Evaluation of a Natural Phytogenic Formulation as an Alternative to Pharmaceutical Zinc Oxide in the Diet of Weaned Piglets
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Diets
2.2. Experimental Procedures
2.3. Chemical Analyses
2.4. DNA Extraction and Quantitative Real-time PCR for Bacteria Enumeration
2.5. Determination of Faecal Volatile Fatty Acids Concentration
2.6. Statistical Analysis
3. Results
3.1. Growth Performance and Digestibility
3.2. Faecal Microbiota Composition at the Designated Time Points (29, 57 and 78 d of Age)
3.3. Faecal Volatile Fatty Acid Concentration
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Fairbrother, J.M.; Nadeau, É; Gyles, C.L. Escherichia coli in postweaning diarrhea in pigs: An update on bacterial types, pathogenesis, and prevention strategies. Anim. Health Res. Rev. 2005, 6, 17–39. [Google Scholar] [CrossRef] [Green Version]
- Rhouma, M.; Fairbrother, J.M.; Beaudry, F.; Letellier, A. Post weaning diarrhea in pigs: Risk factors and non-colistin-based control strategies. Acta Vet. Scand. 2017, 59, 31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, X.; Tsai, T.; Knapp, J.; Bottoms, K.; Deng, F.; Story, R.; Maxwell, C.; Zhao, J. ZnO Modulates Swine Gut Microbiota and Improves Growth Performance of Nursery Pigs When Combined with Peptide Cocktail. Microorganisms 2020, 8, 146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, W.; Van Noten, N.; Degroote, J.; Romeo, A.; Vermeir, P.; Michiels, J. Effect of zinc oxide sources and dosages on gut microbiota and integrity of weaned piglets. J. Anim. Physiol. Anim. Nutr. 2019, 103, 231–241. [Google Scholar] [CrossRef] [Green Version]
- Walk, C.L.; Wilcock, P.; Magowan, E. Evaluation of the effects of pharmacological zinc oxide and phosphorus source on weaned piglet growth performance, plasma minerals and mineral digestibility. Animal 2015, 9, 1145–1152. [Google Scholar] [CrossRef] [Green Version]
- Grilli, E.; Tugnoli, B.; Vitari, F.; Domeneghini, C.; Morlacchini, M.; Piva, A.; Prandini, A. Low doses of microencapsulated zinc oxide improve performance and modulate the ileum architecture, inflammatory cytokines and tight junctions expression of weaned pigs. Animal 2015, 9, 1760–1768. [Google Scholar] [CrossRef] [Green Version]
- Burrough, E.R.; De Mille, C.; Gabler, N.K. Zinc overload in weaned pigs: Tissue accumulation, pathology, and growth impacts. J. Vet. Diagn. Investig. 2019, 31, 537–545. [Google Scholar] [CrossRef]
- Satessa, G.D.; Kjeldsen, N.J.; Mansouryar, M.; Hansen, H.H.; Bache, J.K.; Nielsen, M.O. Effects of alternative feed additives to medicinal zinc oxide on productivity, diarrhoea incidence and gut development in weaned piglets. Animal 2020, 14, 1638–1646. [Google Scholar] [CrossRef] [PubMed]
- Xun, W.; Shi, L.; Zhou, H.; Hou, G.; Cao, T.; Zhao, C. Effects of curcumin on growth performance, jejunal mucosal membrane integrity, morphology and immune status in weaned piglets challenged with enterotoxigenic Escherichia coli. Int. Immunopharmacol. 2015, 27, 46–52. [Google Scholar] [CrossRef] [PubMed]
- Amiri, N.; Afsharmanesh, M.; Salarmoini, M.; Meimandipour, A.; Hosseini, S.A.; Ebrahimnejad, H. Nanoencapsulation (in vitro and in vivo) as an efficient technology to boost the potential of garlic essential oil as alternatives for antibiotics in broiler nutrition. Animal 2020, 15, 100022. [Google Scholar] [CrossRef]
