Growth-Promoting Effects of Zhenqi Granules on Finishing Pigs
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Zhenqi Granules and Experimental Diets
2.2. Animals, Housing, and Experimental Design
2.3. Samples and Data Collection
2.4. Carcass and Meat Quality Traits
2.5. Serum GH and IGF-I
2.6. Biochemical Indexes of Blood
2.7. Transcriptome
2.8. Statistical Analysis
3. Results
3.1. Dietary Supplementation with ZQ Increases the Growth Performance of Pigs
3.2. Dietary Supplementation with ZQ Increases Carcass Weight and Fat Content of Pigs
3.3. Effects of ZQ on Serum Hormones and Biochemical Indexes
3.4. Transcriptome Analysis of Liver Tissues
3.5. Transcriptomic Analysis of Skeletal Muscle
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Henchion, M.; Hayes, M.; Mullen, A.M.; Fenelon, M.; Tiwari, B. Future Protein Supply and Demand: Strategies and Factors Influencing a Sustainable Equilibrium. Foods 2017, 6, 53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahman, M.R.T.; Fliss, I.; Biron, E. Insights in the Development and Uses of Alternatives to Antibiotic Growth Promoters in Poultry and Swine Production. Antibiotics 2022, 11, 766. [Google Scholar] [CrossRef] [PubMed]
- Zuidhof, M.J.; Schneider, B.L.; Carney, V.L.; Korver, D.R.; Robinson, F.E. Growth, efficiency, and yield of commercial broilers from 1957, 1978, and 2005. Poult. Sci. 2014, 93, 2970–2982. [Google Scholar] [CrossRef] [PubMed]
- Helm, E.T.; Curry, S.; Trachsel, J.M.; Schroyen, M.; Gabler, N.K. Evaluating nursery pig responses to in-feed sub-therapeutic antibiotics. PLoS ONE 2019, 14, e0216070. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Low, C.X.; Tan, L.T.; Ab Mutalib, N.S.; Pusparajah, P.; Goh, B.H.; Chan, K.G.; Letchumanan, V.; Lee, L.H. Unveiling the Impact of Antibiotics and Alternative Methods for Animal Husbandry: A Review. Antibiotics 2021, 10, 578. [Google Scholar] [CrossRef]
- Hou, L.; Cao, S.; Qiu, Y.; Xiong, Y.; Xiao, H.; Wen, X.; Yang, X.; Gao, K.; Wang, L.; Jiang, Z. Effects of early sub-therapeutic antibiotic administration on body tissue deposition, gut microbiota and metabolite profiles of weaned piglets. J. Sci. Food Agric. 2022, 102, 5913–5924. [Google Scholar] [CrossRef]
- Manyi-Loh, C.; Mamphweli, S.; Meyer, E.; Okoh, A. Antibiotic Use in Agriculture and Its Consequential Resistance in Environmental Sources: Potential Public Health Implications. Molecules 2018, 23, 795. [Google Scholar] [CrossRef] [Green Version]
- Pokharel, S.; Raut, S.; Adhikari, B. Tackling antimicrobial resistance in low-income and middle-income countries. BMJ Glob. Health 2019, 4, e002104. [Google Scholar] [CrossRef]
- Yang, F.; Zhang, F.; Li, H.; Wu, H.; Zhu, J. Contribution of environmental factors on the distribution of antibiotic resistance genes in agricultural soil. Eur. J. Soil Biol. 2021, 102, 103269. [Google Scholar] [CrossRef]
