Solid-State Fermentation of Plant Feedstuff Mixture Affected the Physiological Responses of European Seabass (Dicentrarchus labrax) Reared at Different Temperatures and Subjected to Salinity Oscillation
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Solid-State Fermentation
2.2. Experimental Diets
2.3. Fish and Experimental Facilities
2.4. Experimental Design
2.5. Sampling
2.6. Growth Performance Parameters
2.7. Digestive Enzymes Activities
2.8. Oxidative Stress Indicators
2.9. Innate Immune Indicators
2.10. Statistical Analyses
3. Results
3.1. Growth Performance
3.2. Digestive Enzyme Activities
3.3. Oxidative Stress Indicators
3.4. Humoral Innate Immune Parameters
4. Discussion
4.1. Growth Performance
4.2. Digestive Enzymes
4.3. Oxidative Stress: Enzymatic and Non-Enzymatic Parameters
4.4. Humoral Innate Immunity
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- IPCC. Climate Change 2022: Impacts, Adaptation and Vulnerability; Cambridge University Press: Cambridge, UK, 2022.
- Cheng, L.; Trenberth, K.E.; Gruber, N.; Abraham, J.P.; Fasullo, J.T.; Li, G.; Mann, M.E.; Zhao, X.; Zhu, J. Improved Estimates of Changes in Upper Ocean Salinity and the Hydrological Cycle. J. Clim. 2020, 33, 10357–10381. [Google Scholar] [CrossRef]
- Barange, M.; Bahri, T.; Beveridge, M.; Cochrane, K.; Funge-Smith, S.; Poulain, F. Impacts of Climate Change on Fisheries and Aquaculture. Synthesis of Current Knowledge, Adaptation, and Mitigation Options; Food and Agriculture Organization: Rome, Italy, 2018. [Google Scholar]
- Brander, K.; Cochrane, K.; Barange, M.; Soto, D. Climate Change Implications for Fisheries and Aquaculture. In Climate Change Impacts on Fisheries and Aquaculture; Organization of the United Nations: Rome, Italy, 2017; pp. 45–62. [Google Scholar]
- Reynolds, W.W.; Casterlin, M.E. Behavioral Thermoregulation and the “Final Preferendum” Paradigm. Am. Zool. 2015, 19, 211–224. [Google Scholar] [CrossRef]
- Kamunde, C.; Sappal, R.; Melegy, T.M. Brown seaweed (AquaArom) supplementation increases food intake and improves growth, antioxidant status and resistance to temperature stress in Atlantic salmon, Salmo salar. PLoS ONE 2019, 14, e0219792. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huey, R.B.; Stevenson, R.D. Integrating Thermal Physiology and Ecology of Ectotherms: A Discussion of Approaches. Am. Zool. 2015, 19, 357–366. [Google Scholar] [CrossRef] [Green Version]
- Conides, A.; Glamuzina, B.; Papaconstantinou, C. Laboratory simulation of the effects of environmental salinity on wild-caught juveniles of European sea bass, Dicentrarchus labrax and gilthead seabream, Sparus aurata. J. Fish Biol. 2004, 65, 327–328. [Google Scholar] [CrossRef]
- Lambert, Y.; Dutil, J.-D.; Munro, J. Effects of Intermediate and Low Salinity Conditions on Growth Rate and Food Conversion of Atlantic Cod (Gadus morhua). Can. J. Fish. Aquat. Sci. 2011, 51, 1569–1576. [Google Scholar] [CrossRef]
- Boeuf, G.; Payan, P. How should salinity influence fish growth? Comp. Biochem. Physiol. C Toxicol. Pharm. 2001, 130, 411–423. [Google Scholar] [CrossRef]
- Eskandari, G.; Saghavi, H.; Zabayeh Najafabadi, M.; Dehghan Madiseh, S.; Koochaknejad, E. Effect of salinity on reproductive performance of Acanthopagrus latus (Houttuyn) in spawning tanks. Aquac. Res. 2013, 44, 588–595. [Google Scholar] [CrossRef]
- Moutou, K.; Panagiota, P.; Mamuris, Z. Effects of salinity on digestive protease activity in the euryhaline sparid Sparus aurata L.: A preliminary study. Aquac. Res. 2004, 35, 912–914. [Google Scholar] [CrossRef]
- Mozanzadeh, M.T.; Safari, O.; Oosooli, R.; Mehrjooyan, S.; Najafabadi, M.Z.; Hoseini, S.J.; Saghavi, H.; Monem, J. The effect of salinity on growth performance, digestive and antioxidant enzymes, humoral immunity and stress indices in two euryhaline fish species: Yellowfin seabream (Acanthopagrus latus) and Asian seabass (Lates calcarifer). Aquaculture 2021, 534, 736329. [Google Scholar] [CrossRef]
- Petitjean, Q.; Jean, S.; Gandar, A.; Côte, J.; Laffaille, P.; Jacquin, L. Stress responses in fish: From molecular to evolutionary processes. Sci. Total Environ. 2019, 684, 371–380. [Google Scholar] [CrossRef] [PubMed]
