Dietary Corn Silk (Stigma maydis) Extract Supplementation Modulate Production Performance, Immune Response and Redox Balance in Corticosterone-Induced Oxidative Stress Broilers
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Corn Silk Total Phenolscontent and Phenolic Profile
2.2. Experimental Design and Birds’ General Management
2.3. Production Performance
2.4. Blood Sampling and Preparation
2.5. Redox Status and Stress Markers Evaluation
2.5.1. Plasma Total Antioxidant and Antioxidant Enzymes
2.5.2. Stress Biomarkers
2.6. Immune Response Parameters
2.6.1. TWBCs Count and H/L Ratio Determination
2.6.2. Sheep Red Blood Cells Antibody Titer
2.6.3. Peripheral T- and B-Lymphocytes Proliferation
2.6.4. Wattle Swelling Test
2.7. Economic Efficiency Calculations
2.8. Statistical Analysis
3. Results
3.1. Production Performance
3.2. Stress Markers and Redox Status
3.3. Innate and Acquired Immune Responses
3.4. Economic Efficiency
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gessner, D.K.; Ringseis, R.; Eder, K. Potential of plant polyphenols to combat oxidative stress and inflammatory processes in farm animals. J. Anim. Physiol. Anim. Nutr. 2017, 101, 605–628. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.T.; Lin, W.C.; Yu, B.; Lee, T.T. Antioxidant capacity of phytochemicals and their potential effects on oxidative status in animals—A review. Asian-Australas J. Anim. Sci. 2017, 30, 299–308. [Google Scholar] [CrossRef] [PubMed]
- Panda, A.K.; Cherian, G. Role of vitamin E in counteracting oxidative stress in poultry. J. Poult. Sci. 2014, 51, 109–117. [Google Scholar] [CrossRef] [Green Version]
- Surai, P.F.; Fisinin, V.I. Vitagenes in poultry production: Part 1. Technological and environmental stresses. Worlds Poult. Sci. J. 2016, 72, 721–733. [Google Scholar] [CrossRef]
- Surai, P.F.; Fisinin, V.I. Vitagenes in poultry production: Part 2. Nutritional and internal stresses. Worlds Poult. Sci. J. 2016, 72, 761–772. [Google Scholar] [CrossRef]
- Abo-Al-Ela, H.G.; El-Kassas, S.; El-Naggar, K.; Abdo, S.E.; Jahejo, A.R.; Al Wakeel, R.A. Stress and immunity in poultry: Light management and nanotechnology as effective immune enhancers to fight stress. Cell Stress Chaperones 2021, 26, 457–472. [Google Scholar] [CrossRef]
- Scanes, C.G. Biology of stress in poultry with emphasis on glucocorticoids and the heterophil to lymphocyte ratio. Poult. Sci. 2016, 95, 2208–2215. [Google Scholar] [CrossRef]
- Russell, G.; Lightman, S. The human stress response. Nat. Rev. Endocrinol. 2019, 15, 525–534. [Google Scholar] [CrossRef] [Green Version]
- Virden, W.S.; Kidd, M.T. Physiological stress in broilers: Ramifications on nutrient digestibility and responses. J. Appl. Poult. Res. 2009, 18, 338–347. [Google Scholar] [CrossRef]
- Yang, J.; Liu, L.; Sheikhahmadi, A.; Wang, Y.; Li, C.; Jiao, H.; Lin, H.; Song, Z. Effects of corticosterone and dietary energy on immune function of broiler chickens. PLoS ONE 2015, 10, e0119750. [Google Scholar] [CrossRef]
- Post, J.; Rebel, J.M.; ter Huurne, A.A. Physiological effects of elevated plasma corticosterone concentrations in broiler chickens. An alternative means by which to assess the physiological effects of stress. Poult. Sci. 2003, 82, 1313–1318. [Google Scholar] [CrossRef] [PubMed]
