The Effects of Dietary Spirulina platensisis on Physiological Responses of Broiler Chickens Exposed to Endotoxin Stress
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Birds Management and Experimental Design
2.3. Growth Performance
2.4. Antioxidant Biomarkers
2.5. Immunological Parameters
2.6. Intestinal Microbial Count and Acidosis
2.7. Statistical Analysis
3. Results
3.1. Growth Performance
3.2. Antioxidant Biomarkers
3.3. Immunological Parameters
3.4. Microbial Counts and Acidosis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Elitok, B. Importance of Stress Factors in Poultry. Juniper Online J. Case Stud. 2018, 7, 1–3. [Google Scholar] [CrossRef]
- Quinteiro-Filho, W.M.; Rodrigues, M.V.; Ribeiro, A.; Ferraz-de-Paula, V.; Pinheiro, M.L.; Sá, L.R.M.; Ferreira, A.J.P.; Palermo-Neto, J. Acute Heat Stress Impairs Performance Parameters and Induces Mild Intestinal Enteritis in Broiler Chickens: Role of Acute Hypothalamic-Pituitary-Adrenal Axis Activation. J. Anim. Sci. 2012, 90, 1986–1994. [Google Scholar] [CrossRef]
- Cao, G.T.; Zeng, X.F.; Chen, A.G.; Zhou, L.; Zhang, L.; Xiao, Y.P.; Yang, C.M. Effects of a Probiotic, Enterococcus Faecium, on Growth Performance, Intestinal Morphology, Immune Response, and Cecal Microflora in Broiler Chickens Challenged with Escherichia Coli K88. Poult. Sci. 2013, 92, 2949–2955. [Google Scholar] [CrossRef]
- Lau, G.L.; Sieo, C.C.; Tan, W.S.; Hair-Bejo, M.; Jalila, A.; Ho, Y.W. Efficacy of a Bacteriophage Isolated from Chickens as a Therapeutic Agent for Colibacillosis in Broiler Chickens. Poult. Sci. 2010, 89, 2589–2596. [Google Scholar] [CrossRef] [PubMed]
- Dziva, F.; Stevens, M.P. Colibacillosis in Poultry: Unravelling the Molecular Basis of Virulence of Avian Pathogenic Escherichia Coli in Their Natural Hosts. Avian. Pathol. 2008, 37, 355–366. [Google Scholar] [CrossRef] [Green Version]
- Juang, J.; Yin, H.; Zhang, C.; Wang, J. Effects of E. coli Infection on the Expressions of TGF-β/Smads Signaling Pathway in Broiler Intestine. Braz. J. Poult. Sci. 2020, 22, 1–6. [Google Scholar] [CrossRef]
- Elnagar, R.; Elkenany, R.; Younis, G. Interleukin Gene Expression in Broiler Chickens Infected by Different Escherichia Coli Serotypes. Vet World 2021, 14, 2727–2734. [Google Scholar] [CrossRef] [PubMed]
- da Rosa, G.; Alba, D.F.; Silva, A.D.; Gris, A.; Mendes, R.E.; Mostardeiro, V.B.; Lopes, T.F.; Schetinger, M.R.C.; Stefani, L.M.; Lopes, M.T.; et al. Impact of Escherichia Coli Infection in Broiler Breeder Chicks: The Effect of Oxidative Stress on Weight Gain. Microb. Pathog. 2020, 139, 103861. [Google Scholar] [CrossRef]
- Ranjithkumar, M.; Kamili, N.M.; Saxena, A.; Dan, A.; Dey, S.; Raut, S.S. Disturbance of Oxidant/Antioxidant Equilibrium in Horses Naturally Infected with Trypanosoma Evansi. Vet. Parasitol. 2011, 180, 349–353. [Google Scholar] [CrossRef]
- Wang, H.; Yang, F.; Song, Z.W.; Shao, H.T.; Bai, D.Y.; Ma, Y.B.; Kong, T.; Yang, F. The Influence of Immune Stress Induced by Escherichia Coli Lipopolysaccharide on the Pharmacokinetics of Danofloxacin in Broilers. Poult. Sci. 2022, 101, 101629. [Google Scholar] [CrossRef]