- Vargas-Chacoff, L.; Arjona, F.J.; Ruiz-Jarabo, I.; García-Lopez, A.; Flik, G.; Mancera, J.M. Water temperature affects osmoregulatory responses in gilthead sea bream (Sparus aurata L.). J. Therm. Biol. 2020, 88, 102526. [Google Scholar] [CrossRef] [PubMed]
- Larsson, S. Thermal preference of Arctic charr, Salvelinus alpinus, and brown trout, Salmo trutta—Implications for their niche segregation. Environ. Biol. Fishes 2005, 73, 89–96. [Google Scholar] [CrossRef]
- Fabbri, E.; Moon, T.W. Adrenergic signaling in teleost fish liver, a challenging path. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2016, 199, 74–86. [Google Scholar] [CrossRef]
- Donaldson, M.R.; Cooke, S.J.; Patterson, D.A.; Macdonald, J.S. Cold shock and fish. J. Fish Biol. 2008, 73, 1491–1530. [Google Scholar] [CrossRef]
- Tort, L. Stress and immune modulation in fish. Dev. Comp. Immunol. 2011, 35, 1366–1375. [Google Scholar] [CrossRef]
- Hardy, R.W. Utilization of plant proteins in fish diets: Effects of global demand and supplies of fishmeal. Aquac. Res. 2010, 41, 770–776. [Google Scholar] [CrossRef]
- Bandara, T. Alternative feed ingredients in aquaculture: Opportunities and challenges. J. Entomol. Zool. Stud. 2018, 6, 3087–3094. [Google Scholar]
- Magalhães, R.; Díaz-Rosales, P.; Diógenes, A.; Enes, P.; Oliva-Teles, A.; Peres, H. Improved digestibility of plant ingredient-based diets for European seabass (Dicentrarchus labrax) with exogenous enzyme supplementation. Aquac. Nutr. 2018, 24, 1287–1295. [Google Scholar] [CrossRef]
- Pandey, A.; Soccol, C.R.; Mitchell, D. New developments in solid state fermentation: I-bioprocesses and products. Process. Biochem. 2000, 35, 1153–1169. [Google Scholar] [CrossRef]
- Hölker, U.; Höfer, M.; Lenz, J. Biotechnological advantages of laboratory-scale solid-state fermentation with fungi. Appl. Microbiol. Biotechnol. 2004, 64, 175–186. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, K.F.; Mogensen, J.M.; Johansen, M.; Larsen, T.O.; Frisvad, J.C. Review of secondary metabolites and mycotoxins from the Aspergillus niger group. Anal. Bioanal. Chem. 2009, 395, 1225–1242. [Google Scholar] [CrossRef] [PubMed]
- Membrillo Venegas, I.; Fuentes-Hernández, J.; García-Rivero, M.; Martínez-Trujillo, A. Characteristics of Aspergillus niger xylanases produced on rice husk and wheat bran in submerged culture and solid-state fermentation for an applicability proposal. Int. J. Food Sci. Technol. 2013, 48, 1798–1807. [Google Scholar] [CrossRef]
- Pothiraj, C.; Balaji, P.; Eyini, M. Enhanced production of cellulase by various fungal cultures in solid state fermentation of cassava waste. Afr. J. Biotechnol. 2010, 5, 1882–1885. [Google Scholar]
- Filipe, D.; Fernandes, H.; Castro, C.; Peres, H.; Oliva-Teles, A.; Belo, I.; Salgado, J. Improved lignocellulolytic enzyme production and antioxidant extraction using solid-state fermentation of olive pomace mixed with winery waste. Biofuels Bioprod. Biorefining 2019, 14, 78–91. [Google Scholar] [CrossRef] [Green Version]
- Schuster, E.; Dunn-Coleman, N.; Frisvad, J.; van Dijck, P. On the safety of Aspergillus niger – a review. Appl. Microbiol. Biotechnol. 2002, 59, 426–435. [Google Scholar] [CrossRef]
- Vattem, D.; Lin, Y.T.; Labbe, R.; Shetty, K. Phenolic antioxidant mobilization in cranberry pomace by solid-state bioprocessing using food grade fungus Lentinus edodes and effect on antimicrobial activity against select food borne pathogens. Innov. Food Sci. Emerg. Technol. 2004, 5, 81–91. [Google Scholar] [CrossRef]
- Chebaibi, S.; Leriche Grandchamp, M.; Burgé, G.; Clément, T.; Allais, F.; Laziri, F. Improvement of protein content and decrease of anti-nutritional factors in olive cake by solid-state fermentation: A way to valorize this industrial by-product in animal feed. J. Biosci. Bioeng. 2019, 128, 384–390. [Google Scholar] [CrossRef]
- Vandenberghe, L.P.S.; Pandey, A.; Carvalho, J.C.; Letti, L.A.J.; Woiciechowski, A.L.; Karp, S.G.; Thomaz-Soccol, V.; Martínez-Burgos, W.J.; Penha, R.O.; Herrmann, L.W.; et al. Solid-state fermentation technology and innovation for the production of agricultural and animal feed bioproducts. Syst. Microbiol. Biomanufacturing 2021, 1, 142–165. [Google Scholar] [CrossRef]
