | H | 8010–8084/8032–8106 | 75/75 | TTT/TTT | 90.7 | |||
ATP8 | + | H | 8086–8253/8108–8275 | 168/168 | 1/1 | ATG/ATG | TAA/TAA | 80.5 | |
ATP6 | + | H | 8244–8926/8266–8949 | 683/684 | −10/−10 | ATG/ATG | TA-/TAA | 78.9 | |
CO III | + | H | 8927–9712/8949–9734 | 786/786 | 0/−1 | ATG/ATG | TAA/TAA | 85.2 | |
tRNA-Gly (G) | + | H | 9712–9783/9734–9805 | 72/72 | −1/−1 | TCC/TCC | 86.1 | ||
ND3 | + | H | 9784–10132/9806–10154 | 349/349 | ATG/GTG | T--/T-- | 81.1 | ||
tRNA-Arg (R) | + | H | 10133–10202/10155–10224 | 70/70 | TCG/TCG | 97.1 | |||
ND4L | + | H | 10203–10499/10225–10521 | 297/297 | ATG/ATG | TAA/TAA | 85.5 | ||
ND4 | + | H | 10493–11873/10515–11895 | 1381/1381 | −7/−7 | ATG/ATG | T--/T-- | 80.7 | |
tRNA-His (H) | + | H | 11874–11942/11896–11964 | 69/69 | GTG/GTG | 95.7 | |||
tRNA-SerAGC (S2) | + | H | 11943–12012/11965–12034 | 70/70 | GCT/GCT | 67.5 | |||
tRNA-LeuCUA (L2) | + | H | 12013–12085/12035–12107 | 73/73 | TAG/TAG | 95.9 | |||
ND5 | + | H | 12086–13921/12108–13943 | 1836/1836 | ATG/ATG | TAA/TAA | 79.3 | ||
Cyt b | + | H | 13936–15077/13959–15098 | 1142/1140 | 14/15 | ATG/ATG | AA-/TAA | 76.5 | |
tRNA-Thr (T) | + | H | 15095–15166/15116–15187 | 72/72 | 17/17 | TGT/TGT | 91.7 | ||
CR1 | + | H | 15167–16132/15188–16224 | 966/1037 | 67.1 | ||||
ND6 | - | L | 16133–16651/16225–16743 | 519/519 | CTA/CTA | CAT/CAT | 77.3 | ||
tRNA-Glu (E) | - | L | 16652–16720/16744–16812 | 69/69 | TTC/TTC | 85.5 | |||
tRNA-Pro (P) | - | L | 16724–16794/16820–16890 | 71/71 | 3/7 | TGG/TGG | 85.9 | ||
CR2 | + | H | 16795–17759/16891–17856 | 965/966 | 72.4 |
O. evermanni/O. erabo | |||||||
---|---|---|---|---|---|---|---|
A% | T% | G% | C% | A + T% | AT-Skew | GC-Skew | |
tRNAs | 30.93/31.60 | 24.63/24.81 | 20.13/19.68 | 24.31/23.91 | 55.56/56.41 | 0.113/0.120 | −0.094/−0.097 |
rRNAs | 35.73/36.83 | 20.14/19.72 | 19.68/19.57 | 24.46/23.88 | 55.86/56.55 | 0.279/0.303 | −0.108/−0.099 |
CRs | 31.75/36.45 | 31.85/27.36 | 15.69/15.08 | 20.71/21.12 | 63.59/63.80 | −0.002/0.142 | −0.138/−0.167 |
ND1 | 27.04/26.21 | 26.42/26.73 | 15.79/17.54 | 30.75/29.51 | 53.46/52.94 | 0.012/−0.010 | −0.321/−0.254 |
ND2 | 34.56/34.34 | 24.27/24.60 | 12.65/13.25 | 28.52/27.81 | 58.83/58.94 | 0.175/0.165 | −0.385/−0.355 |
COI | 27.54/27.48 | 28.34/28.40 | 18.22/18.46 | 25.90/25.66 | 55.88/55.88 | −0.014/−0.016 | −0.174/−0.163 |
COII | 29.23/31.11 | 28.80/27.06 | 16.79/15.48 | 25.18/26.34 | 58.03/58.18 | 0.007/0.070 | −0.200/−0.260 |