- Abbas, A.O.; Alaqil, A.A.; El-Beltagi, H.S.; Abd El-Atty, H.K.; Kamel, N.N. Modulating Laying Hens Productivity and Immune Performance in Response to Oxidative Stress Induced by E. coli Challenge Using Dietary Propolis Supplementation. Antioxidants 2020, 9, 893. [Google Scholar] [CrossRef] [PubMed]
- Daneshmand, A.; Kermanshahi, H.; Sekhavati, M.H.; Javadmanesh, A.; Ahmadian, M. Antimicrobial Peptide, CLF36, Affects Performance and Intestinal Morphology, Microflora, Junctional Proteins, and Immune Cells in Broilers Challenged with E. coli. Sci. Rep. 2019, 9, 14176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohan, A.; Misra, N.; Srivastav, D.; Umapathy, D.; Kumar, S. Spirulina-The Nature’s Wonder: A Review. Sch. J. Appl. Med. Sci. (SJAMS) 2014, 2, 1334–1339. [Google Scholar]
- Jubie, S.; Ramesh, P.N.; Dhanabal, P.; Kalirajan, R.; Muruganantham, N.; Shanish Antony, A. Synthesis, Antidepressant and Antimicrobial Activities of Some Novel Stearic Acid Analogues. Eur. J. Med. Chem. 2012, 54, 931–935. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Lee, S.I.; Kim, I.H. Effect of Dietary Spirulina (Arthrospira) Platensis on the Growth Performance, Antioxidant Enzyme Activity, Nutrient Digestibility, Cecal Microflora, Excreta Noxious Gas Emission, and Breast Meat Quality of Broiler Chickens. Poult. Sci. 2018, 97, 2451–2459. [Google Scholar] [CrossRef]
- Anvar, A.A.; Nowruzi, B. Bioactive Properties of Spirulina: A Review. Microb. Bioact. 2021, 4, 134–142. [Google Scholar] [CrossRef]
- Shokri, H.; Khosravi, A.; Taghavi, M. Efficacy of Spirulina platensis on Immune Functions in Cancer Mice with Systemic Candidiasis. J. Mycol. Res. 2014, 1, 7–13. [Google Scholar]
- Şahan, A. Determination of Some Haematological and Non-Specific Im-Mune Parameters in Nile Tilapia (Oreochromis Niloticus L., 1758) Fed with Spirulina (Spirulina platensis) Added Diets. J. Aquac. Eng. Fish. Res. 2015, 1, 133–139. [Google Scholar] [CrossRef]
- Coskun, Z.K.; Kerem, M.; Gurbuz, N.; Omeroglu, S.; Pasaoglu, H.; Demirtas, C.; Lortlar, N.; Salman, B.; Pasaoglu, O.T.; Turgut, H.B. The Study of Biochemical and Histopathological Effects of Spirulina in Rats with TNBS-Induced Colitis. Bratisl. Lek. Listy 2011, 112, 235–243. [Google Scholar]
- Ismail, M.F.; Ali, D.A.; Fernando, A.; Abdraboh, M.E.; Gaur, R.L.; Ibrahim, W.M.; Raj, M.H.G.; Ouhtit, A. Chemoprevention of Rat Liver Toxicity and Carcinogenesis by Spirulina. Int. J. Biol. Sci. 2009, 5, 377–387. [Google Scholar] [CrossRef] [Green Version]
- Gad, A.S.; Khadrawy, Y.A.; El-Nekeety, A.A.; Mohamed, S.R.; Hassan, N.S.; Abdel-Wahhab, M.A. Antioxidant Activity and Hepatoprotective Effects of Whey Protein and Spirulina in Rats. Nutrition 2011, 27, 582–589. [Google Scholar] [CrossRef] [PubMed]
- Shanmugapriya, B.; Saravana Babu, S.; Hariharan, T.; Sivaneswaran, S.; Anusha, M.B. Dietary Administration of Spirulina platensis as Probiotics on Growth Performance and Histopathology in Broiler Chicks. Int. J. Recent Sci. Res. 2015, 6, 2650–2653. [Google Scholar]