- Tian, M.; He, X.; Feng, Y.; Wang, W.; Chen, H.; Gong, M.; Liu, D.; Clarke, J.L.; van Eerde, A. Pollution by Antibiotics and Antimicrobial Resistance in LiveStock and Poultry Manure in China, and Countermeasures. Antibiotics 2021, 10, 539. [Google Scholar] [CrossRef]
- Abd El-Ghany, W.A. Paraprobiotics and postbiotics: Contemporary and promising natural antibiotics alternatives and their applications in the poultry field. Open Vet. J. 2020, 10, 323–330. [Google Scholar] [CrossRef]
- Gong, J.; Yin, F.; Hou, Y.; Yin, Y. Review: Chinese herbs as alternatives to antibiotics in feed for swine and poultry production: Potential and challenges in application. Can. J. Anim. Sci. 2014, 94, 223–241. [Google Scholar] [CrossRef]
- Lan, R.X.; Park, J.W.; Lee, D.W.; Kim, I.H. Effects of Astragalus membranaceus, Codonopsis pilosula and allicin mixture on growth performance, nutrient digestibility, faecal microbial shedding, immune response and meat quality in finishing pigs. J. Anim. Physiol. Anim. Nutr. 2017, 101, 1122–1129. [Google Scholar] [CrossRef]
- Giannenas, I.; Bonos, E.; Skoufos, I.; Tzora, A.; Stylianaki, I.; Lazari, D.; Tsinas, A.; Christaki, E.; Florou-Paneri, P. Effect of herbal feed additives on performance parameters, intestinal microbiota, intestinal morphology and meat lipid oxidation of broiler chickens. Br. Poult. Sci. 2018, 59, 545–553. [Google Scholar] [CrossRef]
- Ji, F.; Gu, L.; Rong, G.; Hu, C.; Sun, W.; Wang, D.; Peng, W.; Lin, D.; Liu, Q.; Wu, H.; et al. Using Extract From the Stems and Leaves of Yizhi (Alpiniae oxyphyllae) as Feed Additive Increases Meat Quality and Intestinal Health in Ducks. Front. Vet. Sci. 2021, 8, 793698. [Google Scholar] [CrossRef]
- Lien, T.F.; Horng, Y.M.; Wu, C.P. Feasibility of replacing antibiotic feed promoters with the Chinese traditional herbal medicine Bazhen in weaned piglets. Livest. Sci. 2007, 107, 97–102. [Google Scholar] [CrossRef]
- Kong, X.F.; Yin, F.G.; He, Q.H.; Liu, H.J.; Li, T.J.; Huang, R.L.; Fan, M.Z.; Liu, Y.L.; Hou, Y.Q.; Peng, L. Acanthopanax senticosus extract as a dietary additive enhances the apparent ileal digestibility of amino acids in weaned piglets. Livest. Sci. 2009, 123, 261–267. [Google Scholar] [CrossRef]
- Li, L.L.; Li, T.J. The effect of dietary addition of a polysaccharide from Atractylodes macrophala Koidz on growth performance, immunoglobulin concentration and IL-1β ezpression in weaned piglets. J. Agric. Sci. 2009, 147, 625–631. [Google Scholar] [CrossRef]
- Chai, Y.; Qihua, L.I.; Jia, J. Effects of polysaccharides of Atractylodes macrophala Koidz on IL-1β gene expression in weaned piglets. China Feed 2017, 06, 10–14. [Google Scholar]