- Zaytsoff, S.J.M.; Boras, V.F.; Uwiera, R.R.E.; Inglis, G.D. A stress-induced model of acute necrotic enteritis in broiler chickens using dietary corticosterone administration. Poult. Sci. 2022, 101, 101726. [Google Scholar] [CrossRef] [PubMed]
- Mehaisen, G.M.K.; Eshak, M.G.; Elkaiaty, A.M.; Atta, A.M.M.; Mashaly, M.M.; Abass, A.O. Comprehensive growth performance, immune function, plasma biochemistry, gene expressions and cell death morphology responses to a daily corticosterone injection course in broiler chickens. PLoS ONE 2017, 12, e0172684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdel-Moneim, A.M.E.; Shehata, A.M.; Khidr, R.E.; Paswan, V.K.; Ibrahim, N.S.; El-Ghoul, A.A.; Aldhumri, S.A.; Gabr, S.A.; Mesalam, N.M.; Elbaz, A.M.; et al. Nutritional manipulation to combat heat stress in poultry-A comprehensive review. J. Therm. Biol. 2021, 98. [Google Scholar] [CrossRef] [PubMed]
- Alagawany, M.; Elnesr, S.S.; Farag, M.R.; Tiwari, R.; Yatoo, M.I.; Karthik, K.; Michalak, I.; Dhama, K. Nutritional significance of amino acids, vitamins and minerals as nutraceuticals in poultry production and health—A comprehensive review. Vet. Q. 2020, 41, 1–29. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.M.; Lee, T.T. Immunomodulatory effects of phytogenics in chickens and pigs—A review. Asian-Australas J Anim Sci 2018, 31, 617–627. [Google Scholar] [CrossRef] [Green Version]
- Pan, L.; Zhao, P.F.; Ma, X.K.; Shang, Q.H.; Long, S.F.; Wu, Y.; Wang, W.; Piao, X.S. Forsythia suspensa extract protects broilers against breast muscle oxidative injury induced by corticosterone mimicked pre-slaughter acute stress. Poult. Sci. 2018, 97, 2095–2105. [Google Scholar] [CrossRef]
- Hasanudin, K.; Hashim, P.; Mustafa, S. Corn silk (Stigma maydis) in healthcare: A phytochemical and pharmacological review. Molecules 2012, 17, 9697–9715. [Google Scholar] [CrossRef] [Green Version]
- Solihah, M.A.; Rosli, W.D.W.; Nurhanan, A.R. Phytochemicals screening and total phenolic content of Malaysian Zea mays hair extracts. Int. Food Res. J. 2012, 19, 1533–1538. [Google Scholar]
- Nawaz, H.; Muzaffar, S.; Aslam, M.; Ahmad, S. Phytochemical composition: Antioxidant potential and biological activities of corn. In Corn-Production and Human Health in Changing Climate; Amanullah, A., Fahad, S., Eds.; IntechOpen: London, UK, 2018; pp. 49–67. [Google Scholar]
- Vranjes, M.; Stajner, D.; Vranjes, D.; Blagojevic, B.; Pavlovic, K.; Milanov, D.; Popovic, B.M. Medicinal plants extracts impact on oxidative stress in mice brain under the physiological conditions: The effects of corn silk, parsley, and bearberry. ACTA Chim. Slov. 2021, 68, 896–903. [Google Scholar] [CrossRef]
- Abbas, A.O.; Alaqil, A.A.; Kamel, N.N.; Nassar, F.S. Corn silk extract: A potential modulator for producing functional low cholesterol chicken eggs. Agriculture 2023, 13, 65. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144. [Google Scholar]
- Council, N.R. Nutrient Requirements of Poultry: Ninth Revised Edition, 1994; The National Academies Press: Washington, DC, USA, 1994; p. 176. [Google Scholar]