- Omar, A.E.; Al-Khalaifah, H.S.; Osman, A.; Gouda, A.; Shalaby, S.I.; Roushdy, E.M.; Abdo, S.A.; Ali, S.A.; Hassan, A.M.; Amer, S.A. Modulating the Growth, Antioxidant Activity, and Immunoexpression of Proinflammatory Cytokines and Apoptotic Proteins in Broiler Chickens by Adding Dietary Spirulina platensis Phycocyanin. Antioxidants 2022, 11, 991. [Google Scholar] [CrossRef] [PubMed]
- Elbaz, A.M.; Ahmed, A.M.H.; Abdel-Maqsoud, A.; Badran, A.M.M.; Abdel-Moneim, A.M.E. Potential Ameliorative Role of Spirulina platensis in Powdered or Extract Forms against Cyclic Heat Stress in Broiler Chickens. Environ. Sci. Pollut. Res. 2022, 29, 45578–45588. [Google Scholar] [CrossRef]
- Moustafa, E.S.; Alsanie, W.F.; Gaber, A.; Kamel, N.N.; Alaqil, A.A.; Abbas, A.O. Blue-Green Algae (Spirulina platensis) Alleviates the Negative Impact of Heat Stress on Broiler Production Performance and Redox Status. Animals 2021, 11, 1243. [Google Scholar] [CrossRef]
- Mirzaie, S.; Zirak-Khattab, F.; Hosseini, S.A.; Donyaei-Darian, H. Effects of Dietary Spirulina on Antioxidant Status, Lipid Profile, Immune Response and Performance Characteristics of Broiler Chickens Reared under High Ambient Temperature. Asian-Australas J. Anim. Sci. 2018, 31, 556–563. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Moneim, A.M.E.; Shehata, A.M.; Mohamed, N.G.; Elbaz, A.M.; Ibrahim, N.S. Synergistic Effect of Spirulina platensis and Selenium Nanoparticles on Growth Performance, Serum Metabolites, Immune Responses, and Antioxidant Capacity of Heat-Stressed Broiler Chickens. Biol. Trace Elem. Res. 2022, 200, 768–779. [Google Scholar] [CrossRef]
- Attia, Y.A.; Zeweil, H.S.; Alsaffar, A.A.; El-Shafy, A.S. Effect of Non-Antibiotic Feed Additives as an Alternative to Flavomycin on Productivity, Meat Quality and Blood Parameters in Broilers. Arch. Fur. Geflugelkd. 2011, 75, 40–48. [Google Scholar]
- AOAC Association of Official Analysis Chemists International. Official Methods of Analysis of AOAC International, 18th ed.; Association of Official Analysis Chemists International: Washington, DC, USA, 2005; ISBN 0935584544. [Google Scholar]
- Seghiri, R.; Kharbach, M.; Essamri, A. Functional Composition, Nutritional Properties, and Biological Activities of Moroccan Spirulina Microalga. J. Food Qual. 2019, 2019, 3707219. [Google Scholar] [CrossRef] [Green Version]
- Moukette Moukette, B.; Constant Anatole, P.; Nya Biapa, C.P.; Njimou, J.R.; Ngogang, J.Y. Free Radicals Quenching Potential, Protective Properties against Oxidative Mediated Ion Toxicity and HPLC Phenolic Profile of a Cameroonian Spice: Piper Guineensis. Toxicol. Rep. 2015, 2, 792–805. [Google Scholar] [CrossRef] [Green Version]
- Soliman, E.S.; Hamad, R.T.; Abdallah, M.S. Preventive Antimicrobial Action and Tissue Architecture Ameliorations of Bacillus Subtilis in Challenged Broilers. Vet. World 2021, 14, 523–536. [Google Scholar] [CrossRef] [PubMed]
- Cobb500 Broiler Performance & Nutrition Supplement. Available online: https://www.cobb-vantress.com/en_US/products/cobb500/ (accessed on 7 June 2022).