- Friswell, M.K.; Gika, H.; Stratford, I.J.; Theodoridis, G.; Telfer, B.; Wilson, I.D.; McBain, A.J. Site and strain-specific variation in gut microbiota profiles and metabolism in experimental mice. PLoS ONE 2010, 5, e8584. [Google Scholar] [CrossRef] [PubMed]
- Montoya, D.; D’Angelo, M.; Martín-Orúe, S.M.; Rodríguez-Sorrento, A.; Saladrigas-García, M.; Araujo, C.; Chabrillat, T.; Kerros, S.; Castillejos, L. Effectiveness of Two Plant-Based In-Feed Additives against an Escherichia coli F4 Oral Challenge in Weaned Piglets. Animals 2021, 11, 2024. [Google Scholar] [CrossRef] [PubMed]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils—A review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef] [PubMed]
- Verhelst, R.; Schroyen, M.; Buys, N.; Niewold, T. The effects of plant polyphenols on enterotoxigenic Escherichia coli adhesion and toxin binding. Livest. Sci. 2010, 133, 101–103. [Google Scholar] [CrossRef]
- Dubreuil, J.D. Antibacterial and Antidiarrheal Activities of Plant Products against Enterotoxinogenic Escherichia coli. Toxins 2013, 5, 2009–2041. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nazzaro, F.; Fratianni, F.; De Martino, L.; Coppola, R.; De Feo, V. Effect of Essential Oils on Pathogenic Bacteria. Pharmaceuticals 2013, 6, 1451–1474. [Google Scholar] [CrossRef]
- Brenes, A.; Viveros, A.; Chamorro, S.; Arija, I. Use of polyphenol-rich grape by-products in monogastric nutrition. A review. Anim. Feed Sci. Technol. 2016, 211, 1–17. [Google Scholar] [CrossRef]
- Rossi, B.; Toschi, A.; Piva, A.; Grilli, E. Single components of botanicals and nature-identical compounds as a non-antibiotic strategy to ameliorate health status and improve performance in poultry and pigs. Nutr. Res. Rev. 2020, 33, 218–234. [Google Scholar] [CrossRef]
- Kommera, S.K.; Mateo, R.D.; Neher, F.J.; Kim, S.W.; Sci, F. Phytobiotics and Organic Acids As Potential Alternatives to the Use of Antibiotics in Nursery Pig Diets. J. Anim. Sci. 2006, 19, 1784–1789. [Google Scholar] [CrossRef]
- Juhász, Á.; Molnár-Nagy, V.; Bata, Z.; Tso, K.H.; Mayer, Z.; Posta, K. Alternative to ZnO to establish balanced intestinal microbiota for weaning piglets. PLoS ONE 2022, 17, e0265573. [Google Scholar] [CrossRef] [PubMed]
- Frankič, T.; Voljč, M.; Salobir, J.; Rezar, V. Use of herbs and spices and their extracts in animal nutrition. Acta Agric. Slov. 2009, 94, 95–102. [Google Scholar]
- Hanczakowska, E.; Swiatkiewicz, M. Effect of herbal extracts on piglet performance and small intestinal epithelial villi. Czech J. Anim. Sci. 2012, 57, 420–429. [Google Scholar] [CrossRef] [Green Version]
- Mountzouris, K.C.; Paraskevas, V.; Fegeros, K. Phytogenic Compounds in Broiler Nutrition. In Phytogenics in Animal Nutrition; Steiner, T., Ed.; Nottingham University Press: Nottingham, UK, 2009; pp. 97–110. [Google Scholar]
- Ali, A.; Chong, C.H.; Mah, S.H.; Abdullah, L.C.; Choong, T.S.Y.; Chua, B.L. Impact of Storage Conditions on the Stability of Predominant Phenolic Constituents and Antioxidant Activity of Dried Piper betle Extracts. Molecules 2018, 23, 484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonetti, A.; Tugnoli, B.; Piva, A.; Grilli, E. Towards Zero Zinc Oxide: Feeding Strategies to Manage Post-Weaning Diarrhea in Piglets. Animals 2021, 11, 642. [Google Scholar] [CrossRef]
- National Research Council. Nutrient Requirements of Swine, 11th ed.; The National Academies Press: Washington, DC, USA, 2012. [Google Scholar] [CrossRef] [Green Version]