- Gehad, A.E.; Mehaisen, G.M.; Abbas, A.O.; Mashaly, M.M. The role of light program and melatonin on alleviation of Inflammation induced by lipopolysaccharide injection in broiler chickens. Int. J. Poult. Sci. 2008, 7, 193–201. [Google Scholar] [CrossRef] [Green Version]
- Abass, A.O.; Kamel, N.N.; Khalifa, W.H.; Gouda, G.F.; El-Manylawi, M.A.F.; Mehaisen, G.M.K.; Mashaly, M.M. Propolis supplementation attenuates the negative effects of oxidative stress induced by paraquat injection on productive performance and immune function in turkey poults. Poult. Sci. 2017, 96, 4419–4429. [Google Scholar] [CrossRef] [PubMed]
- Loa, C.C.; Lin, T.L.; Wu, C.C.; Bryan, T.; Thacker, H.L.; Hooper, T.; Schrader, D. Humoral and cellular immune responses in turkey poults infected with turkey coronavirus. Poult. Sci. 2001, 80, 1416–1424. [Google Scholar] [CrossRef] [PubMed]
- Mehaisen, G.M.K.; Desoky, A.A.; Sakr, O.G.; Sallam, W.; Abass, A.O. Propolis alleviates the negative effects of heat stress on egg production, egg quality, physiological and immunological aspects of laying Japanese quail. PLoS ONE 2019, 14, e0214839. [Google Scholar] [CrossRef] [Green Version]
- Badmus, K.A.; Idrus, Z.; Meng, G.Y.; Sazili, A.Q.; Mamat-Hamidi, K. Telomere length and regulatory genes as novel stress biomarkers and their diversities in broiler chickens (Gallus gallus domesticus) subjected to corticosterone feeding. Animals 2021, 11, 2759. [Google Scholar] [CrossRef]
- Hu, X.Y.; Cai, Y.L.; Kong, L.L.; Lin, H.; Song, Z.G.; Buyse, J. Effects of dietary corticosterone on the central adenosine monophosphate-activated protein kinase (AMPK) signaling pathway in broiler chickens. J. Anim. Sci. 2020, 98, skaa202. [Google Scholar] [CrossRef]
- Abeddargahi, F.; Kuhi, H.D.; Sajedi, R.H.; Ali-Mehr, M.R.; Moghaddam, S.H.H. Effects of probiotic on immune response and intestine morphology of broiler chicks exposed to stress induced by corticosterone. Iran. J. Appl. Anim. Sci. 2020, 10, 91–102. [Google Scholar]
- Jiang, Y.; Zhang, W.H.; Gao, F.; Zhou, G.H. Micro-encapsulated sodium butyrate attenuates oxidative stress induced by corticosterone exposure and modulates apoptosis in intestinal mucosa of broiler chickens. Anim. Prod. Sci. 2015, 55, 587–594. [Google Scholar] [CrossRef]
- Ryuk, J.A.; Ko, B.S.; Moon, N.R.; Park, S. Protection against neurological symptoms by consuming corn silk water extract in artery-occluded gerbils with reducing oxidative stress, inflammation, and post-stroke hyperglycemia through the gut-brain axis. Antioxidants 2022, 11, 168. [Google Scholar] [CrossRef] [PubMed]
- Korver, D.R. Implications of changing immune function through nutrition in poultry. Anim. Feed Sci. Technol. 2012, 173, 54–64. [Google Scholar] [CrossRef]
- Lavoie, E.T. Avian immunosenescence. Age (Dordr) 2005, 27, 281–285. [Google Scholar] [CrossRef] [PubMed]
- Lillehoj, H.S.; Lee, K.W. Immune modulation of innate immunity as alternatives-to-antibiotics strategies to mitigate the use of drugs in poultry production. Poult. Sci. 2012, 91, 1286–1291. [Google Scholar] [CrossRef] [PubMed]
- Erf, G.F. Cell-mediated immunity in poultry. Poult. Sci. 2004, 83, 580–590. [Google Scholar] [CrossRef]