- Mehaisen, G.M.K.; Eshak, M.G.; el Sabry, M.I.; Abass, A.O. Expression of Inflammatory and Cell Death Program Genes and Comet DNA Damage Assay Induced by Escherichia Coli in Layer Hens. PLoS ONE 2016, 11, e0158314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- da Rosa, G.; Alba, D.F.; Silva, A.D.; Miron, V.V.; Morsch, V.M.; Boiago, M.M.; Stefani, L.M.; Baldissera, M.M.; Lopes, M.T.; Mendes, R.E.; et al. Impacts of Escherichia Coli Infection in Young Breeder Chicks on the Animal Behavior and Cerebral Activity of Purinergic and Cholinergic Enzymes Involved in the Regulation of Molecules with Neurotransmitter and Neuromodulator Function. Microb. Pathog. 2020, 138, 103787. [Google Scholar] [CrossRef]
- Song, Z.; Zhao, T.; Liu, L.; Jiao, H.; Lin, H. Effect of Copper on Antioxidant Ability and Nutrient Metabolism in Broiler Chickens Stimulated by Lipopolysaccharides. Arch. Anim. Nutr. 2011, 65, 366–375. [Google Scholar] [CrossRef] [PubMed]
- Gehad, A.E.; Mehaisen, G.M.; Abbas, A.O.; Mashaly, M.M. The Role of Light Program and Melatonin on Alleviation of Inflammation Induced by Lipopolysaccharide Injection in Broiler Chickens. Int. J. Poult. Sci. 2008, 7, 193–201. [Google Scholar] [CrossRef]
- Zhang, L.; Yue, H.Y.; Zhang, H.J.; Xu, L.; Wu, S.G.; Yan, H.J.; Gong, Y.S.; Qi, G.H. Transport Stress in Broilers: I. Blood Metabolism, Glycolytic Potential, and Meat Quality. Poult. Sci. 2009, 88, 2033–2041. [Google Scholar] [CrossRef]
- Alaqil, A.A.; Abbas, A.O.; El-Beltagi, H.S.; Abd El-Atty, H.K.; Mehaisen, G.M.K.; Moustafa, E.S. Dietary Supplementation of Probiotic Lactobacillus Acidophilus Modulates Cholesterol Levels, Immune Response, and Productive Performance of Laying Hens. Animals 2020, 10, 1588. [Google Scholar] [CrossRef]
- Bhatti, S.A.; Khan, M.Z.; Saleemi, M.K.; Saqib, M.; Khan, A.; Ul-Hassan, Z. Protective Role of Bentonite against Aflatoxin B1- and Ochratoxin A-Induced Immunotoxicity in Broilers. J. Immunotoxicol. 2017, 14, 66–76. [Google Scholar] [CrossRef] [Green Version]
- Al-Khalaifah, H.S.; Al-Nasser, A.; Surrayai, T. Effects From Dietary Addition of Sargassum Sp., Spirulina Sp., or Gracilaria Sp. Powder on Immune Status in Broiler Chickens. Front. Vet. Sci. 2022, 9, 928235. [Google Scholar] [CrossRef]
- IBM SPSS Statistics 22. Available online: https://www.ibm.com/support/pages/downloading-ibm-spss-statistics-22 (accessed on 10 October 2022).