- Omonijo, F.A.; Ni, L.; Gong, J.; Wang, Q.; Lahaye, L.; Yang, C. Essential oils as alternatives to antibiotics in swine production. Anim. Nutr. (Zhongguo Xu Mu Shou Yi Xue Hui) 2018, 4, 126–136. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, L.; Gao, C.; Chen, W.; Vong, C.T.; Yao, P.; Yang, Y.; Li, X.; Tang, X.; Wang, S.; et al. Astragali Radix (Huangqi): A promising edible immunomodulatory herbal medicine. J. Ethnopharmacol. 2020, 258, 112895. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Zhao, H.; Luo, Y. Anti-Aging Implications of Astragalus Membranaceus (Huangqi): A Well-Known Chinese Tonic. Aging Dis. 2017, 8, 868–886. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, S.L.; Piao, X.S.; Li, D.F.; Kim, S.W.; Lee, H.S.; Guo, P.F. Effects of dietary Astragalus polysaccharide on growth performance and immune function in weaned pigs. Animalence 2006, 82, 501–507. [Google Scholar] [CrossRef]
- Yin, F.G.; Liu, Y.L.; Yin, Y.L.; Kong, X.F.; Huang, R.L.; Li, T.J.; Wu, G.Y.; Hou, Y. Dietary supplementation with Astragalus polysaccharide enhances ileal digestibilities and serum concentrations of amino acids in early weaned piglets. Amino Acids 2009, 37, 263–270. [Google Scholar] [CrossRef] [PubMed]
- Kang, P.; Xiao, H.L.; Hou, Y.Q.; Ding, B.Y.; Yin, Y.L. Effects of Astragalus Polysaccharides, Achyranthes bidentata Polysaccharides, and Acantbepanax senticosus Saponin on the Performance and Immunity in Weaned Pigs. Asian Australas. J. Anim. Sci. 2010, 23, 750–756. [Google Scholar] [CrossRef]
- Fu, J.; Wang, Z.; Huang, L.; Zheng, S.; Wang, D.; Chen, S.; Zhang, H.; Yang, S. Review of the botanical characteristics, phytochemistry, and pharmacology of Astragalus membranaceus (Huangqi). Phytother. Res. PTR 2014, 28, 1275–1283. [Google Scholar] [CrossRef]
- Pang, Z.; Zhi-yan, Z.; Wang, W.; Ma, Y.; Feng-ju, N.; Zhang, X.; Han, C. The advances in research on the pharmacological effects of Fructus Ligustri Lucidi. BioMed Res. Int. 2015, 2015, 281873. [Google Scholar] [CrossRef] [Green Version]
- Yim, T.K.; Wu, W.K.; Pak, W.F.; Ko, K.M. Hepatoprotective action of an oleanolic acid-enriched extract of Ligustrum lucidum fruits is mediated through an enhancement on hepatic glutathione regeneration capacity in mice. Phytother. Res. PTR 2001, 15, 589–592. [Google Scholar] [CrossRef]
- Ju, H.Y.; Chen, S.C.; Wu, K.J.; Kuo, H.C.; Hseu, Y.C.; Ching, H.; Wu, C.R. Antioxidant phenolic profile from ethyl acetate fraction of Fructus Ligustri Lucidi with protection against hydrogen peroxide-induced oxidative damage in SH-SY5Y cells. Food Chem. Toxicol. Int. J. Publ. Br. Ind. Biol. Res. Assoc. 2012, 50, 492–502. [Google Scholar] [CrossRef]
- Wang, J.; Shan, A.; Liu, T.; Zhang, C.; Zhang, Z. In vitro immunomodulatory effects of an oleanolic acid-enriched extract of Ligustrum lucidum fruit (Ligustrum lucidum supercritical CO2 extract) on piglet immunocytes. Int. Immunopharmacol. 2012, 14, 758–763. [Google Scholar] [CrossRef]
- Chen, B.; Wang, L.; Li, L.; Zhu, R.; Liu, H.; Liu, C.; Ma, R.; Jia, Q.; Zhao, D.; Niu, J.; et al. Fructus Ligustri Lucidi in Osteoporosis: A Review of its Pharmacology, Phytochemistry, Pharmacokinetics and Safety. Molecules 2017, 22, 1469. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, X.; Zhou, Y.; Min, Z.; Zhang, Z.; Chen, Y.; Li, Y.; Yang, C.; Liu, J.; Li, S. Studies on optimization of extraction process and preliminary growth-promoting activities of Zhenqi Granules by orthogonal design based on AHP-CRITIC analysis. Chin. J. Vet. Drug 2021, 55, 54–63. [Google Scholar]