- Williams, S. Official Methods of Analysis of the Association of Official Analytical Chemists, 14th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 1984. [Google Scholar]
- Myers, W.D.; Ludden, P.A.; Nayigihugu, V.; Hess, B.W. Technical Note: A procedure for the preparation and quantitative analysis of samples for titanium dioxide1. J. Anim. Sci. 2004, 82, 179–183. [Google Scholar] [CrossRef] [Green Version]
- Mountzouris, K.C.; Dalaka, E.; Palamidi, I.; Paraskeuas, V.; Demey, V.; Theodoropoulos, G.; Fegeros, K. Evaluation of yeast dietary supplementation in broilers challenged or not with Salmonella on growth performance, cecal microbiota composition and Salmonella in ceca, cloacae and carcass skin. Poult. Sci. 2015, 94, 2445–2455. [Google Scholar] [CrossRef] [PubMed]
- Schwiertz, A.; Taras, D.; Schäfer, K.; Beijer, S.; Bos, N.A. Donus, C., Hardt, P.D. Microbiota and SCFA in Lean and Overweight Healthy Subjects. Obesity 2010, 18, 190–195. [Google Scholar] [CrossRef] [PubMed]
- Matsuki, T.; Watanabe, K.; Fujimoto, J.; Takada, T.; Tanaka, R. Use of 16S rRNA Gene-Targeted Group-Specific Primers for Real-Time PCR Analysis of Predominant Bacteria in Human Feces. Appl. Environ. Microbiol. 2004, 70, 7220–7228. [Google Scholar] [CrossRef] [Green Version]
- Cole, J.R.; Wang, Q.; Cardenas, E.; Fish, J.; Chai, B.; Farris, R.J.; Kulam-Syed-Mohideen, A.S.; McGarrell, D.M.; Marsh, T.; Garrity, G.M.; et al. Ribosomal Database Project: Data and tools for high throughput rRNA analysis. Nucleic Acids Res. 2014, 42, 633–642. [Google Scholar] [CrossRef] [Green Version]
- Joly, P.; Falconnet, P.A.; André, J.; Weill, N.; Reyrolle, M.; Vandenesch, F.; Maurin, M.; Etienne, J.; Jarraud, S. Quantitative Real-Time Legionella PCR for Environmental Water Samples: Data Interpretation. Appl. Environ. Microbiol. 2006, 72, 2801–2808. [Google Scholar] [CrossRef]
- Templeton, G.F. A Two-Step Approach for Transforming Continuous Variables to Normal: Implications and Recommendations for IS Research. Commun. Assoc. Inf. Syst. 2011, 28, 41–58. [Google Scholar] [CrossRef] [Green Version]
- Li, P.; Piao, X.; Ru, Y.; Han, X.; Xue, L.; Zhang, H. Effects of adding essential oil to the diet of weaned pigs on performance, nutrient utilization, immune response and intestinal health. Asian-Australas. J. Anim. Sci. 2012, 25, 1617–1627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruzauskas, M.; Bartkiene, E.; Stankevicius, A.; Bernatoniene, J.; Zadeike, D.; Lele, V.; Starkute, V.; Zavistanaviciute, P.; Grigas, J.; Zokaityte, E.; et al. The Influence of Essential Oils on Gut Microbial Profiles in Pigs. Animals 2020, 10, 1734. [Google Scholar] [CrossRef] [PubMed]
- Frese, S.A.; Parker, K.; Calvert, C.C.; Mills, D.A. Diet shapes the gut microbiome of pigs during nursing and weaning. Microbiome 2015, 3, 28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jurburg, S.D.; Bossers, A. Age Matters: Community Assembly in the Pig Fecal Microbiome in the First Month of Life. Front. Microbiol. 2021, 12, 564408. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Xun, W.; Peng, W.; Hu, H.; Cao, T.; Hou, G. Effect of the Single and Combined Use of Curcumin and Piperine on Growth Performance, Intestinal Barrier Function, and Antioxidant Capacity of Weaned Wuzhishan Piglets. Front. Vet. Sci. 2020, 7, 418. [Google Scholar] [CrossRef] [PubMed]