- Jones, M.P. Avian Hematology. Clin. Lab. Med. 2015, 35, 649–659. [Google Scholar] [CrossRef]
- Puvadolpirod, S.; Thaxton, J.P. Model of physiological stress in chickens 1. Response parameters. Poult Sci 2000, 79, 363–369. [Google Scholar] [CrossRef]
- Maxwell, M.H.; Robertson, G.W. The avian heterophil leucocyte: A review. World´S Poult. Sci. J. 1998, 54, 155–178. [Google Scholar] [CrossRef]
- Kaab, H.; Bain, M.M.; Eckersall, P.D. Acute phase proteins and stress markers in the immediate response to a combined vaccination against Newcastle disease and infectious bronchitis viruses in specific pathogen free (SPF) layer chicks. Poult. Sci. 2018, 97, 463–469. [Google Scholar] [CrossRef]
- Kamel, N.N.; Ahmed, A.M.H.; Mehaisen, G.M.K.; Mashaly, M.M.; Abass, A.O. Depression of leukocyte protein synthesis, immune function and growth performance induced by high environmental temperature in broiler chickens. Int. J. Biometeorol. 2017, 61, 1637–1645. [Google Scholar] [CrossRef]
- Ducatelle, R.; Goossens, E.; De Meyer, F.; Eeckhaut, V.; Antonissen, G.; Haesebrouck, F.; Van Immerseel, F. Biomarkers for monitoring intestinal health in poultry: Present status and future perspectives. Vet. Res. 2018, 49, 43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Criado-Mesas, L.; Abdelli, N.; Noce, A.; Farre, M.; Perez, J.F.; Sola-Oriol, D.; Martin-Venegas, R.; Forouzandeh, A.; Gonzalez-Sole, F.; Folch, J.M. Transversal gene expression panel to evaluate intestinal health in broiler chickens in different challenging conditions. Sci. Rep. 2021, 11, 6315. [Google Scholar] [CrossRef] [PubMed]
- Ito, F.; Sono, Y.; Ito, T. Measurement and clinical significance of lipid peroxidation as a biomarker of oxidative stress: Oxidative stress in diabetes, atherosclerosis, and chronic inflammation. Antioxidants 2019, 8, 72. [Google Scholar] [CrossRef]
- Hu, Q.L.; Deng, Z.H. Protective effects of flavonoids from corn silk on oxidative stress induced by exhaustive exercise in mice. Afr. J. Biotechnol. 2011, 10, 3163–3167. [Google Scholar] [CrossRef] [Green Version]
- Najafi, P.; Zulkifli, I.; Soleimani, A.F. Inhibition of corticosterone synthesis and its effect on acute phase proteins, heat shock protein 70, and interleukin-6 in broiler chickens subjected to feed restriction. Poult. Sci. 2018, 97, 1441–1447. [Google Scholar] [CrossRef]
- Mahmoud, K.Z.; Edens, F.W.; Eisen, E.J.; Havenstein, G.B. Ascorbic acid decreases heat shock protein 70 and plasma corticosterone response in broilers (Gallus gallus domesticus) subjected to cyclic heat stress. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2004, 137, 35–42. [Google Scholar] [CrossRef]
- Zulkifli, I.; Najafi, P.; Nurfarahin, A.J.; Soleimani, A.F.; Kumari, S.; Aryani, A.A.; O´Reilly, E.L.; Eckersall, P.D. Acute phase proteins, interleukin 6, and heat shock protein 70 in broiler chickens administered with corticosterone. Poult. Sci. 2014, 93, 3112–3118. [Google Scholar] [CrossRef]
- Tian, S.; Sun, Y.; Chen, Z. Extraction of flavonoids from corn silk and biological activities in vitro. J. Food Qual. 2021, 2021, 7390425. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, Y.; Wang, Z. Extraction optimization of polysaccharides from corn silk and their antioxidant activities in vitro and in vivo. Front. Pharmacol. 2021, 12, 738150. [Google Scholar] [CrossRef]