- Ren, Y.; Yu, G.; Shi, C.; Liu, L.; Guo, Q.; Han, C.; Zhang, D.; Zhang, L.; Liu, B.; Gao, H.; et al. Majorbio Cloud: A one-stop, comprehensive bioinformatic platform for multiomics analyses. iMeta 2022, 1, e12. [Google Scholar] [CrossRef]
- Onursal, C.; Dick, E.; Angelidis, I.; Schiller, H.B.; Staab-Weijnitz, C.A. Collagen Biosynthesis, Processing, and Maturation in Lung Ageing. Front. Med. 2021, 8, 593874. [Google Scholar] [CrossRef]
- Che, L.; Pilo, M.G.; Cigliano, A.; Latte, G.; Simile, M.M.; Ribback, S.; Dombrowski, F.; Evert, M.; Chen, X.; Calvisi, D.F. Oncogene dependent requirement of fatty acid synthase in hepatocellular carcinoma. Cell Cycle 2017, 16, 499–507. [Google Scholar] [CrossRef]
- Clare, M.; Richard, P.; Kate, K.; Sinead, W.; Mark, M.; David, K. Residual feed intake phenotype and gender affect the expression of key genes of the lipogenesis pathway in subcutaneous adipose tissue of beef cattle. J. Anim. Sci. Biotechnol. 2018, 9, 68. [Google Scholar]
- Piórkowska, K.; Malopolska, M.; Ropka-Molik, K.; Szyndler-Nędza, M.; Wiechniak, A.; Żukowski, K.; Lambert, B.; Tyra, M. Evaluation of SCD, ACACA and FASN Mutations: Effects on Pork Quality and Other Production Traits in Pigs Selected Based on RNA-Seq Results. Animals 2020, 10, 123. [Google Scholar] [CrossRef] [Green Version]
- Hoar, B.; Angelos, J. Production Cycle of Swine. Available online: https://www.wifss.ucdavis.edu/wp-content/uploads/2015/FDA/feed/animalclass_swine_FINAL.pdf (accessed on 28 November 2022).
- Hu, C.H.; Xiao, K.; Luan, Z.S.; Song, J. Early weaning increases intestinal permeability, alters expression of cytokine and tight junction proteins, and activates mitogen-activated protein kinases in pigs. J. Anim. Sci. 2013, 91, 1094–1101. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Wang, K.; Xu, B.; Peng, X.; Chai, B.; Nong, S.; Li, Z.; Shen, S.; Si, H. Use of Hydrolyzed Chinese Gallnut Tannic Acid in Weaned Piglets as an Alternative to Zinc Oxide: Overview on the Gut Microbiota. Animals 2021, 11, 2000. [Google Scholar] [CrossRef]
- Cai, S.Q.; Wang, X.; Shang, M.Y.; Xu, F.; Liu, G.X. “Efficacy Theory” may help to explain characteristic advantages of traditional Chinese medicines. China J. Chin. Mater. Med. 2015, 40, 3435–3443. [Google Scholar]
- Alagan, A.; Jantan, I.; Kumolosasi, E.; Ogawa, S.; Abdullah, M.A.; Azmi, N. Protective Effects of Phyllanthus amarus Against Lipopolysaccharide-Induced Neuroinflammation and Cognitive Impairment in Rats. Front. Pharmacol. 2019, 10, 632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fang, Y.; Shi, B.; Liu, X.; Luo, J.; Rao, Z.; Liu, R.; Zeng, N. Xiaoyao Pills Attenuate Inflammation and Nerve Injury Induced by Lipopolysaccharide in Hippocampal Neurons In Vitro. Neural Plast. 2020, 2020, 8841332. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, T.L.J.; Fowler, V.R.; Novakofski, J.E. Growth of Farm Animals, 3rd ed.; CABI: Wallingford, UK, 2012. [Google Scholar]