- Becskei, C.; Riediger, T.; Hernádfalvy, N.; Arsenijevic, D.; Lutz, T.A.; Langhans, W. Inhibitory Effects of Lipopolysaccharide on Hypothalamic Nuclei Implicated in the Control of Food Intake. Brain Behav. Immun. 2008, 22, 56–64. [Google Scholar] [CrossRef] [Green Version]
- Ferket, P.R.; Gernat, A.G. Factors That Affect Feed Intake of Meat Birds: A Review. Int. J. Poult. Sci. 2006, 5, 905–911. [Google Scholar] [CrossRef]
- Boratto, A.J.; Lopes, D.C.; de Oliveira, R.F.M.; Albino, L.F.T.; Sá, L.M.; de Oliveira, G.A. Uso de Antibiótico, de Probiótico e de Homeopatia Em Frangos de Corte Criados Em Ambiente de Conforto, Inoculados Ou Não Com Escherichia Coli. Rev. Bras. Zootec. 2004, 33, 1477–1485. [Google Scholar] [CrossRef] [Green Version]
- Surai, P.F.; Kochish, I.I.; Fisinin, V.I.; Kidd, M.T. Antioxidant Defence Systems and Oxidative Stress in Poultry Biology: An Update. Antioxidants 2019, 8, 235. [Google Scholar] [CrossRef] [Green Version]
- Al-Otaibi, M.I.M.; Abdellatif, H.A.M.; Al-Huwail, A.K.A.; Abbas, A.O.; Mehaisen, G.M.K.; Moustafa, E.S. Hypocholesterolemic, Antioxidative, and Anti-Inflammatory Effects of Dietary Spirulina platensisis Supplementation on Laying Hens Exposed to Cyclic Heat Stress. Animals 2022, 12, 2759. [Google Scholar] [CrossRef]
- Wu, Q.; Liu, L.; Miron, A.; Klímová, B.; Wan, D.; Kuča, K. The Antioxidant, Immunomodulatory, and Anti-Inflammatory Activities of Spirulina: An Overview. Arch. Toxicol. 2016, 90, 1817–1840. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.J.; Wang, Y.Q.; Qi, Y.X. Influence of Procyanidin Supplementation on the Immune Responses of Broilers Challenged with Lipopolysaccharide. Anim. Sci. J. 2017, 88, 983–990. [Google Scholar] [CrossRef]
- Dyson, A.; Bryan, N.S.; Fernandez, B.O.; Garcia-Saura, M.F.; Saijo, F.; Mongardon, N.; Rodriguez, J.; Singer, M.; Feelisch, M. An Integrated Approach to Assessing Nitroso-Redox Balance in Systemic Inflammation. Free. Radic. Biol. Med. 2011, 51, 1137–1145. [Google Scholar] [CrossRef]
- Sadeyen, J.R.; Kaiser, P.; Stevens, M.P.; Dziva, F. Analysis of Immune Responses Induced by Avian Pathogenic Escherichia Coli Infection in Turkeys and Their Association with Resistance to Homologous Re-Challenge. Vet. Res. 2014, 45, 19. [Google Scholar] [CrossRef] [Green Version]
- Sadeyen, J.R.; Wu, Z.; Davies, H.; van Diemen, P.M.; Milicic, A.; la Ragione, R.M.; Kaiser, P.; Stevens, M.P.; Dziva, F. Immune Responses Associated with Homologous Protection Conferred by Commercial Vaccines for Control of Avian Pathogenic Escherichia Coli in Turkeys. Vet. Res. 2015, 46, 5. [Google Scholar] [CrossRef] [Green Version]
- Finamore, A.; Palmery, M.; Bensehaila, S.; Peluso, I. Antioxidant, Immunomodulating, and Microbial-Modulating Activities of the Sustainable and Ecofriendly Spirulina. Oxid. Med. Cell. Longev. 2017, 2017, 3247528. [Google Scholar] [CrossRef] [Green Version]
- Elshabrawy, O.; Ahmed, M.; Abdel El Deim, M.; Orabi, S.; Abu-Alya, I.; ElBasuni, H. Enhancement Effect of Spirulina platensis Extract on Broiler Chicks’ Growth Performance and Immunity. J. Curr. Vet. Res. 2022, 4, 156–167. [Google Scholar] [CrossRef]