- El Enshasy, H.A.; Hatti-Kaul, R. Mushroom immunomodulators: Unique molecules with unlimited applications. Trends Biotechnol. 2013, 31, 668–677. [Google Scholar] [CrossRef]
- Uluköy, G.; Baba, E.; Öntaş, C. Effect of Oyster Mushroom, Pleurotus ostreatus, Extract on Hemato-Immunological Parameters of Rainbow Trout, Oncorhynchus mykiss. J. World Aquac. Soc. 2016, 47, 676–684. [Google Scholar] [CrossRef]
- Collares-Pereira, M.; Ribeiro, F.; Domingos, I.; Almeida, P.; Gante, H. Guia dos Peixes de Água Doce e Migradores de Portugal Continental; Afrontamento, E., Ed.; Edições Afrontamento: Porto, Portugal, 2021. [Google Scholar]
- Yılmaz, H.A.; Turkmen, S.; Kumlu, M.; Eroldogan, T.; Dülger Perker, N. Alteration of Growth and Temperature Tolerance of European Sea Bass (Dicentrarchus labrax Linnaeus 1758) in Different Temperature and Salinity Combinations. Turk. J. Fish. Aquat. Sci. 2020, 2020, 331–340. [Google Scholar] [CrossRef]
- Claireaux, G.; Lagardère, J.P. Influence of temperature, oxygen and salinity on the metabolism of the European sea bass. J. Sea Res. 1999, 42, 157–168. [Google Scholar] [CrossRef]
- Person-Le Ruyet, J.; Mahé, K.; le Bayon, N.; le Delliou, H. Effects of temperature on growth and metabolism in a Mediterranean population of European sea bass, Dicentrarchus labrax. Aquaculture 2004, 237, 269–280. [Google Scholar] [CrossRef] [Green Version]
- Hough, C. Regional Review on Status and Trends in Aquaculture Development in Europe—2020; Food and Agriculture Organization: Rome, Italy, 2022. [Google Scholar] [CrossRef]
- Association of Official Agricultural Chemist. Official Methods of Analysis. Association of Official Analytical Chemists; Association of Official Agricultural Chemist: Washington, DC, USA, 2000. [Google Scholar]
- Rungruangsak-Torrissen, K. Digestive efficiency, growth and qualities of muscle and oocyte in Atlantic salmon (Salmo salar L.) fed on diets with krill meal as an alternative protein source. J. Food Biochem. 2007, 31, 509–540. [Google Scholar] [CrossRef]
- Bernfeld, P. Enzymes of Starch Degradation and Synthesis. Adv. Enzym. Relat. Subj. Biochem. 1951, 12, 379–428. [Google Scholar]
- Winkler, U.K.; Stuckmann, M. Glycogen, Hyaluronate, and Some Other Polysaccharides Greatly Enhance the Formation of Exolipase by Serratia-Marcescens. J. Bacteriol. 1979, 138, 663–670. [Google Scholar] [CrossRef] [Green Version]
- Rungruangsak-Torrissen, K.; Male, R. Trypsin Isozymes: Development, Digestion and Structure; CRC Press: Boca Raton, FL, USA, 2000; pp. 215–269. [Google Scholar]
- Torrissen, K.R. Characterization of proteases in the digestive tract of atlantic salmon (Salmo salar) in comparison with rainbow trout (Salmo gairdneri). Comp. Biochem. Physiol. B 1984, 77, 669–674. [Google Scholar] [CrossRef] [Green Version]
- Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef]
- Ohkawa, H.; Ohishi, N.; Yagi, K. Assay for Lipid Peroxides in Animal-Tissues by Thiobarbituric Acid Reaction. Anal. Biochem. 1979, 95, 351–358. [Google Scholar] [CrossRef]
- Claiborne, A. Catalase activity. In CRC Handbook of Methods for Oxygen Radical Research; CRC Press: Boca Raton, FL, USA, 2018; pp. 283–284. [Google Scholar]
- Habig, W.H.; Pabst, M.J.; Jakoby, W.B. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J. Biol. Chem. 1974, 249, 7130–7139. [Google Scholar] [CrossRef] [PubMed]
- Mohandas, J.; Marshall, J.J.; Duggin, G.G.; Horvath, J.S.; Tiller, D.J. Differential distribution of glutathione and glutathione-related enzymes in rabbit kidney. Possible implications in analgesic nephropathy. Biochem. Pharm. 1984, 33, 1801–1807. [Google Scholar] [CrossRef] [PubMed]
- Cribb, A.E.; Leeder, J.S.; Spielberg, S.P. Use of a Microplate Reader in an Assay of Glutathione-Reductase Using 5,5′-Dithiobis(2-Nitrobenzoic Acid). Anal. Biochem. 1989, 183, 195–196. [Google Scholar] [CrossRef]
- Baker, M.A.; Cerniglia, G.J.; Zaman, A. Microtiter Plate Assay for the Measurement of Glutathione and Glutathione Disulfide in Large Numbers of Biological Samples. Anal. Biochem. 1990, 190, 360–365. [Google Scholar] [CrossRef]
- Guardiola, F.A.; Cuesta, A.; Abellán, E.; Meseguer, J.; Esteban, M.A. Comparative analysis of the humoral immunity of skin mucus from several marine teleost fish. Fish Shellfish Immunol. 2014, 40, 24–31. [Google Scholar] [CrossRef] [PubMed]