- Namkung, H.; Li, M.; Gong, J.; Yu, H.; Cottrill, M.; M de Lange, C.F.; Lange, D. Impact of feeding blends of organic acids and herbal extracts on growth performance, gut microbiota and digestive function in newly weaned pigs. Can. J. Anim. Sci. 2004, 84, 697–704. [Google Scholar] [CrossRef]
- Manzanilla, E.G.; Pérez, J.F.; Martín, M.; Blandón, J.C.; Baucells, F.; Kamel, C.; Gasa, J. Dietary protein modifies effect of plant extracts in the intestinal ecosystem of the pig at weaning. J. Anim. Sci. 2009, 87, 2029–2037. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, L.; Wang, J.P.; Kim, H.J.; Meng, Q.W.; Ao, X.; Hong, S.M.; Kim, I.H. Influence of essential oil supplementation and diets with different nutrient densities on growth performance, nutrient digestibility, blood characteristics, meat quality and fecal noxious gas content in grower–finisher pigs. Livest. Sci. 2010, 128, 115–122. [Google Scholar] [CrossRef]
- Diao, H.; Zheng, P.; Yu, B.; He, J.; Mao, X.; Yu, J.; Chen, D. Effects of benzoic Acid and thymol on growth performance and gut characteristics of weaned piglets. Asian-Australas. J. Anim. Sci. 2015, 28, 827–839. [Google Scholar] [CrossRef] [PubMed]
- Shili, C.N.; Habibi, M.; Sutton, J.; Barnes, J.; Burch-Konda, J.; Pezeshki, A. Effect of a Phytogenic Water Additive on Growth Performance, Blood Metabolites and Gene Expression of Amino Acid Transporters in Nursery Pigs Fed with Low-Protein/High-Carbohydrate Diets. Animals 2021, 11, 555. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.B.; Piao, X.S.; Kim, S.W.; Wang, L.; Liu, P.; Yoon, I.; Zhen, Y.G. Effects of yeast culture supplementation on growth performance, intestinal health, and immune response of nursery pigs. J. Anim. Sci. 2009, 87, 2614–2624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeng, Z.; Xu, X.; Zhang, Q.; Li, P.; Zhao, P.; Li, Q.; Liu, J.; Piao, X. Effects of essential oil supplementation of a low-energy diet on performance, intestinal morphology and microflora, immune properties and antioxidant activities in weaned pigs. Anim. Sci. J. 2014, 86, 279–285. [Google Scholar] [CrossRef]
- Cruz-Morales, P.; Orellana, C.A.; Moutafis, G.; Moonen, G.; Rincon, G.; Nielsen, L.K.; Marcellin, E.; Bapteste, E. Revisiting the Evolution and Taxonomy of Clostridia, a Phylogenomic Update. Genome Biol. Evol. 2019, 11, 2035–2044. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kiu, R.; Caim, S.; Alexander, S.; Pachori, P.; Hall, L.J. Probing Genomic Aspects of the Multi-Host Pathogen Clostridium perfringens Reveals Significant Pangenome Diversity, and a Diverse Array of Virulence Factors. Front. Microbiol. 2017, 8, 2485. [Google Scholar] [CrossRef] [Green Version]
- Kiu, R.; Hall, L.J. An update on the human and animal enteric pathogen Clostridium perfringens. Emerg. Microbes Infect. 2018, 7, 141. [Google Scholar] [CrossRef] [Green Version]
- Chan, G.; Farzan, A.; Soltes, G.; Nicholson, V.M.; Pei, Y.; Friendship, R.; Prescott, J.F. The epidemiology of Clostridium perfringens type A on Ontario swine farms, with special reference to cpb2-positive isolates. BMC Vet. Res. 2012, 8, 156. [Google Scholar] [CrossRef] [Green Version]
- Posthaus, H.; Kittl, S.; Tarek, B.; Bruggisser, J. Clostridium perfringens type C necrotic enteritis in pigs: Diagnosis, pathogenesis, and prevention. J. Vet. Diagnostic Investig. 2020, 32, 203–212. [Google Scholar] [CrossRef] [Green Version]