- Li, P.; Yin, Y.L.; Li, D.; Kim, W.S.; Wu, G. Amino Acids and Immune Function. Br. J. Nutr. 2007, 98, 237–252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gottardo, E.T.; Burin, Á.M., Jr.; Lemke, B.V.; Silva, A.M.; Busatta Pasa, C.L.; Muller Fernandes, J.I. Immune Response in Eimeria Sp. and E. coli Challenged Broilers Supplemented with Amino Acids. Austral J. Vet. Sci. 2017, 49, 175–184. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Moneim, A.M.E.; El-Saadony, M.T.; Shehata, A.M.; Saad, A.M.; Aldhumri, S.A.; Ouda, S.M.; Mesalam, N.M. Antioxidant and Antimicrobial Activities of Spirulina platensis Extracts and Biogenic Selenium Nanoparticles against Selected Pathogenic Bacteria and Fungi. Saudi J. Biol. Sci. 2022, 29, 1197. [Google Scholar] [CrossRef]
- Abdel-Moneim, A.M.E.; Elbaz, A.M.; Khidr, R.E.S.; Badri, F.B. Effect of in Ovo Inoculation of Bifidobacterium Spp. on Growth Performance, Thyroid Activity, Ileum Histomorphometry, and Microbial Enumeration of Broilers. Probiotics Antimicrob. Proteins 2020, 12, 873–882. [Google Scholar] [CrossRef] [PubMed]
- Abou-Kassem, D.E.; Elsadek, M.F.; Abdel-Moneim, A.E.; Mahgoub, S.A.; Elaraby, G.M.; Taha, A.E.; Elshafie, M.M.; Alkhawtani, D.M.; Abd El-Hack, M.E.; Ashour, E.A. Growth, Carcass Characteristics, Meat Quality, and Microbial Aspects of Growing Quail Fed Diets Enriched with Two Different Types of Probiotics (Bacillus Toyonensis and Bifidobacterium Bifidum). Poult. Sci. 2021, 100, 84–93. [Google Scholar] [CrossRef]
- Kuruti, K.; Nakkasunchi, S.; Begum, S.; Juntupally, S.; Arelli, V.; Anupoju, G.R. Rapid Generation of Volatile Fatty Acids (VFA) through Anaerobic Acidification of Livestock Organic Waste at Low Hydraulic Residence Time (HRT). Bioresour. Technol. 2017, 238, 188–193. [Google Scholar] [CrossRef]
Item | Contents Per 100 g SP |
---|---|
Moisture (g) | 5.6 |
Crude protein (g) | 56.4 |
Total lipids (g) | 7.2 |
Carbohydrate (g) | 14.2 |
Crude fiber (g) | 0.02 |
Total ash (g) | 7.5 |
Energy (MJ) | 43.6 |
Calcium (mg) | 436.3 |
Phosphorus (mg) | 124.5 |
Sodium (mg) | 220.1 |
Potassium (mg) | 167.8 |
Iron (mg) | 11.5 |
Zinc (mg) | 2.4 |
Total polyphenols (mg GAE/g) 1 | 22.1 |
Total flavonoids (mg QE/g) 1 | 6.7 |
Total antioxidant activity (%) 2 | 29.2 |
Essential amino acids 3 | |
Isoleucine | 6.6 g |
Leucine | 8.3 g |
Valine | 6.6 g |
Lysine | 4.8 g |
Tryptophan | 1.1 g |
Phenylalanine | 4.7 g |
Methionine | 2.4 g |
Threonine | 5.3 g |
Ingredients (g/kg as Fed) | Starter Diet | Grower Diet | Finisher Diet |
---|---|---|---|
Corn | 607.0 | 654.0 | 693.0 |
Gluten meal | 70.0 | 50.0 | 50.0 |
Soybean meal, 48% CP | 289.0 | 243.0 | 203.0 |
Soybean oil | 0.0 | 20.0 | 22.0 |
Di-calcium phosphate | 4.0 | 4.0 | 4.0 |
Limestone | 20.0 | 19.0 | 18.0 |
Salt | 4.5 | 4.5 | 4.5 |
Vitamin–Mineral Premix 1 | 5.5 | 5.5 | 5.5 |
Calculated nutrients | |||
Metabolizable energy (MJ/kg) | 12.6 | 13.1 | 13.3 |
Lysine (g/kg) | 12.1 | 11.6 | 10.4 |
Methionine (g/kg) | 4.8 | 4.7 | 4.3 |
Calcium (g/kg) | 9.1 | 8.6 | 8.1 |
None phytase phosphorus (g/kg) | 4.5 | 4.2 | 4.1 |
Determined nutrients | |||
Dry matter (g/kg) | 906.0 | 901.0 | 908.9 |