- Valero, Y.; Garcia-Alcazar, A.; Esteban, M.A.; Cuesta, A.; Chaves-Pozo, E. Seasonal variations of the humoral immune parameters of European sea bass (Dicentrarchus labrax L.). Fish Shellfish Immunol. 2014, 39, 185–187. [Google Scholar] [CrossRef]
- Cuesta, A.; Esteban, M.A.; Meseguer, J. Cloning, distribution and up-regulation of the teleost fish MHC class II alpha suggests a role for granulocytes as antigen-presenting cells. Mol. Immunol. 2006, 43, 1275–1285. [Google Scholar] [CrossRef]
- Quade, M.J.; Roth, J.A. A rapid, direct assay to measure degranulation of bovine neutrophil primary granules. Vet. Immunol. Immunopathol. 1997, 58, 239–248. [Google Scholar] [CrossRef]
- Sunyer, J.O.; Tort, L. Natural Hemolytic and Bactericidal Activities of Sea Bream Sparus-Aurata Serum Are Effected by the Alternative Complement Pathway. Vet. Immunol. Immunopathol. 1995, 45, 333–345. [Google Scholar] [CrossRef]
- Das, K.; Mohanty, S.; Sahoo, P.K.; Das, R.; Sahoo, L.; Swain, P. Effect of Solid-state Fermented Aquafeed on Growth Performance, Digestive Enzymes and Innate Immunity of Rohu, Labeo rohita. Agric. Sci. Dig. A Res. J. 2021, 10, 484–491. [Google Scholar] [CrossRef]
- Ghosh, K.; Mandal, S. Nutritional evaluation of groundnut oil cake in formulated diets for rohu, Labeo rohita (Hamilton) fingerlings after solid state fermentation with a tannase producing yeast, Pichia kudriavzevii (GU939629) isolated from fish gut. Aquac. Rep. 2015, 2, 82–90. [Google Scholar] [CrossRef] [Green Version]
- Hassaan, M.S.; Goda, A.M.A.-S.; Kumar, V. Evaluation of nutritive value of fermented de-oiled physic nut, Jatropha curcas, seed meal for Nile tilapia Oreochromis niloticus fingerlings. Aquac. Nutr. 2017, 23, 571–584. [Google Scholar] [CrossRef]
- Davies, S.J.; El-Haroun, E.R.; Hassaan, M.S.; Bowyer, P.H. A Solid-State Fermentation (SSF) supplement improved performance, digestive function and gut ultrastructure of rainbow trout (Oncorhynchus mykiss) fed plant protein diets containing yellow lupin meal. Aquaculture 2021, 545, 737177. [Google Scholar] [CrossRef]
- Fernandes, H.; Martins, N.; Vieira, L.; Salgado, J.M.; Castro, C.; Oliva-Teles, A.; Belo, I.; Peres, H. Pre-treatment of Ulva rigida improves its nutritional value for European seabass (Dicentrarchus labrax) juveniles. Algal Res. 2022, 66, 102803. [Google Scholar] [CrossRef]
- Moniruzzaman, M.; Bae, J.H.; Won, S.H.; Cho, S.J.; Chang, K.H.; Bai, S.C. Evaluation of solid-state fermented protein concentrates as a fish meal replacer in the diets of juvenile rainbow trout, Oncorhynchus mykiss. Aquac. Nutr. 2018, 24, 1198–1212. [Google Scholar] [CrossRef]
- Chiou, P.W.-S.; Chiu, S.; Chen, C.-R. Value of Aspergillus niger fermentation product as a dietary ingredient for broiler chickens. Anim. Feed Sci. Technol. 2001, 91, 171–182. [Google Scholar] [CrossRef]
- Volkoff, H.; Rønnestad, I. Effects of temperature on feeding and digestive processes in fish. Temperature 2020, 7, 307–320. [Google Scholar] [CrossRef]
- Pereira, L.F.; Peixoto, M.J.; Carvalho, P.; Sansuwan, K.; Santos, G.A.; Gonçalves, J.F.M.; Ozório, R.O.A. Cross-effects of dietary probiotic supplementation and rearing temperature on growth performance, digestive enzyme activities, cumulative mortality and innate immune response in seabass (Dicentrarchus labrax). Aquac. Nutr. 2018, 24, 453–460. [Google Scholar] [CrossRef]
- Zhou, C.; Zhang, Z.-Q.; Zhang, L.; Liu, Y.; Liu, P.-F. Effects of temperature on growth performance and metabolism of juvenile sea bass (Dicentrarchus labrax). Aquaculture 2021, 537, 736458. [Google Scholar] [CrossRef]
- Dumas, A.; France, J.; Bureau, D.P. Evidence of three growth stanzas in rainbow trout (Oncorhynchus mykiss) across life stages and adaptation of the thermal-unit growth coefficient. Aquaculture 2007, 267, 139–146. [Google Scholar] [CrossRef]
- Guerreiro, I.; Peres, H.; Castro, C.; Pérez-Jiménez, A.; Castro-Cunha, M.; Oliva-Teles, A. Water temperature does not affect protein sparing by dietary carbohydrate in Senegalese sole (Solea senegalensis) juveniles. Aquac. Res. 2014, 45, 289–298. [Google Scholar] [CrossRef]
- Dendrinos, P.; Thorpe, J.P. Effects of reduced salinity on growth and body composition in the European bass Dicentrarchus labrax (L.). Aquaculture 1985, 49, 333–358. [Google Scholar] [CrossRef]
