Characterization of Autochthonous Strains from the Cecal Content of Creole Roosters for a Potential Use as Probiotics
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection and Preparation
2.2. Isolation, Morphology, and Biochemical Tests
2.3. Genomic Identification
2.4. Tolerance to Different Growing Conditions
2.5. Antimicrobial Activity Test
2.5.1. Activation of Strains
2.5.2. Antimicrobial Effect of the Probiotic Strain against Pathogenic Strains
2.6. Antimicrobial Susceptibility Test
2.7. Statistical Analysis
3. Results
3.1. Isolation, Biochemical Test, and Genomic Identification
3.2. Evaluation of the Probiotic Characteristics of Bacterial Strains
3.3. Antagonism Test
3.4. Evaluation of the Antibiotic Susceptibility of the Probiotic Candidate
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Henchion, M.; Hayes, M.; Mullen, A.M.; Fenelon, M.; Tiwari, B. Future Protein Supply and Demand: Strategies and Factors Influencing a Sustainable Equilibrium. Foods 2017, 6, 53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gado, A.R.; Ellakany, H.F.; Elbestawy, A.R.; Abd El-Hack, M.E.; Khafaga, A.F.; Taha, A. Herbal Medicine Additives as Powerful Agents to Control and Prevent Avian Influenza Virus in Poultry A Review. Ann. Anim. Sci. 2019, 4, 905–935. [Google Scholar] [CrossRef] [Green Version]
- Agyare, C.; Etsiapa Boamah, V.; Ngofi Zumbi, C.; Boateng Osei, F. Antibiotic Use in Poultry Production and Its Effects on Bacterial Resistance. In Antimicrobial Resistance—A Global Threat; Yashwant, K., Ed.; IntechOpen: London, UK, 2018; pp. 33–50. [Google Scholar] [CrossRef] [Green Version]
- Vieco-Saiz, N.; Belguesmia, Y.; Raspoet, R.; Auclair, E.; Gancel, F.; Kempf, I.; Drider, D. Benefits and Inputs from Lactic Acid Bacteria and Their Bacteriocins as Alternatives to Antibiotic Growth Promoters During Food-Animal Production. Front. Microbiol. 2019, 10, 57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reuben, R.C.; Roy, P.C.; Sarkar, S.L.; Alam, R.-U.; Jahid, I.K. Isolation, characterization, and assessment of lactic acid bacteria toward their selection as poultry probiotics. BMC Microbiol. 2019, 19, 253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ryan, M.P.; O’Dwyer, J.; Adley, C.C. Evaluation of the Complex Nomenclature of the Clinically and Veterinary Significant Pathogen Salmonella. BioMed Res. Int. 2017, 2017, 3782182. [Google Scholar] [CrossRef] [Green Version]
- Hu, P.-L.; Yuan, Y.-H.; Yue, T.-L.; Guo, C.-F. Bile acid patterns in commercially available oxgall powders used for the evaluation of the bile tolerance ability of potential probiotics. PLoS ONE 2018, 13, e0192964. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tellez-Isaias, G.; Vuong, C.N.; Graham, B.D.; Selby, C.M.; Graham, L.E.; Señas-Cuesta, R.; Barros, T.L.; Beer, L.C.; Coles, M.E.; Forga, A.J.; et al. Developing probiotics, prebiotics, and organic acids to control Salmonella spp. in commercial turkeys at the University of Arkansas, USA. Ger. J. Vet. Res. 2021, 1, 7–12. [Google Scholar] [CrossRef]
- Riaz Rajoka, M.S.; Shi, J.; Zhu, J.; Shao, D.; Huang, Q.; Yang, H. Capacity of lactic acid bacteria in immunity enhancement and cancer prevention. Appl. Microbiol. Biotechnol. 2017, 101, 35–45. [Google Scholar] [CrossRef]
- García-Hernández, Y.; Pérez-Sánchez, T.; Boucourt, R.; Balcázar, J.L.; Nicoli, J.R.; Moreira-Silva, J.; Rodriguez, Z.; Fuertes, H.; Nunez, O.; Albelo, N.; et al. Isolation, characterization and evaluation of probiotic lactic acid bacteria for potential use in animal production. Res. Vet. Sci. 2016, 108, 125–132. [Google Scholar] [CrossRef]