- Ricard-Blum, S. The collagen family. Cold Spring Harb. Perspect. Biol. 2011, 3, a004978. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldspink, G.; Fernandes, K.; Williams, P.E.; Wells, D.J. Age-related changes in collagen gene expression in the muscles of mdx dystrophic and normal mice. Neuromuscul. Disord. NMD 1994, 4, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Carberry, S.; Zweyer, M.; Swandulla, D.; Ohlendieck, K. Proteomics reveals drastic increase of extracellular matrix proteins collagen and dermatopontin in the aged mdx diaphragm model of Duchenne muscular dystrophy. Int. J. Mol. Med. 2012, 30, 229–234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.; Peng, L.H.; Li, N.; Li, Q.M.; Li, P.; Fung, K.P.; Leung, P.C.; Gao, J.Q. The healing and anti-scar effects of astragaloside IV on the wound repair in vitro and in vivo. J. Ethnopharmacol. 2012, 139, 721–727. [Google Scholar] [CrossRef]
- Zeng, X.; Wang, D.; Fu, J.; Deng, Y.; Xu, L.; Zhao, C.; He, N. Identification and Analysis of the Extract Isolated from Three Herbs Which Induced Collagen Synthesis. Adv. Sci. Lett. 2012, 5, 212–216. [Google Scholar] [CrossRef]
- Pattaro, C.; De Grandi, A.; Vitart, V.; Hayward, C.; Franke, A.; Aulchenko, Y.S.; Johansson, A.; Wild, S.H.; Melville, S.A.; Isaacs, A.; et al. A meta-analysis of genome-wide data from five European isolates reveals an association of COL22A1, SYT1, and GABRR2 with serum creatinine level. BMC Med. Genet. 2010, 11, 41. [Google Scholar] [CrossRef] [Green Version]
- Perrone, R.D.; Madias, N.E.; Levey, A.S. Serum creatinine as an index of renal function: New insights into old concepts. Clin. Chem. 1992, 38, 1933–1953. [Google Scholar] [CrossRef]
- Baxmann, A.C.; Ahmed, M.S.; Marques, N.C.; Menon, V.B.; Pereira, A.B.; Kirsztajn, G.M.; Heilberg, I.P. Influence of muscle mass and physical activity on serum and urinary creatinine and serum cystatin C. Clin. J. Am. Soc. Nephrol. CJASN 2008, 3, 348–354. [Google Scholar] [CrossRef] [Green Version]
- Hosten, A.O. BUN and Creatinine. In Clinical Methods: The History, Physical, and Laboratory Examinations, 3rd ed.; Butterworths: Boston, MA, USA, 1990. [Google Scholar]
- Suzuki, K.; Irie, M.; Kadowaki, H.; Shibata, T.; Kumagai, M.; Nishida, A. Genetic parameter estimates of meat quality traits in Duroc pigs selected for average daily gain, longissimus muscle area, backfat thickness, and intramuscular fat content. J. Anim. Sci. 2005, 83, 2058–2065. [Google Scholar] [CrossRef] [Green Version]
- Crespo-Piazuelo, D.; Criado-Mesas, L.; Revilla, M.; Castelló, A.; Noguera, J.L.; Fernández, A.I.; Ballester, M.; Folch, J.M. Identification of strong candidate genes for backfat and intramuscular fatty acid composition in three crosses based on the Iberian pig. Sci. Rep. 2020, 10, 13962. [Google Scholar] [CrossRef]