- Saillant, E.; Fostier, A.; Haffray, P.; Menu, B.; Chatain, B. Saline preferendum for the European sea bass, Dicentrarchus labrax, larvae and juveniles: Effect of salinity on early development and sex determination. J. Exp. Mar. Biol. Ecol. 2003, 287, 103–117. [Google Scholar] [CrossRef]
- Eroldogan, T.; Kumlu, M. Growth performance, body traits and fillet composition of the European sea bass (Dicentrarchus labrax) reared in various salinities and fresh water. Turk. J. Vet. Anim. Sci. 2002, 26, 993–1001. [Google Scholar]
- Johnson, D.W.; Katavic, I. Survival and growth of sea bass (Dicentrarchus labrax) larvae as influenced by temperature, salinity, and delayed initial feeding. Aquaculture 1986, 52, 11–19. [Google Scholar] [CrossRef]
- Mylonas, C.C.; Pavlidis, M.; Papandroulakis, N.; Zaiss, M.M.; Tsafarakis, D.; Papadakis, I.E.; Varsamos, S. Growth performance and osmoregulation in the shi drum (Umbrina cirrosa) adapted to different environmental salinities. Aquaculture 2009, 287, 203–210. [Google Scholar] [CrossRef]
- Ordóñez-Grande, B.; Guerreiro, P.M.; Sanahuja, I.; Fernández-Alacid, L.; Ibarz, A. Environmental Salinity Modifies Mucus Exudation and Energy Use in European Sea Bass Juveniles. Animals 2021, 11, 1580. [Google Scholar] [CrossRef]
- Feng, C.; Tian, X.; Dong, S.; Su, Y.; Wang, F.; Ma, S. Effects of frequency and amplitude of salinity fluctuation on the growth and energy budget of juvenile Litopenaeus vannamei (Boone). Aquac. Res. 2008, 39, 1639–1646. [Google Scholar] [CrossRef]
- Konstantinov, A.S.; Pushkar, V.Y.; Aver’yanova, O.V. Effects of Fluctuations of Abiotic Factors on the Metabolism of Some Hydrobionts. Biol. Bull. Russ. Acad. Sci. 2003, 30, 610–616. [Google Scholar] [CrossRef]
- Khairnar, S.O.; Tian, X.; Fang, Z.; Dong, S. Effects of the amplitude and frequency of salinity fluctuation on the body composition and energy budget of juvenile tongue sole (Cynoglossus semilaevis). J. Ocean Univ. China 2015, 14, 127–134. [Google Scholar] [CrossRef]
- Fernandes, H.; Castro, C.; Salgado, J.M.; Filipe, D.; Moyano, F.; Ferreira, P.; Oliva-Teles, A.; Belo, I.; Peres, H. Application of fermented brewer’s spent grain extract in plant-based diets for European seabass juveniles. Aquaculture 2022, 552, 738013. [Google Scholar] [CrossRef]
- Kurtovic, I.; Marshall, S.N.; Zhao, X.; Simpson, B.K. Lipases from Mammals and Fishes. Rev. Fish. Sci. 2009, 17, 18–40. [Google Scholar] [CrossRef]
- Alexander, C.; Sahu, N.P.; Pal, A.K.; Akhtar, M.S.; Saravanan, S.; Xavier, B.; Munilkumar, S. Higher water temperature enhances dietary carbohydrate utilization and growth performance in Labeo rohita (Hamilton) fingerlings. J. Anim. Physiol. Anim. Nutr. 2011, 95, 642–652. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, T.; Singh, S.P.; Khangembam, B.K.; Sharma, J.G.; Chakrabarti, R. Food consumption and digestive enzyme activity of Clarias batrachus exposed to various temperatures. Aquac. Nutr. 2014, 20, 265–272. [Google Scholar] [CrossRef]
- Watanabe, T. Lipid nutrition in fish. Comp. Biochem. Physiol. Part B Comp. Biochem. 1982, 73, 3–15. [Google Scholar] [CrossRef]
- Enes, P.; Panserat, S.; Kaushik, S.; Oliva-Teles, A. Dietary Carbohydrate Utilization by European Sea Bass (Dicentrarchus labrax L.) and Gilthead Sea Bream (Sparus aurata L.). Juveniles. Rev. Fish. Sci. 2011, 19, 201–215. [Google Scholar] [CrossRef]
- Hidalgo, F.; Alliot, E. Influence of water temperature on protein requirement and protein utilization in juvenile sea bass, Dicentrarchus labrax. Aquaculture 1988, 72, 115–129. [Google Scholar] [CrossRef]
- Moreira, I.S.; Peres, H.; Couto, A.; Enes, P.; Oliva-Teles, A. Temperature and dietary carbohydrate level effects on performance and metabolic utilisation of diets in European sea bass (Dicentrarchus labrax) juveniles. Aquaculture 2008, 274, 153–160. [Google Scholar] [CrossRef]
- Abro, R.; Lundh, T.; Lindberg, J. Effect of Dietary Starch Inclusion Rate on Digestibility and Amylase Activity in Arctic charr (Salvelinus alpinus) and Eurasian perch (Perca fluviatilis). Aquac. Res. Dev. 2014, 5, 10.4172/2155-9546.1000209. [Google Scholar] [CrossRef] [Green Version]