- Prado-Rebolledo, O.F.; de Jesus Delgado-Machuca, J.; Macedo-Barragan, R.J.; Garcia-Márquez, L.J.; Morales-Barrera, J.E.; Latorre, J.D.; Hernandez-Velasco, X.; Tellez, G. Evaluation of a selected lactic acid bacteria-based probiotic on Salmonella enterica serovar Enteritidis colonization and intestinal permeability in broiler chickens. Avian. Pathol. 2017, 46, 90–94. [Google Scholar] [CrossRef] [Green Version]
- Kers, J.G.; Velkers, F.C.; Fischer, E.A.J.; Hermes, G.D.A.; Stegeman, J.A.; Smidt, H. Host and environmental factors affecting the intestinal microbiota in Chickens. Front. Microbiol. 2018, 9, 235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blajman, J.; Gaziano, C.; Zbrun, M.V.; Soto, L.; Astesana, D.; Berisvil, A. In vitro and in vivo screening of native lactic acid bacteria toward their selection as a probiotic in broiler chickens. Res. Vet. Sci. 2015, 101, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Gancel, F.; Dzierszinski, F.; Tailliez, R. Identification and characterization of Lactobacillus species isolated from fillets of vacuum-packed smoked and salted herring (Clupea harengus). J. Appl. Microbiol. 1997, 82, 722–728. [Google Scholar] [CrossRef]
- Liao, S.F.; Nyachoti, M. Using probiotics to improve swine gut health and nutrient utilization. Anim. Nutr. 2017, 3, 331–343. [Google Scholar] [CrossRef] [PubMed]
- Tuyarum, C.; Songsang, A.; Lertworapreecha, M. In vitro evaluation of the probiotic potential of Lactobacillus isolated from native swine manure. Vet. World 2021, 14, 1133–1142. [Google Scholar] [CrossRef]
- Rajoka, M.S.R.; Hayat, H.F.; Sarwar, S.; Mehwish, H.M.; Ahmad, F.; Hussain, N.; Shah, S.Z.H.; Khurshid, M.; Siddiqu, M.; Shi, J. Isolation and evaluation of probiotic potential of lactic acid bacteria isolated from poultry intestine. Microbiology 2018, 87, 116–126. [Google Scholar] [CrossRef]
- Feng, J.; Wang, L.; Zhou, L.; Yang, X.; Zhao, X. Using in vitro immunomodulatory properties of lactic acid bacteria for selection of probiotics against Salmonella infection in broiler chicks. PLoS ONE 2016, 11, e0147630. [Google Scholar] [CrossRef]
- Betancur, C.; Martínez, Y.; Tellez-Isaias, G.; Avellaneda, M.C.; Velázquez-Martí, B. In vitro characterization of indigenous probiotic strains isolated from Colombian creole pigs. Animals 2020, 10, 1204. [Google Scholar] [CrossRef]
- De Mann, J.C.; Rogosa, M.; Sharpe, M.E. A medium for the cultivation of lactobacilli. J. Bacteriol. 1960, 23, 130–135. [Google Scholar] [CrossRef]
- Prastiyanto, M.E.; Tama, P.D.; Ananda, N.; Wilson, W.; Mukaromah, A.H. Antibacterial Potential of Jatropha sp. Latex against Multidrug-Resistant Bacteria. Int. J. Microbiol. 2020, 2020, 8509650. [Google Scholar] [CrossRef]
- Bauer, A.W.; Kirby, W.M.; Sherris, J.C.; Turck, M. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 1966, 45, 493–496. [Google Scholar] [CrossRef] [PubMed]
- Suissa, R.; Oved, R.; Jankelowitz, G.; Turjeman, S.; Koren, O.; Kolodkin-Gal, I. Molecular genetics for probiotic engineering: Dissecting lactic acid bacteria. Trends Microbiol. 2021, 30, 293–306. [Google Scholar] [CrossRef] [PubMed]
- Bhat, M.I.; Singh, V.K.; Sharma, D.; Kapila, S.; Kapila, R. Adherence capability and safety assessment of an indigenous probiotic strain Lactobacillus rhamnosus MTCC-5897. Microb. Pathog. 2019, 130, 120–130. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J. A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int. J. Syst. Evol. Microbiol. 2020, 70, 2782–2858. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Qiao, L.; Liu, R.; Yao, H.; Gao, C. Potential probiotic properties of lactic acid bacteria isolated from the intestinal mucosa of healthy piglets. In. Ann. Microbiol. 2017, 67, 239–253. [Google Scholar] [CrossRef]