- Higuchi, N.; Kato, M.; Shundo, Y.; Tajiri, H.; Tanaka, M.; Yamashita, N.; Kohjima, M.; Kotoh, K.; Nakamuta, M.; Takayanagi, R.; et al. Liver X receptor in cooperation with SREBP-1c is a major lipid synthesis regulator in nonalcoholic fatty liver disease. Hepatol. Res. Off. J. Jpn. Soc. Hepatol. 2008, 38, 1122–1129. [Google Scholar] [CrossRef]
- Petersen, K.F.; Oral, E.A.; Dufour, S.; Befroy, D.; Ariyan, C.; Yu, C.; Cline, G.W.; DePaoli, A.M.; Taylor, S.I.; Gorden, P.; et al. Leptin reverses insulin resistance and hepatic steatosis in patients with severe lipodystrophy. J. Clin. Investig. 2002, 109, 1345–1350. [Google Scholar] [CrossRef]
- Cortés, V.A.; Cautivo, K.M.; Rong, S.; Garg, A.; Horton, J.D.; Agarwal, A.K. Leptin ameliorates insulin resistance and hepatic steatosis in Agpat2-/- lipodystrophic mice independent of hepatocyte leptin receptors. J. Lipid Res. 2014, 55, 276–288. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez, A.; Moreno, N.R.; Balaguer, I.; Méndez-Giménez, L.; Becerril, S.; Catalán, V.; Gómez-Ambrosi, J.; Portincasa, P.; Calamita, G.; Soveral, G.; et al. Leptin administration restores the altered adipose and hepatic expression of aquaglyceroporins improving the non-alcoholic fatty liver of ob/ob mice. Sci. Rep. 2015, 5, 12067. [Google Scholar] [CrossRef] [Green Version]
- do Carmo, J.M.; da Silva, A.A.; Gava, F.N.; Moak, S.P.; Dai, X.; Hall, J.E. Impact of leptin deficiency compared with neuronal-specific leptin receptor deletion on cardiometabolic regulation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2019, 317, R552–R562. [Google Scholar] [CrossRef]
- Wilson, G.J.; Lennox, B.A.; She, P.; Mirek, E.T.; Al Baghdadi, R.J.; Fusakio, M.E.; Dixon, J.L.; Henderson, G.C.; Wek, R.C.; Anthony, T.G. GCN2 is required to increase fibroblast growth factor 21 and maintain hepatic triglyceride homeostasis during asparaginase treatment. Am. J. Physiol. Endocrinol. Metab. 2015, 308, E283–E293. [Google Scholar] [CrossRef] [Green Version]
- Williams, B.; Correnti, J.; Oranu, A.; Lin, A.; Scott, V.; Annoh, M.; Beck, J.; Furth, E.; Mitchell, V.; Senkal, C.E.; et al. A novel role for ceramide synthase 6 in mouse and human alcoholic steatosis. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2018, 32, 130–142. [Google Scholar] [CrossRef] [Green Version]
- Hao, Z.; Li, Z.; Huo, J.; Chu, Y.; Li, J.; Yu, X.; Liu, F.; Yin, P. Effects of Chinese wolfberry and astragalus extracts on growth performance, pork quality, and unsaturated fatty acid metabolism regulation in Tibetan fragrant pigs. Anim. Sci. J. 2021, 92, e13581. [Google Scholar] [CrossRef]
- Cui, Y.; Lu, H.; Tian, Z.; Deng, D.; Ma, X. Current trends of Chinese herbal medicines on meat quality of pigs. A review. J. Anim. Feed Sci. 2021, 30, 187–205. [Google Scholar] [CrossRef]
Ingredients | Content (%) |
---|---|
Corn | 51.35 |
Soybean meal | 11.80 |
Soybean | 10.00 |
Flour | 7.00 |
Broken rice | 5.00 |
Fish meal | 3.00 |
Soybean oil | 1.20 |
Vitamins, minerals and amino acids | 5.00 |
Whey powder | 2.50 |
Glucose | 2.50 |
1 Nutrient levels | |