- Semwal, D.K.; Semwal, R.B.; Combrinck, S.; Viljoen, A. Myricetin: A dietary molecule with diverse biological activities. Nutrients 2016, 8, 90. [Google Scholar] [CrossRef] [Green Version]
- Yeh, C.-H.; Yang, J.-J.; Yang, M.-L.; Li, Y.-C.; Kuan, Y.-H. Rutin decreases lipopolysaccharide-induced acute lung injury via inhibition of oxidative stress and the MAPK–NF-κB pathway. Free Radic. Biol. Med. 2014, 69, 249–257. [Google Scholar] [CrossRef] [PubMed]
- Ganeshpurkar, A.; Saluja, A.K. The pharmacological potential of rutin. Saudi Pharm. J. 2017, 25, 149–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zduńska, K.; Dana, A.; Kolodziejczak, A.; Rotsztejn, H. Antioxidant properties of ferulic acid and its possible application. Ski. Pharmacol. Physiol. 2018, 31, 332–336. [Google Scholar] [CrossRef] [PubMed]
- Srinivasulu, C.; Ramgopal, M.; Ramanjaneyulu, G.; Anuradha, C.M.; Suresh Kumar, C. Syringic acid (SA)—A review of its occurrence, biosynthesis, pharmacological and industrial importance. Biomed. Pharmacother. 2018, 108, 547–557. [Google Scholar] [CrossRef] [PubMed]
Phenolic Compound | Amount * |
---|---|
Myricetin | 60.14 |
Chlorogenic acid | 42.85 |
Rutin | 33.35 |
Ferulic | 31.71 |
Syringic acid | 24.52 |
o-Cumaric | 7.11 |
Quercetin | 2.37 |
p-hydroxybenzoic | 1.20 |
Cinnamic | 1.14 |
Kaempferol | 0.85 |
p-Coumaric | 0.58 |
Total phenols ** | 460.50 |
Ingredients | g/kg |
---|---|
Corn | 626 |
Gluten meal | 20.0 |
Soybean meal, 48% | 292 |
Soya oil | 25.0 |
Di-calcium phosphate | 16.5 |
Limestone | 7.00 |
Salt | 4.50 |
Premix * | 5.00 |
L-threonine | 0.50 |
DL-methionine | 0.80 |
L-lysine | 1.70 |
Choline chloride | 0.20 |
3-Phytase | 0.80 |
Calculated analysis | |
Calcium | 8.48 |
Phosphorus | 4.21 |
DL-methionine | 5.68 |
L-lysine | 11.00 |
Sodium | 1.40 |
Chemical analysis | |
Metabolizable energy, kcal/kg | 3150 |
Crude protein, % | 20.2 |
Crude fat, % | 5.88 |
Ash, % | 0.56 |
Parameter | Non-Stress | CORT-Induced Stress | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|---|
−CSE | +CSE | −CSE | +CSE | CSE | CORT | CSE × CORT | ||
Intial BW, g | 731.4 | 741.4 | 738.6 | 729.3 | 18.36 | 0.9846 | 0.8928 | 0.6042 |
Final BW, g | 2059 a | 2113 a | 1374 c | 1749 b | 42.94 | <0.0001 | <0.0001 | 0.0010 |
DWG, g | 94.80 a | 97.96 a | 45.36 c | 72.81 b | 3.44 | 0.0002 | <0.0001 | 0.0017 |
FI, g | 2121 | 2179 | 1901 | 2141 | 117.2 | 0.2161 | 0.2823 | 0.4413 |
FCR | 1.60 c | 1.58 c | 2.98 a | 2.10 b | 0.07 | <0.0001 | <0.0001 | <0.0001 |
Parameter | Non-Stress | CORT-Induced Stress | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|---|
−CSE | +CSE | −CSE | +CSE | CSE | CORT | CSE × CORT | ||
MDA, nmol/mL | 1.02 c | 0.97 c | 4.69 a | 2.66 b | 0.18 | <0.0001 | <0.0001 | <0.0001 |
TNF-α, pg/mL | 93.7 c | 85.0 c | 185.6 a | 160.7 b | 4.90 | 0.0022 | <0.0001 | 0.1125 |
HSP-70, ng/mL | 25.43 c | 21.71 c | 84.71 a | 52.71 b | 2.95 | <0.0001 | <0.0001 | <0.0001 |
CORT, ng/mL | 4.43 c | 4.16 c | 8.63 a | 6.50 b | 0.25 | <0.0001 | <0.0001 | 0.0009 |
SOD, U/mL | 4.92 b | 5.87 a | 2.92 d | 3.55 c | 0.19 | 0.0003 | <0.0001 | 0.4022 |