- Jeraldo, P.; Hernandez, A.; Nielsen, H.B.; Chen, X.; White, B.A.; Goldenfeld, N.; Nelson, H.; Alhquist, D.; Boardman, L.; Chia, N. Capturing one of the human gut microbiome’s most wanted: Reconstructing the genome of a novel butyrate-producing, clostridial scavenger from metagenomic sequence data. Front. Microbiol. 2016, 7, 783. [Google Scholar] [CrossRef] [Green Version]
- Guo, P.; Zhang, K.; Ma, X.; He, P. Clostridium species as probiotics: Potentials and challenges. J. Anim. Sci. Biotechnol. 2020, 11, 24. [Google Scholar] [CrossRef]
- Kim, T.G.; Kim, M.J.; Lee, J.H.; Moturi, J.; Ha, S.H.; Tajudeen, H.; Mun, J.; Hosseindoust, A.; Chae, B. Supplementation of nano-zinc in lower doses as an alternative topharmacological doses of ZnO in weanling pigs. J. Anim. Sci. Technol. 2022, 64, 70–83. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Wang, J.; He, T.; Becker, S.; Zhang, G.; Li, D.; Ma, X. Butyrate: A Double-Edged Sword for Health? Adv. Nutr. 2018, 9, 21–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiong, H.; Guo, B.; Gan, Z.; Song, D.; Lu, Z.; Yi, H.; Wu, Y.; Wang, Y.; Du, H. Butyrate upregulates endogenous host defense peptides to enhance disease resistance in piglets via histone deacetylase inhibition. Sci. Rep. 2016, 6, 27070. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Macfarlane, G.T.; Gibson, G.R.; Beatty, E.; Cummings, J.H. Estimation of short-chain fatty acid production from protein by human intestinal bacteria based on branched-chain fatty acid measurements. FEMS Microbiol. Ecol. 1992, 10, 81–88. [Google Scholar] [CrossRef]
- Camp Montoro, J.; Solà-Oriol, D.; Muns, R.; Gasa, J.; Llanes, N.; Manzanilla, E.G. Blood and faecal biomarkers to assess dietary energy, protein and amino acid efficiency of utilization by growing and finishing pigs. Porc. Health Manag. 2022, 8, 32. [Google Scholar] [CrossRef]
- Zhang, H.; van der Wielen, N.; van der Hee, B.; Wang, J.; Hendriks, W.; Gilbert, M. Impact of Fermentable Protein, by Feeding High Protein Diets, on Microbial Composition, Microbial Catabolic Activity, Gut Health and beyond in Pigs. Microorganisms 2020, 8, 1735. [Google Scholar] [CrossRef]
- Le Dinh, P.; van der Peet-Schwering, C.M.C.; Ogink, N.W.M.; Aarnink, A.J.A. Effect of Diet Composition on Excreta Composition and Ammonia Emissions from Growing-Finishing Pigs. Animals 2022, 12, 229, Erratum in Animals 2022, 12, 902. [Google Scholar] [CrossRef] [PubMed]
- Louis, P.; Hold, G.L.; Flint, H.J. The gut microbiota, bacterial metabolites and colorectal cancer. Nat. Rev. Microbiol. 2014, 12, 661–672. [Google Scholar] [CrossRef] [PubMed]
Diet a | ||||
---|---|---|---|---|
ZnO | Control (C) | NPF1 | NPF2 | |
Ingredients (g/kg) | ||||
Maize | 594.0 | 600.0 | 598.0 | 597.0 |
Soybean meal (440 g CP/kg) | 280.0 | 280.0 | 280.0 | 280.0 |
Soya protein concentrate (530 g CP/kg) | 50.0 | 50.0 | 50.0 | 50.0 |
Soybean oil | 35.0 | 32.0 | 33.0 | 33.0 |
Calcium carbonate | 11.0 | 11.0 | 11.0 | 11.0 |
Monocalcium phosphate | 11.0 | 11.0 | 11.0 | 11.0 |
Sodium chloride | 6.2 | 6.2 | 6.2 | 6.2 |
L-Lysine 80% | 4.0 | 4.0 | 4.0 | 4.0 |
DL-Methionine 99% | 1.5 | 1.5 | 1.5 | 1.5 |
L-Threonine 99% | 1.3 | 1.3 | 1.3 | 1.3 |
Vitamin premix b | 1.0 | 1.0 | 1.0 | 1.0 |
Mineral premix c | 2.0 | 2.0 | 2.0 | 2.0 |
Zinc oxide (ZnO) | 3.0 | - | - | - |
Natural phytogenic formulation (NPF) | - | - | 1.0 | 2.0 |
Analyzed chemical composition (g/kg DM) | ||||