Crude protein | ≥17.00 |
Crude fiber | ≤4.00 |
Coarse ash | ≤7.00 |
Calcium | 0.50–1.00 |
Total phosphorus | ≥0.60 |
Sodium chloride | 0.30–1.00 |
2 Lysine | ≥1.25 |
Group | Initial Body Weight-17 d (kg) | Final Body Weight-62 d (kg) | ADG (kg/d) | ADFI (kg/d) | F/G |
---|---|---|---|---|---|
control (N = 8) | 30.68 ± 2.85 | 62.38 ± 6.22 | 0.70 ± 0.11 | 1.48 | 2.10 |
ZQ-1 g (N = 6) | 31.00 ± 2.42 | 71.92 ± 4.72 | 0.91 ± 0.13 ** | 1.48 | 1.63 |
ZQ-2 g (N = 8) | 30.10 ± 5.53 | 70.08 ± 10.06 | 0.89 ± 0.11 ** | 1.589 | 1.79 |
Days of the Experiment | Indexes | Control (N = 8) | ZQ-1 g (N = 6) | ZQ-2 g (N = 8) |
---|---|---|---|---|
30 d | TP (g/L) | 62.50 ± 3.12 | 61.52 ± 2.73 | 63.91 ± 3.16 |
ALB (g/L) | 36.99 ± 2.89 | 36.75 ± 1.52 | 39.01 ± 4.27 | |
Glu (mmol/L) | 5.00 ± 0.86 | 5.52 ± 1.45 | 5.38 ± 0.86 | |
ALT (U/L) | 86.29 ± 12.05 | 84.85 ± 16.81 | 101.19 ± 30.22 | |
AST (U/L) | 52.79 ± 15.01 | 59.15 ± 19.77 | 45.69 ± 13.31 | |
TG (mmol/L) | 0.58 ± 0.25 | 0.74 ± 0.24 | 0.92 ± 0.18 ** | |
TC (mmol/L) | 2.75 ± 0.37 | 2.86 ± 0.22 | 2.88 ± 0.40 | |
CREA (μmol/L) | 94.48 ± 11.29 | 95.03 ± 13.12 | 95.14 ± 6.66 | |
UREA (mmol/L) | 1.93 ± 0.58 | 3.10 ± 1.01 * | 2.39 ± 0.83 | |
62 d | TP (g/L) | 58.89 ± 2.98 | 59.47 ± 6.46 | 58.10 ± 3.07 |
ALB (g/L) | 35.11 ± 3.48 | 36.68 ± 3.91 | 36.75 ± 3.69 | |
Glu (mmol/L) | 3.70 ± 0.58 | 3.43 ± 0.40 | 2.95 ± 0.49 ** | |
ALT (U/L) | 79.91 ± 14.13 | 85.38 ± 9.96 | 82.16 ± 22.69 | |
AST (U/L) | 172.11 ± 128.72 | 93.68 ± 21.25 * | 120.75 ± 57.83 | |
TG (mmol/L) | 0.45 ± 0.12 | 0.29 ± 0.04 * | 0.31 ± 0.11 * | |
TC (mmol/L) | 2.65 ± 0.24 | 2.45 ± 0.13 | 2.49 ± 0.32 | |
CREA (μmol/L) | 116.10 ± 10.51 | 95.53 ± 9.70 ** | 103.96 ± 6.90 * | |
UREA (mmol/L) | 2.70 ± 0.86 | 4.04 ± 0.69 ** | 3.91 ± 0.64 ** | |
ALP (U/L) | 266.81 ± 66.94 | 255.92 ± 27.39 | 252.11 ± 31.09 |
Gene ID | Gene Name | Gene Description | Log2-FC |
---|---|---|---|
KEGG: Protein digestion and absorption | |||
ENSSSCG00000038877 | SLC36A3 | solute carrier family 36 member 3 | 3.68 |
ENSSSCG00000033641 | COL8A2 | collagen type VIII alpha 2 chain | 2.41 |
ENSSSCG00000036135 | COL1A1 | collagen type I alpha 1 chain | 1.57 |
ENSSSCG00000015326 | COL1A2 | collagen type I alpha 2 chain | 1.21 |
ENSSSCG00000016034 | COL3A1 | collagen type III alpha 1 chain | 1.16 |
ENSSSCG00000027331 | COL6A3 | collagen type VI alpha 3 chain | 1.11 |
ENSSSCG00000005751 | COL5A1 | collagen type V alpha 1 chain | 1.11 |
ENSSSCG00000005380 | COL15A1 | collagen type XV alpha 1 chain | 1.02 |
GO: Collagen/Extracellular matrix (ECM) | |||
ENSSSCG00000017422 | FKBP10 | FKBP prolyl isomerase 10 | 1.42 |
ENSSSCG00000001914 | LOXL1 | lysyl oxidase like 1 | 1.37 |
ENSSSCG00000000681 | P3H3 | prolyl 3-hydroxylase 3 | 1.25 |
ENSSSCG00000026425 | ADAMTSL2 | ADAMTS like 2 | 1.24 |
ENSSSCG00000024043 | ADAMTS2 | ADAM metallopeptidase with thrombospondin type 1 motif 2 | 1.21 |
ENSSSCG00000017082 | SPARC | secreted protein acidic and cysteine rich | 1.17 |
ENSSSCG00000014232 | LOX | lysyl oxidase | 1.15 |