- Rungruangsak-Torrissen, K.; Moss, R.; Andresen, L.H.; Berg, A.; Waagbø, R. Different expressions of trypsin and chymotrypsin in relation to growth in Atlantic salmon (Salmo salar L.). Fish Physiol. Biochem. 2006, 32, 7–23. [Google Scholar] [CrossRef] [Green Version]
- Shi, B.; Liu, X.; Cao, Y.; Liu, Y.; Xu, Y.; Iang, Y.; Wang, B. Effects of salinity stress on the digestive physiology and anti-stress index of Yellowtail Kingfish (Seriola aureovittata). Aquat. Sci. Fish. Abstr. 2020, 44, 64–72. [Google Scholar]
- Usher, M.L.; Talbot, C.; Eddy, F.B. Effects of transfer to seawater on digestion and gut function in Atlantic salmon smolts (Salmo salar L.). Aquaculture 1990, 90, 85–96. [Google Scholar] [CrossRef]
- Lushchak, V.I.; Bagnyukova, T.V. Effects of different environmental oxygen levels on free radical processes in fish. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2006, 144, 283–289. [Google Scholar] [CrossRef] [PubMed]
- Vinagre, C.; Madeira, D.; Narciso, L.; Cabral, H.N.; Diniz, M. Effect of temperature on oxidative stress in fish: Lipid peroxidation and catalase activity in the muscle of juvenile seabass, Dicentrarchus labrax. Ecol. Indic. 2012, 23, 274–279. [Google Scholar] [CrossRef]
- Hoseinifar, S.H.; Yousefi, S.; Doan, H.; Ashouri, G.; Gioacchini, G.; Maradonna, F.; Carnevali, O. Oxidative Stress and Antioxidant Defense in Fish: The Implications of Probiotic, Prebiotic, and Synbiotics. Rev. Fish. Sci. Aquac. 2021, 29, 198–217. [Google Scholar] [CrossRef]
- Li, C.; Zhang, B.; Zhou, H.; Wang, X.; Pi, X.; Wang, X.; Mai, K.; He, G. Beneficial influences of dietary Aspergillus awamori fermented soybean meal on oxidative homoeostasis and inflammatory response in turbot (Scophthalmus maximus L.). Fish Shellfish Immunol. 2019, 93, 8–16. [Google Scholar] [CrossRef]
- Ibarz, A.; Martín-Pérez, M.; Blasco, J.; Bellido, D.; de Oliveira, E.; Fernández-Borràs, J. Gilthead sea bream liver proteome altered at low temperatures by oxidative stress. Proteomics 2010, 10, 963–975. [Google Scholar] [CrossRef] [PubMed]
- Parolini, M.; Iacobuzio, R.; de Felice, B.; Bassano, B.; Pennati, R.; Saino, N. Age- and sex-dependent variation in the activity of antioxidant enzymes in the brown trout (Salmo trutta). Fish Physiol. Biochem. 2019, 45, 145–154. [Google Scholar] [CrossRef]
- Sitjà-Bobadilla, A.; Peña-Llopis, S.; Gómez-Requeni, P.; Médale, F.; Kaushik, S.; Pérez-Sánchez, J. Effect of fish meal replacement by plant protein sources on non-specific defence mechanisms and oxidative stress in gilthead sea bream (Sparus aurata). Aquaculture 2005, 249, 387–400. [Google Scholar] [CrossRef] [Green Version]
- Mourente, G.; Bell, J.G.B.; Tocher, D. Does dietary tocopherol level affect fatty acid metabolism in fish? Fish Physiol. Biochem. 2007, 33, 269–280. [Google Scholar] [CrossRef]
- Sánchez-Nuño, S.; Sanahuja, I.; Fernández-Alacid, L.; Ordóñez-Grande, B.; Fontanillas, R.; Fernández-Borràs, J.; Blasco, J.; Carbonell, T.; Ibarz, A. Redox Challenge in a Cultured Temperate Marine Species During Low Temperature and Temperature Recovery. Front. Physiol. 2018, 9, 923. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Islam, M.J.; Kunzmann, A.; Thiele, R.; Slater, M.J. Effects of extreme ambient temperature in European seabass, Dicentrarchus labrax acclimated at different salinities: Growth performance, metabolic and molecular stress responses. Sci. Total Environ. 2020, 735, 139371. [Google Scholar] [CrossRef] [PubMed]
- Madeira, D.; Narciso, L.; Cabral, H.N.; Vinagre, C.; Diniz, M.S. Influence of temperature in thermal and oxidative stress responses in estuarine fish. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2013, 166, 237–243. [Google Scholar] [CrossRef] [PubMed]
- Vinagre, C.; Madeira, D.; Mendonça, V.; Dias, M.; Roma, J.; Diniz, M.S. Effect of increasing temperature in the differential activity of oxidative stress biomarkers in various tissues of the Rock goby, Gobius paganellus. Mar. Environ. Res. 2014, 97, 10–14. [Google Scholar] [CrossRef] [PubMed]
- Dawood, M.A.O.; Alkafafy, M.; Sewilam, H. The antioxidant responses of gills, intestines and livers and blood immunity of common carp (Cyprinus carpio) exposed to salinity and temperature stressors. Fish Physiol. Biochem. 2022, 48, 397–408. [Google Scholar] [CrossRef]