Dry matter (g/kg) | 881.10 | 880.30 | 880.60 | 880.70 |
Ash | 69.80 | 67.36 | 68.14 | 69.04 |
Crude protein | 228.92 | 229.58 | 229.39 | 229.25 |
Ether extract | 71.73 | 68.61 | 69.61 | 69.60 |
Crude fiber | 35.86 | 36.01 | 36.00 | 35.88 |
Calculated chemical composition (g/kg DM) d | ||||
Digestible energy (MJ/kg) | 16.65 | 16.64 | 16.65 | 16.63 |
Metabolizable energy (MJ/kg) | 15.90 | 15.89 | 15.90 | 15.88 |
Calcium | 8.84 | 8.77 | 8.79 | 8.81 |
Total phosphorus | 7.00 | 7.02 | 7.02 | 7.01 |
Lysine | 15.55 | 15.56 | 15.56 | 15.56 |
Methionine + cystine | 8.97 | 9.09 | 8.97 | 8.97 |
Threonine | 10.10 | 10.11 | 10.11 | 10.11 |
Tryptophane | 2.50 | 2.50 | 2.50 | 2.50 |
SID e Lysine | 14.19 | 14.20 | 14.19 | 14.19 |
SID e Methionine + cystine | 8.29 | 8.29 | 8.29 | 8.29 |
SID e Threonine | 8.85 | 8.86 | 8.86 | 8.86 |
SID e Tryptophane | 2.27 | 2.27 | 2.27 | 2.27 |
Target Group or Organism | Sequence (5′-3′) | Annealing Temperature |
---|---|---|
All bacteria (domain bacteria) | F: ACTCCTACGGGAGGCAGCAG R: ATTACCGCGGCTGCTGG | 60 °C |
Bacteroides spp. | F: GAGAGGAAGGTCCCCCAC R: CGCTACTTGGCTGGTTCAG | 58 °C |
Lactobacillus spp. | F: GAGGCAGCAGTAGGGAATCTTC R: GGCCAGTTACTACCTCTATCCTTCTTC | 60 °C |
Escherichia coli | F: CATGCCGCGTGTATGAAGAA R: GGGTAACGTCAATGAGCAAAGG | 60 °C |
C. perfringens subgroup (Clostridium cluster I) | F: TACCHRAGGAGGAAGCCAC R: GTTCTTCCTAATCTCTACGCAT | 56 °C |
C. leptum subgroup (Clostridium cluster IV) * | F: GCACAAGCAGTGGAGT R: CTTCCTCCGTTTTGTCAA | 52 °C |
C. coccoides subgroup (Clostridium cluster XIVa) ** | F: ACTCCTACGGGAGGCAGC R: CTTCTTAGTCAGGTACCGTCAT | 60 °C |
Reference Strains | Target Bacterial Group(s) | NCBI Reference Sequence | Genome Size, Mbp |
---|---|---|---|
Escherichia coli ATCC 25922 | Escherichia sp. & domain bacteria | NZ_CP009072.1 | 5.13 |
Bacteroides vulgatus ATCC 8482 | Bacteroides spp. | NC_009614.1 | 5.16 |
Lactobacillus acidophilus ATCC 314 | Lactobacillus spp. | NC_006814.3 | 1.99 |
C. perfringens subgroup (Clostridium cluster I) | C. perfringens subgroup (Clostridium cluster I) | NC_008261.1 | 3.26 |
Clostridium leptum DSM 753 | C. leptum subgroup (Clostridium cluster IV) | NZ_ABCB00000000.2 | 3.27 |
Clostridium clostridioforme DSM 933 | C. coccoides subgroup (Clostridium cluster XIVa) | NZ_FOOJ00000000.1 | 5.47 |
Diet a | RMSE b | Contrasts c | Polynomial Contrasts d | |||||||
---|---|---|---|---|---|---|---|---|---|---|
ZnO | C | NPF1 | NPF2 | C vs. ZnO | C vs. NPF | ZnO vs. NPF | Plinear | Pquadratic | ||
Phase 1 (29–50 d of age) | ||||||||||
BW at 29 d | 8.87 | 8.86 | 8.86 | 8.86 | 0.298 | 0.987 | 0.993 | 0.978 | 0.990 | 0.990 |
BW at 50 d | 16.92 | 16.72 | 16.64 | 17.36 | 0.500 | 0.703 | 0.533 | 0.853 | 0.325 | 0.289 |
ADFI | 0.564 | 0.571 | 0.564 | 0.598 | 0.025 | 0.777 | 0.631 | 0.421 | 0.409 | 0.304 |
ADG | 0.383 | 0.369 | 0.380 | 0.412 | 0.016 | 0.389 | 0.066 | 0.371 | 0.040 | 0.269 |
FCR | 1.47 | 1.552 | 1.491 | 1.449 | 0.038 | 0.041 | 0.019 | 0.993 | 0.014 | 0.823 |
Phase 2 (51–64 d of age) | ||||||||||
BW at 64 d | 27.33 | 27.10 | 27.09 | 27.45 | 0.833 | 0.782 | 0.817 | 0.930 | 0.726 | 0.745 |
ADFI | 1.193 | 1.202 | 1.170 | 1.137 | 0.036 | 0.790 | 0.131 | 0.222 | 0.029 | 0.626 |
ADG | 0.744 | 0.738 | 0.755 | 0.733 | 0.027 | 0.824 | 0.799 | 0.998 | 0.979 | 0.392 |
FCR | 1.603 | 1.638 | 1.555 | 1.553 | 0.048 | 0.481 | 0.057 | 0.251 | 0.086 | 0.560 |
Phase 3 (64–78 d of age) | ||||||||||