ENSSSCG00000033608 | LOXL2 | lysyl oxidase like 2 | 1.06 |
ENSSSCG00000016233 | SERPINE2 | serpin family E member 2 | 1.05 |
ENSSSCG00000039468 | SERPINH1 | serpin family H member 1 | 1.00 |
GO: Lipid biosynthesis | |||
ENSSSCG00000012583 | ACSL4 | acyl-CoA synthetase long chain family member 4 | 1.25 |
ENSSSCG00000033626 | SREBF1 | sterol regulatory element binding transcription factor 1 | 1.01 |
ENSSSCG00000037272 | FABP2 | fatty acid binding protein 2 | −1.71 |
ENSSSCG00000025188 | LEPR | leptin receptor | −2.19 |
ENSSSCG00000014985 | MMP3 | matrix metallopeptidase 3 | −2.91 |
Gene ID | Gene Name | Gene Description | Log2-FC |
---|---|---|---|
KEGG: Protein digestion and absorption | |||
ENSSSCG00000005938 | COL22A1 | collagen type XXII alpha 1 chain | 2.53 |
ENSSSCG00000017086 | SLC36A2 | solute carrier family 36 member 2 | 2.40 |
GO BP: Lipid biosynthetic process | |||
ENSSSCG00000014861 | MOGAT2 | monoacylglycerol O-acyltransferase 2 | 4.73 |
ENSSSCG00000010554 | SCD | stearoyl-CoA desaturase | 3.91 |
ENSSSCG00000029944 | FASN | fatty acid synthase | 2.22 |
ENSSSCG00000025578 | ALDH1A2 | aldehyde dehydrogenase 1 family member A2 | 2.07 |
ENSSSCG00000036236 | ELOVL6 | ELOVL fatty acid elongase 6 | 2.06 |
ENSSSCG00000040689 | APOA4 | apolipoprotein A4 | 2.05 |
ENSSSCG00000017421 | ACLY | ATP citrate lyase | 1.47 |
ENSSSCG00000017694 | ACACA | acetyl-CoA carboxylase alpha | 1.36 |
ENSSSCG00000009152 | SGMS2 | sphingomyelin synthase 2 | 1.15 |
ENSSSCG00000010483 | PLCE1 | phospholipase C epsilon 1 | 1.06 |
ENSSSCG00000000436 | PIP4K2C | phosphatidylinositol-5-phosphate 4-kinase type 2 gamma | 1.02 |
ENSSSCG00000035539 | ST8SIA4 | ST8 alpha-N-acetyl-neuraminide alpha-2,8-sialyltransferase 4 | −1.13 |
ENSSSCG00000040581 | CISH | cytokine inducible SH2 containing protein | −1.16 |
ENSSSCG00000032481 | DPM2 | dolichyl-phosphate mannosyltransferase subunit 2, regulatory | −1.28 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, W.; Huang, Y.; Qiu, X.; Zhuo, W.; Tao, Y.; Wang, S.; Li, H.; Shen, J.; Zhao, L.; Zhang, L.; et al. Growth-Promoting Effects of Zhenqi Granules on Finishing Pigs. Animals 2022, 12, 3521. https://doi.org/10.3390/ani12243521
Luo W, Huang Y, Qiu X, Zhuo W, Tao Y, Wang S, Li H, Shen J, Zhao L, Zhang L, et al. Growth-Promoting Effects of Zhenqi Granules on Finishing Pigs. Animals. 2022; 12(24):3521. https://doi.org/10.3390/ani12243521
Chicago/Turabian StyleLuo, Wentao, Yaxue Huang, Xiuxiu Qiu, Wenxiao Zhuo, Yujun Tao, Shuaiyang Wang, Huaixia Li, Jing Shen, Lelin Zhao, Lijun Zhang, and et al. 2022. "Growth-Promoting Effects of Zhenqi Granules on Finishing Pigs" Animals 12, no. 24: 3521. https://doi.org/10.3390/ani12243521
APA StyleLuo, W., Huang, Y., Qiu, X., Zhuo, W., Tao, Y., Wang, S., Li, H., Shen, J., Zhao, L., Zhang, L., Li, S., Liu, J., Huang, Q., & Zhou, R. (2022). Growth-Promoting Effects of Zhenqi Granules on Finishing Pigs. Animals, 12(24), 3521. https://doi.org/10.3390/ani12243521