ATP8 | 35.12/36.31 | 25.60/27.38 | 11.31/8.33 | 27.98/27.98 | 60.71/63.69 | 0.157/0.140 | −0.424/−0.541 |
ATP6 | 29.28/28.95 | 30.60/27.63 | 12.15/12.57 | 27.96/30.85 | 59.88/56.58 | −0.022/0.023 | −0.394/−0.421 |
COIII | 27.35/27.35 | 27.48/26.59 | 17.56/18.45 | 27.61/27.61 | 54.83/53.94 | −0.002/0.014 | −0.222/−0.199 |
ND3 | 28.37/24.36 | 30.37/32.95 | 13.47/16.05 | 27.79/26.65 | 58.74/57.31 | −0.034/−0.150 | −0.347/−0.248 |
ND4L | 28.62/27.61 | 27.27/27.95 | 13.80/13.80 | 30.30/30.64 | 55.89/55.56 | 0.024/−0.006 | −0.374/−0.379 |
ND4 | 30.27/30.99 | 27.52/26.72 | 14.12/13.61 | 28.10/28.67 | 57.78/57.71 | 0.048/0.074 | −0.331/−0.356 |
ND5 | 31.81/33.33 | 26.96/26.25 | 13.56/13.34 | 27.67/27.07 | 58.77/59.59 | 0.083/0.119 | −0.342/−0.340 |
Cyt b | 39.50/28.07 | 14.26/28.68 | 14.07/16.40 | 32.18/26.84 | 53.76/56.75 | 0.469/−0.011 | −0.392/−0.241 |
ND6 | 29.42/40.66 | 30.56/12.91 | 14.80/13.49 | 25.22/32.95 | 59.98/53.56 | −0.019/0.518 | −0.260/−0.419 |
PCGs | 30.23/30.34 | 27.17/26.56 | 14.89/15.21 | 27.71/27.89 | 57.40/56.90 | 0.053/0.066 | −0.301/−0.294 |
1st codon site | 29.61/30.34 | 28.43/24.71 | 14.89/18.07 | 27.08/26.88 | 58.04/55.05 | 0.020/0.102 | −0.290/−0.196 |
2nd codon site | 30.44/26.84 | 28.46/31.72 | 13.07/14.51 | 28.02/26.94 | 58.90/58.56 | 0.034/−0.083 | −0.364/−0.299 |
3rd codon site | 30.64/33.90 | 24.62/23.21 | 16.70/13.01 | 28.04/29.87 | 55.26/57.11 | 0.109/0.187 | −0.253/−0.393 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, T.; Liu, Y.; Ning, Z. Comparative Mitogenomic Analysis of Two Snake Eels Reveals Irregular Gene Rearrangement and Phylogenetic Implications of Ophichthidae. Animals 2023, 13, 362. https://doi.org/10.3390/ani13030362
Yang T, Liu Y, Ning Z. Comparative Mitogenomic Analysis of Two Snake Eels Reveals Irregular Gene Rearrangement and Phylogenetic Implications of Ophichthidae. Animals. 2023; 13(3):362. https://doi.org/10.3390/ani13030362
Chicago/Turabian StyleYang, Tianyan, Yuping Liu, and Zijun Ning. 2023. "Comparative Mitogenomic Analysis of Two Snake Eels Reveals Irregular Gene Rearrangement and Phylogenetic Implications of Ophichthidae" Animals 13, no. 3: 362. https://doi.org/10.3390/ani13030362
APA StyleYang, T., Liu, Y., & Ning, Z. (2023). Comparative Mitogenomic Analysis of Two Snake Eels Reveals Irregular Gene Rearrangement and Phylogenetic Implications of Ophichthidae. Animals, 13(3), 362. https://doi.org/10.3390/ani13030362