BW at 78 d | 39.11 | 39.19 | 39.49 | 39.50 | 1.110 | 0.946 | 0.752 | 0.694 | 0.786 | 0.935 |
ADFI | 1.536 | 1.477 | 1.573 | 1.537 | 0.045 | 0.208 | 0.064 | 0.626 | 0.189 | 0.189 |
ADG | 0.848 | 0.839 | 0.896 | 0.883 | 0.029 | 0.757 | 0.061 | 0.102 | 0.321 | 0.321 |
FCR | 1.804 | 1.787 | 1.773 | 1.705 | 0.049 | 0.742 | 0.269 | 0.144 | 0.384 | 0.384 |
Overall period (29–78 d) | ||||||||||
ADFI | 1.019 | 1.032 | 1.029 | 1.025 | 0.030 | 0.649 | 0.824 | 0.757 | 0.782 | 0.938 |
ADG | 0.613 | 0.614 | 0.626 | 0.638 | 0.016 | 0.951 | 0.218 | 0.172 | 0.803 | 0.803 |
FCR | 1.629 | 1.671 | 1.650 | 1.609 | 0.035 | 0.245 | 0.194 | 0.981 | 0.492 | 0.492 |
Diet a | RMSE b | Contrasts c | Polynomial Contrasts d | |||||||
---|---|---|---|---|---|---|---|---|---|---|
ZnO | C | NPF1 | NPF2 | C vs. ZnO | C vs. NPF | ZnO vs. NPF | Plinear | Pquadratic | ||
57 d of age | ||||||||||
CATTDDM | 0.832 | 0.828 | 0.841 | 0.838 | 0.0060 | 0.491 | 0.035 | 0.186 | 0.061 | 0.280 |
CATTDOM | 0.849 | 0.845 | 0.858 | 0.855 | 0.0057 | 0.524 | 0.036 | 0.174 | 0.065 | 0.217 |
CATTDCP | 0.77 | 0.767 | 0.790 | 0.786 | 0.0103 | 0.831 | 0.032 | 0.066 | 0.087 | 0.341 |
78 d of age | ||||||||||
CATTDDM | 0.839 | 0.844 | 0.855 | 0.847 | 0.0063 | 0.390 | 0.234 | 0.038 | 0.422 | 0.170 |
CATTDOM | 0.864 | 0.863 | 0.872 | 0.867 | 0.0061 | 0.893 | 0.237 | 0.299 | 0.394 | 0.314 |
CATTDCP | 0.788 | 0.793 | 0.802 | 0.801 | 0.0106 | 0.633 | 0.379 | 0.163 | 0.434 | 0.710 |
Diet a | RMSE b | Contrasts c | Polynomial Contrasts d | |||||||
---|---|---|---|---|---|---|---|---|---|---|
ZnO | C | NPF1 | NPF2 | C vs. ZnO | C vs. NPF | ZnO vs. NPF | Plinear | Pquadratic | ||
29 d of age | ||||||||||
Total bacteria | 9.72 | 9.66 | 9.65 | 9.72 | 0.054 | 0.241 | 0.583 | 0.413 | 0.395 | 0.336 |
Bacteroides spp. | 9.04 | 8.91 | 8.98 | 9.08 | 0.105 | 0.226 | 0.207 | 0.891 | 0.122 | 0.603 |
C. coccoides subgroup | 8.87 | 8.74 | 8.67 | 8.80 | 0.084 | 0.123 | 0.929 | 0.065 | 0.729 | 0.225 |
C. leptum subgroup | 8.81 | 8.70 | 8.77 | 8.82 | 0.064 | 0.121 | 0.112 | 0.838 | 0.070 | 0.731 |
C. perfringens subgroup | 7.91 | 7.69 | 7.53 | 7.72 | 0.143 | 0.142 | 0.577 | 0.029 | 0.931 | 0.210 |
Lactobacillus spp. | 8.07 | 8.35 | 7.99 | 8.29 | 0.219 | 0.203 | 0.269 | 0.706 | 0.587 | 0.168 |
Escherichia coli | 6.74 | 7.26 | 7.08 | 7.03 | 0.284 | 0.081 | 0.426 | 0.218 | 0.771 | 0.924 |
57 d of age | ||||||||||
Total bacteria | 9.88 | 9.95 | 9.91 | 9.90 | 0.053 | 0.167 | 0.302 | 0.559 | 0.335 | 0.821 |
Bacteroides spp. | 9.27 | 9.30 | 9.27 | 9.24 | 0.100 | 0.779 | 0.649 | 0.895 | 0.596 | 0.922 |
C. coccoides subgroup | 9.36 | 9.26 | 9.49 | 9.46 | 0.125 | 0.428 | 0.060 | 0.309 | 0.100 | 0.302 |
C. leptum subgroup | 9.19 | 9.08 | 9.27 | 9.26 | 0.069 | 0.141 | 0.006 | 0.208 | 0.302 | 0.387 |
C. perfringens subgroup | 8.5 | 8.79 | 8.61 | 8.27 | 0.233 | 0.223 | 0.095 | 0.772 | 0.075 | 0.487 |
Lactobacillus spp. | 8.87 | 8.72 | 8.76 | 8.65 | 0.196 | 0.443 | 0.940 | 0.319 | 0.617 | 0.617 |
Escherichia coli | 5.53 | 6.08 | 5.72 | 5.22 | 0.276 | 0.056 | 0.017 | 0.801 | 0.003 | 0.332 |
78 d of age | ||||||||||
Total bacteria | 9.94 | 10.03 | 10.01 | 10.06 | 0.074 | 0.206 | 0.935 | 0.132 | 0.764 | 0.532 |
Bacteroides spp. | 9.27 | 9.31 | 9.27 | 9.39 | 0.124 | 0.767 | 0.840 | 0.591 | 0.412 | 0.412 |
C. coccoides subgroup | 9.18 | 9.18 | 9.23 | 9.33 | 0.093 | 0.999 | 0.215 | 0.216 | 0.592 | 0.603 |
C. leptum subgroup | 9.08 | 9.00 | 9.25 | 9.19 | 0.082 | 0.302 | 0.004 | 0.064 | 0.163 | 0.111 |