- Chang, C.-H.; Mayer, M.; Rivera-Ingraham, G.; Blondeau-Bidet, E.; Wu, W.-Y.; Lorin-Nebel, C.; Lee, T.-H. Effects of temperature and salinity on antioxidant responses in livers of temperate (Dicentrarchus labrax) and tropical (Chanos Chanos) marine euryhaline fish. J. Therm. Biol. 2021, 99, 103016. [Google Scholar] [CrossRef]
- Moniruzzaman, M.; Mukherjee, M.; Kumar, S.; Chakraborty, S.B. Effects of salinity stress on antioxidant status and inflammatory responses in females of a “Near Threatened” economically important fish species Notopterus chitala: A mechanistic approach. Environ. Sci. Pollut. Res. 2022, 29, 75031–75042. [Google Scholar] [CrossRef]
- Yin, F.; Peng, S.; Sun, P.; Shi, Z. Effects of low salinity on antioxidant enzymes activities in kidney and muscle of juvenile silver pomfret Pampus argenteus. Acta Ecol. Sin. 2011, 31, 55–60. [Google Scholar] [CrossRef]
- Sinha, A.; Abdelgawad, H.; Zinta, G.; Dasan, A.; Rasoloniriana, R.; Asard, H.; Blust, R.; de Boeck, G. Nutritional Status as the Key Modulator of Antioxidant Responses Induced by High Environmental Ammonia and Salinity Stress in European Sea Bass (Dicentrarchus labrax). PLoS ONE 2015, 10, e0135091. [Google Scholar] [CrossRef] [Green Version]
- Bagni, M.; Romano, N.; Finoia, M.G.; Abelli, L.; Scapigliati, G.; Tiscar, P.G.; Sarti, M.; Marino, G. Short- and long-term effects of a dietary yeast β-glucan (Macrogard) and alginic acid (Ergosan) preparation on immune response in sea bass (Dicentrarchus labrax). Fish Shellfish Immunol. 2005, 18, 311–325. [Google Scholar] [CrossRef]
- Alcorn, S.W.; Murray, A.L.; Pascho, R.J. Effects of rearing temperature on immune functions in sockeye salmon (Oncorhynchus nerka). Fish Shellfish Immunol. 2002, 12, 303–334. [Google Scholar] [CrossRef] [PubMed]
- Kumari, J.; Sahoo, P.K. Dietary β-1,3 glucan potentiates innate immunity and disease resistance of Asian catfish, Clarias batrachus (L.). J. Fish Dis. 2006, 29, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Aramli, M.S.; Kamangar, B.; Nazari, R.M. Effects of dietary β-glucan on the growth and innate immune response of juvenile Persian sturgeon, Acipenser persicus. Fish Shellfish Immunol. 2015, 47, 606–610. [Google Scholar] [CrossRef]
- Lauridsen, J.H.; Buchmann, K. Effects of short- and long-term glucan feeding of rainbow trout (Salmonidae) on the susceptibility to Ichthyophthirius multifiliis infections. Acta Ichthyol. Piscat. 2010, 40, 61–66. [Google Scholar] [CrossRef]
- Yamamoto, F.Y.; Yin, F.; Rossi, W., Jr.; Hume, M.; Gatlin, D.M., 3rd. β-1,3 glucan derived from Euglena gracilis and Algamune™ enhances innate immune responses of red drum (Sciaenops ocellatus L.). Fish Shellfish Immunol. 2018, 77, 273–279. [Google Scholar] [CrossRef] [PubMed]
- El-Boshy, M.E.; El-Ashram, A.M.; Abdelhamid, F.M.; Gadalla, H.A. Immunomodulatory effect of dietary Saccharomyces cerevisiae, beta-glucan and laminaran in mercuric chloride treated Nile tilapia (Oreochromis niloticus) and experimentally infected with Aeromonas hydrophila. Fish Shellfish Immunol. 2010, 28, 802–808. [Google Scholar] [CrossRef]
- Pal, D.; Joardar, S.N.; Roy, B.; Bengal, W. Immunostimulatory Effects of a Yeast (Saccharo myces cerevisiae) Cell Wall Feed Supplement on Rohu (Labeo rohita), an Indian Major Carp. Isr. J. Aquac. Bamidgeh 2007, 59, 175–181. [Google Scholar]
- Chang, C.-S.; Huang, S.-L.; Chen, S.; Chen, S.-N. Innate immune responses and efficacy of using mushroom beta-glucan mixture (MBG) on orange-spotted grouper, Epinephelus coioides, aquaculture. Fish Shellfish Immunol. 2013, 35, 115–125. [Google Scholar] [CrossRef]
- Pascoli, F.; Lanzano, G.S.; Negrato, E.; Poltronieri, C.; Trocino, A.; Radaelli, G.; Bertotto, D. Seasonal effects on hematological and innate immune parameters in sea bass Dicentrarchus labrax. Fish Shellfish Immunol. 2011, 31, 1081–1087. [Google Scholar] [CrossRef]
- Fast, M.D.; Sims, D.E.; Burka, J.F.; Mustafa, A.; Ross, N.W. Skin morphology and humoral non-specific defence parameters of mucus and plasma in rainbow trout, coho and Atlantic salmon. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2002, 132, 645–657. [Google Scholar] [CrossRef]