Total ash (g/kg) | 55.0 | 53.0 | 39.1 |
Crude protein (g/kg) | 229.8 | 199.8 | 184.6 |
Crude fat (g/kg) | 58.3 | 77.5 | 83.4 |
Crude fiber (g/kg) | 32.0 | 35.0 | 35.8 |
Parameters | -SP | +SP | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|---|
-EC | +EC | -EC | +EC | SP | EC | SP × EC | ||
BW22 (g) | 632.7 | 642.0 | 621.5 | 640.3 | 14.45 | 0.658 | 0.337 | 0.744 |
BW42 (g) | 2380.9 b | 1898.7 c | 2508.7 a | 2372.5 b | 17.79 | <0.001 | <0.001 | <0.001 |
BWG (g) | 1748.2 b | 1256.7 c | 1887.2 a | 1732.1 b | 20.60 | <0.001 | <0.001 | <0.001 |
FI (g) | 150.3 b | 138.0 c | 159.4 a | 162.5 a | 1.26 | <0.001 | 0.001 | <0.001 |
FCR | 1.80 c | 2.32 a | 1.77 c | 1.97 b | 0.031 | <0.001 | <0.001 | <0.001 |
Parameters | -SP | +SP | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|---|
-EC | +EC | -EC | +EC | SP | EC | SP × EC | ||
GSH (nM/mL) | 27.63 b | 20.32 c | 37.47 a | 26.04 b | 0.604 | <0.001 | <0.001 | 0.002 |
SOD (U/mL) | 6.13 b | 3.33 c | 9.53 a | 6.24 b | 0.212 | <0.001 | <0.001 | 0.249 |
CP (pg/mL) | 1.05 c | 2.17 a | 0.92 d | 1.70 b | 0.022 | <0.001 | <0.001 | <0.001 |
MDA (nM/mL) | 2.54 c | 5.33 a | 1.47 d | 3.44 b | 0.210 | <0.001 | <0.001 | 0.056 |
Parameters | -SP | +SP | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|---|
-EC | +EC | -EC | +EC | SP | EC | SP × EC | ||
TWBC (K/µL) | 55.73 b | 35.37 d | 62.66 a | 43.85 c | 1.828 | <0.001 | <0.001 | 0.675 |
H/L ratio | 0.33 c | 0.78 a | 0.33 c | 0.66 b | 0.021 | 0.007 | <0.001 | 0.010 |
TLP index | 3.71 b | 1.02 c | 5.19 a | 3.54 b | 0.169 | <0.001 | <0.001 | 0.004 |
BLP index | 2.48 b | 1.23 c | 2.90 a | 2.70 ab | 0.082 | <0.001 | <0.001 | <0.001 |
Ab titer (log2) | 8.21 b | 4.61 d | 9.01 a | 6.72 c | 0.270 | <0.001 | <0.001 | 0.020 |
Parameters | -SP | +SP | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|---|
-EC | +EC | -EC | +EC | SP | EC | SP × EC | ||
Intestinal pH | 7.14 b | 7.66 a | 5.83 d | 6.89 c | 0.060 | <0.001 | <0.001 | <0.001 |
LAB (CFU/g) * | 2.98 c | 2.56 d | 4.47 a | 3.03 b | 0.001 | <0.001 | <0.001 | <0.001 |
SLM (CFU/g) * | 1.11 c | 2.89 a | 0.03 d | 1.35 b | 0.023 | <0.001 | <0.001 | <0.001 |
EC (CFU/g) * | 7.59 b | 8.20 a | 6.81 c | 7.38 b | 0.117 | <0.001 | <0.001 | 0.861 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alaqil, A.A.; Abbas, A.O. The Effects of Dietary Spirulina platensisis on Physiological Responses of Broiler Chickens Exposed to Endotoxin Stress. Animals 2023, 13, 363. https://doi.org/10.3390/ani13030363
Alaqil AA, Abbas AO. The Effects of Dietary Spirulina platensisis on Physiological Responses of Broiler Chickens Exposed to Endotoxin Stress. Animals. 2023; 13(3):363. https://doi.org/10.3390/ani13030363
Chicago/Turabian StyleAlaqil, Abdulaziz A., and Ahmed O. Abbas. 2023. "The Effects of Dietary Spirulina platensisis on Physiological Responses of Broiler Chickens Exposed to Endotoxin Stress" Animals 13, no. 3: 363. https://doi.org/10.3390/ani13030363
APA StyleAlaqil, A. A., & Abbas, A. O. (2023). The Effects of Dietary Spirulina platensisis on Physiological Responses of Broiler Chickens Exposed to Endotoxin Stress. Animals, 13(3), 363. https://doi.org/10.3390/ani13030363