C. perfringens subgroup | 8.34 | 8.95 | 8.76 | 8.34 | 0.207 | 0.008 | 0.038 | 0.271 | 0.034 | 0.325 |
Lactobacillus spp. | 8.79 | 8.40 | 8.64 | 8.57 | 0.205 | 0.069 | 0.262 | 0.306 | 0.358 | 0.487 |
Escherichia coli | 5.69 | 6.99 | 6.04 | 6.45 | 0.242 | <0.001 | 0.002 | 0.014 | 0.023 | 0.023 |
Diet a | RMSE b | Contrasts c | Polynomial Contrasts d | |||||||
---|---|---|---|---|---|---|---|---|---|---|
ZnO | C | NPF1 | NPF2 | C vs. ZnO | C vs. NPF | ZnO vs. NPF | Plinear | Pquadratic | ||
29 d of age | ||||||||||
Total VFA | 60.5 | 88.0 | 58.8 | 67.6 | 14.08 | 0.062 | 0.108 | 0.759 | 0.281 | 0.281 |
Acetic acid | 54.8 | 48.4 | 53.0 | 53.9 | 3.59 | 0.090 | 0.123 | 0.683 | 0.806 | 0.806 |
Propionic acid | 17.4 | 17.8 | 16.4 | 17.7 | 1.80 | 0.817 | 0.621 | 0.819 | 0.449 | 0.449 |
Butyric acid | 14.5 | 16.3 | 12.9 | 14.3 | 1.93 | 0.359 | 0.116 | 0.558 | 0.277 | 0.277 |
Branched VFA | 10.2 | 9.8 | 8.9 | 10.5 | 1.17 | 0.724 | 0.910 | 0.607 | 0.256 | 0.256 |
Other VFA | 3.8 | 6.1 | 4.4 | 3.9 | 1.35 | 0.100 | 0.113 | 0.763 | 0.859 | 0.859 |
57 d of age | ||||||||||
Total VFA | 114.5 | 138.8 | 138.2 | 139.4 | 16.43 | 0.151 | 0.999 | 0.100 | 0.984 | 0.950 |
Acetic acid | 48 | 45.9 | 45.0 | 45.1 | 1.69 | 0.225 | 0.539 | 0.050 | 0.610 | 0.753 |
Propionic acid | 21.1 | 23.1 | 23.5 | 23.0 | 1.78 | 0.287 | 0.927 | 0.173 | 0.753 | 0.816 |
Butyric acid | 24.5 | 22.9 | 24.0 | 21.7 | 2.30 | 0.502 | 0.995 | 0.436 | 0.745 | 0.363 |
Branched VFA | 2.2 | 2.5 | 2.0 | 5.1 | 1.12 | 0.738 | 0.325 | 0.176 | 0.082 | 0.035 |
Other VFA | 3.5 | 4.6 | 5.9 | 5.9 | 0.84 | 0.229 | 0.081 | 0.003 | 0.024 | 0.427 |
78 d of age | ||||||||||
Total VFA | 122 | 156.8 | 129.3 | 144.9 | 16.42 | 0.053 | 0.200 | 0.300 | 0.397 | 0.217 |
Acetic acid | 40.9 | 41.6 | 43.4 | 38.5 | 2.21 | 0.766 | 0.737 | 0.994 | 0.250 | 0.036 |
Propionic acid | 21 | 21.0 | 20.2 | 22.1 | 1.37 | 0.998 | 0.880 | 0.882 | 0.536 | 0.197 |
Butyric acid | 27.5 | 23.8 | 25.4 | 30.4 | 1.99 | 0.076 | 0.026 | 0.821 | 0.002 | 0.083 |
Branched VFA | 5.2 | 7.5 | 6.2 | 5.0 | 1.00 | 0.031 | 0.037 | 0.664 | 0.023 | 0.720 |
Other VFA | 6.4 | 7.5 | 5.8 | 6.4 | 0.90 | 0.228 | 0.073 | 0.659 | 0.109 | 0.199 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papadomichelakis, G.; Palamidi, I.; Paraskeuas, V.V.; Giamouri, E.; Mountzouris, K.C. Evaluation of a Natural Phytogenic Formulation as an Alternative to Pharmaceutical Zinc Oxide in the Diet of Weaned Piglets. Animals 2023, 13, 431. https://doi.org/10.3390/ani13030431
Papadomichelakis G, Palamidi I, Paraskeuas VV, Giamouri E, Mountzouris KC. Evaluation of a Natural Phytogenic Formulation as an Alternative to Pharmaceutical Zinc Oxide in the Diet of Weaned Piglets. Animals. 2023; 13(3):431. https://doi.org/10.3390/ani13030431
Chicago/Turabian StylePapadomichelakis, George, Irida Palamidi, Vasileios V. Paraskeuas, Elisavet Giamouri, and Konstantinos C. Mountzouris. 2023. "Evaluation of a Natural Phytogenic Formulation as an Alternative to Pharmaceutical Zinc Oxide in the Diet of Weaned Piglets" Animals 13, no. 3: 431. https://doi.org/10.3390/ani13030431
APA StylePapadomichelakis, G., Palamidi, I., Paraskeuas, V. V., Giamouri, E., & Mountzouris, K. C. (2023). Evaluation of a Natural Phytogenic Formulation as an Alternative to Pharmaceutical Zinc Oxide in the Diet of Weaned Piglets. Animals, 13(3), 431. https://doi.org/10.3390/ani13030431