- Cuesta, A.; Laiz-Carrión, R.; del Río, M.P.; Meseguer, J.; Mancera, J.M.; Esteban, M.A. Salinity influences the humoral immune parameters of gilthead seabream (Sparus aurata L.). Fish Shellfish Immunol. 2005, 18, 255–261. [Google Scholar] [CrossRef] [PubMed]
Feedstuff (% Dry Weight) | 20Mix | 20SSF-Mix |
---|---|---|
Fish meal 1 | 17.5 | 17.5 |
Fish protein concentrate 2 | 2.5 | 2.5 |
Plant feedstuff mixture 3 | 20.0 | 0.0 |
Fermented feedstuff 4 | 0.0 | 20.0 |
Wheat gluten meal 5 | 7.5 | 7.5 |
Corn gluten meal 6 | 13.4 | 11.4 |
Hemoglobin 7 | 5.0 | 5.0 |
Wheat meal 8 | 14.1 | 15.5 |
Fish oil | 13.6 | 14.2 |
Hydrolyzed Shrimp 9 | 0.5 | 0.5 |
Chromium oxide, 50% | 0.5 | 0.5 |
Vitamin premix 10 | 1.0 | 1.0 |
Choline chloride | 0.5 | 0.5 |
Minerals premix 11 | 1.0 | 1.0 |
Binder 12 | 1.0 | 1.0 |
Dicalcium phosphate | 1.2 | 1.2 |
Lysine 13 | 0.2 | 0.2 |
Methionine 13 | 0.2 | 0.2 |
Taurine 13 | 0.3 | 0.3 |
Proximate analysis (Dry matter basis) | ||
Dry matter (%) | 96.8 | 90.8 |
Crude protein (%) | 42.3 | 41.4 |
Crude lipids (%) | 17.3 | 17.4 |
Ash (%) | 8.1 | 9.3 |
Gross energy (MJ.kg−1) | 22.9 | 22.0 |
Cellulase (U.g−1) | nd | 8.1 |
Xylanase (U.g−1) | nd | nd |
β-glucosidase (U.g−1) | nd | 3.8 |
DPPH (µmol trolox equivalents.g−1) | 16.6 | 13.0 |
Total phenols (mg gallic acid equivalents.g−1) | 9.4 | 8.9 |
Salinity | Fixed | Oscillatory | SEM | ||||
---|---|---|---|---|---|---|---|
Temperature | 21 °C | 21 °C | 26 °C | ||||
Diet | 20Mix | 20Mix-SSF | 20Mix | 20Mix-SSF | 20Mix | 20Mix-SSF | |
Initial body weight (g) | 20.25 | 20.89 | 20.53 | 20.19 | 21.09 | 22.13 | 1.15 |
Final body weight (g) | 30.52 | 28.60 | 35.73 | 31.61 | 40.84 | 38.17 | 2.39 |
Weight gain (g.ABW kg−1.day−1) | 9.67 | 7.46 | 12.78 | 10.40 | 15.32 | 12.69 | 1.03 |
Feed intake (g.ABW kg−1.day−1) | 17.28 | 15.30 | 19.51 | 16.76 | 20.35 | 17.58 | 0.83 |
Feed efficiency | 0.56 | 0.49 | 0.66 | 0.62 | 0.75 | 0.73 | 0.04 |
Protein efficiency ratio | 1.33 | 1.18 | 1.55 | 1.51 | 1.77 | 1.76 | 0.09 |
Daily growth index | 0.95 | 0.73 | 1.32 | 1.04 | 1.63 | 1.33 | 0.12 |
Thermal growth coefficient | 0.45 | 0.35 | 0.63 | 0.49 | 0.63 | 0.51 | 0.04 |
Two-way ANOVA 1 | Two-way ANOVA 2 | ||||||
Salinity | Diet | Interaction | Temperature | Diet | Interaction | ||
Final body weight (g) | ns | ns | ns | ns | ns | ns | |
Weight gain (g.ABW kg−1.day−1) | * | * | ns | ns | ns | ns | |
Feed intake (g.ABW kg−1.day−1) | ns | ns | ns | ns | * | ns | |
Feed efficiency | * | ns | ns | ns | ns | ns | |
Protein efficiency ratio | ns | ns | ns | ns | ns | ns | |
Daily growth index | * | ns | ns | * | ns | ns | |
Thermal growth coefficient | * | ns | ns | ns | * | ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amaral, D.; Filipe, D.M.; Cavalheri, T.F.; Vieira, L.; Magalhães, R.P.; Belo, I.; Peres, H.; Ozório, R.O.d.A. Solid-State Fermentation of Plant Feedstuff Mixture Affected the Physiological Responses of European Seabass (Dicentrarchus labrax) Reared at Different Temperatures and Subjected to Salinity Oscillation. Animals 2023, 13, 393. https://doi.org/10.3390/ani13030393
Amaral D, Filipe DM, Cavalheri TF, Vieira L, Magalhães RP, Belo I, Peres H, Ozório ROdA. Solid-State Fermentation of Plant Feedstuff Mixture Affected the Physiological Responses of European Seabass (Dicentrarchus labrax) Reared at Different Temperatures and Subjected to Salinity Oscillation. Animals. 2023; 13(3):393. https://doi.org/10.3390/ani13030393
Chicago/Turabian StyleAmaral, Diogo, Diogo Moreira Filipe, Thais Franco Cavalheri, Lúcia Vieira, Rui Pedro Magalhães, Isabel Belo, Helena Peres, and Rodrigo O. de A. Ozório. 2023. "Solid-State Fermentation of Plant Feedstuff Mixture Affected the Physiological Responses of European Seabass (Dicentrarchus labrax) Reared at Different Temperatures and Subjected to Salinity Oscillation" Animals 13, no. 3: 393. https://doi.org/10.3390/ani13030393
APA StyleAmaral, D., Filipe, D. M., Cavalheri, T. F., Vieira, L., Magalhães, R. P., Belo, I., Peres, H., & Ozório, R. O. d. A. (2023). Solid-State Fermentation of Plant Feedstuff Mixture Affected the Physiological Responses of European Seabass (Dicentrarchus labrax) Reared at Different Temperatures and Subjected to Salinity Oscillation. Animals, 13(3), 393. https://doi.org/10.3390/ani13030393