GST, U/mL | 4.73 a | 5.17 a | 3.11 c | 4.04 b | 0.17 | 0.0004 | <0.0001 | 0.1508 |
GSH, μg/mL | 0.73 b | 0.86 a | 0.56 c | 0.61 c | 0.02 | 0.0010 | <0.0001 | 0.1058 |
TAC, U/mL | 8.75 b | 12.01 a | 5.44 d | 6.72 c | 0.41 | <0.0001 | <0.0001 | 0.0227 |
Items | Non-Stress | CORT-Induced Stress | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|---|
−CSE | +CSE | −CSE | +CSE | CSE | CORT | CSE × CORT | ||
TWBCs, × 103/mL | 49.01 b | 55.52 a | 26.91 d | 35.64 c | 1.64 | 0.0001 | <0.0001 | 0.5049 |
H/L ratio | 0.40 c | 0.31 c | 0.92 a | 0.63 b | 0.04 | <0.0001 | <0.0001 | 0.0081 |
SI T-lymphocytes | 4.98 b | 5.90 a | 2.52 c | 3.05 c | 0.23 | 0.0046 | <0.0001 | 0.4204 |
SI B-Lymphocytes | 2.81 a | 3.15 a | 0.87 c | 1.79 b | 0.12 | <0.0001 | <0.0001 | 0.0240 |
SRBC, log2 | 7.7 a | 8.1 a | 3.7 c | 5.1 b | 0.29 | 0.0043 | <0.0001 | 0.1025 |
Wattle thickness, mm | 0.34 b | 0.47 a | 0.25 d | 0.31 c | 0.01 | <0.0001 | <0.0001 | 0.0011 |
Economic Values | Non-Stress | CORT-Induced Stress | ||
−CSE | +CSE | −CSE | +CSE | |
Economic Input | ||||
Price/kg feed | 2 | 2 | 2 | 2 |
Chicks price | 4.5 | 4.5 | 4.5 | 4.5 |
Feeding cost/bird | 6.136 | 5.904 | 5.574 | 6.398 |
Labor cost/bird | 0.175 | 0.175 | 0.175 | 0.175 |
Water cost/bird | 5.96 | 5.96 | 5.96 | 5.96 |
Transportation cost/bird | 0.21 | 0.21 | 0.21 | 0.21 |
Vaccine and medication cost/bird | 1.13 | 1.13 | 1.13 | 1.13 |
Total cost/bird | 18.111 | 17.879 | 17.549 | 18.373 |
Economic Output | ||||
Chicken price/bird | 22.638 | 23.232 | 15.752 | 19.228 |
Manure revenue/bird | 0.55 | 0.55 | 0.55 | 0.55 |
Total revenue/bird | 23.188 | 23.782 | 16.302 | 19.778 |
Profit/bird | 5.077 | 5.903 | −1.247 | 1.405 |
Economic efficiency | 0.28 | 0.33 | −0.07 | 0.08 |
Relative economic efficiency | 100 | 117.8 | −25.3 | 27.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nassar, F.S.; Alsahlawi, A.M.; Abdellatif, H.A.E.; Kamel, N.N.; Abbas, A.O. Dietary Corn Silk (Stigma maydis) Extract Supplementation Modulate Production Performance, Immune Response and Redox Balance in Corticosterone-Induced Oxidative Stress Broilers. Animals 2023, 13, 441. https://doi.org/10.3390/ani13030441
Nassar FS, Alsahlawi AM, Abdellatif HAE, Kamel NN, Abbas AO. Dietary Corn Silk (Stigma maydis) Extract Supplementation Modulate Production Performance, Immune Response and Redox Balance in Corticosterone-Induced Oxidative Stress Broilers. Animals. 2023; 13(3):441. https://doi.org/10.3390/ani13030441
Chicago/Turabian StyleNassar, Farid S., Abdulaziz M. Alsahlawi, Hasan A. E. Abdellatif, Nancy N. Kamel, and Ahmed O. Abbas. 2023. "Dietary Corn Silk (Stigma maydis) Extract Supplementation Modulate Production Performance, Immune Response and Redox Balance in Corticosterone-Induced Oxidative Stress Broilers" Animals 13, no. 3: 441. https://doi.org/10.3390/ani13030441
APA StyleNassar, F. S., Alsahlawi, A. M., Abdellatif, H. A. E., Kamel, N. N., & Abbas, A. O. (2023). Dietary Corn Silk (Stigma maydis) Extract Supplementation Modulate Production Performance, Immune Response and Redox Balance in Corticosterone-Induced Oxidative Stress Broilers. Animals, 13(3), 441. https://doi.org/10.3390/ani13030441