- Fernández, S.; Fraga, M.; Silveyra, E.; Trombert, A.; Rabaza, A.; Pla, M.; Zunino, P. Probiotic properties of native Lactobacillus spp. strains for dairy calves. Benef. Microbes 2018, 9, 613–624. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Li, Y.; Chu, B.; Yuan, L.; Liu, N.; Zhu, Y.; Wang, J. Lactobacillus johnsonii L531 Alleviates the Damage Caused by Salmonella Typhimurium via Inhibiting TLR4, NF-κB, and NLRP3 Inflammasome Signaling Pathways. Microorganisms 2021, 9, 1983. [Google Scholar] [CrossRef] [PubMed]
- Neethu, J.M.; Bunt, C.R.; Hussain, A.M. Comparison of Microbiological and Probiotic Characteristics of Lactobacilli Isolates from Dairy Food Products and Animal Rumen Contents. Microorganisms 2015, 3, 198–212. [Google Scholar] [CrossRef] [Green Version]
- Sayan, H.; Assavacheep, P.; Angkanaporn, K.; Assavacheep, A. Effect of Lactobacillus salivarius on growth performance, diarrhea incidence, fecal bacterial population and intestinal morphology of suckling pigs challenged with F4+ enterotoxigenic Escherichia coli. Asian Australas. J. Anim. Sci. 2018, 31, 1308–1314. [Google Scholar] [CrossRef]
- Pringsulaka, O.; Rueangyotchanthana, K.; Suwannasai, N.; Watanapokasin, R.; Amnueysit, P.; Sunthornthummas, S.; Sukkhum, S.; Sarawaneeyaruk, S.; Rangsiruji, A. In vitro screening of lactic acid bacteria for multi-strain probiotics. Livest. Sci. 2015, 174, 66–73. [Google Scholar] [CrossRef]
- Yulianto, A.B.; Lokapirnasari, W.P.; Najwan, R.; Wardhani, H.; Rahman, N.; Huda, K.; Ulfah, N. Influence of Lactobacillus casei WB 315 and crude fish oil (CFO) on growth performance, EPA, DHA, HDL, LDL, cholesterol of meat broiler chickens. Iran. J. Microbiol. 2020, 12, 148–155. [Google Scholar] [CrossRef] [PubMed]
- Secher, T.; Kassem, S.; Benamar, M.; Bernard, I.; Boury, M. Oral administration of the probiotic strain Escherichia coli Nissle 1917 reduces susceptibility to neuroinflammation and repairs experimental autoimmune encephalomyelitis-induced intestinal barrier dysfunction. Front. Immunol. 2017, 8, 1096. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dowarah, R.; Verma, A.K.; Agarwal, N.; Singh, P.; Singh, B.R. Selection and characterization of probiotic lactic acid bacteria and its impact on growth, nutrient digestibility, health and antioxidant status in weaned piglets. PLoS ONE 2018, 13, e0192978. [Google Scholar] [CrossRef] [Green Version]
- Gandhi, A.; Shah, N.P. Effect of salt on cell viability and membrane integrity of Lactobacillus acidophilus, Lactobacillus casei and Bifidobacterium longum as observed by flow cytometry. Food Microbiol. 2015, 49, 197–202. [Google Scholar] [CrossRef] [PubMed]
- Kizerwetter-Swida, M.; Binek, M. Selection of potentially probiotic Lactobacillus strains towards their inhibitory activity against poultry enteropathogenic bacteria. Pol. J. Microbiol. 2005, 54, 287–294. [Google Scholar] [PubMed]
- De Filippis, F.; Troise, A.D.; Vitaglione, P.; Ercolini, D. Different temperatures select distinctive acetic acid bacteria species and promotes organic acids production during Kombucha tea fermentation. Food Microbiol. 2018, 73, 11–16. [Google Scholar] [CrossRef]
- Önal Darilmaz, D.; Sönmez, Ş.; Beyatli, Y. The effects of inulin as a prebiotic supplement and the synbiotic interactions of probiotics to improve oxalate degrading activity. Int. J. Food Sci. Technol. 2019, 54, 121–131. [Google Scholar] [CrossRef] [Green Version]
- Nallala, V.; Sadishkumar, V.; Jeevaratnam, K. Molecular characterization of antimicrobial Lactobacillus isolates and evaluation of their probiotic characteristics in vitro for use in poultry. Food Biotechnol. 2017, 1, 20–41. [Google Scholar] [CrossRef]
- Ayodeji, B.D.; Piccirillo, C.; Ferraro, V.; Moreira, P.R.; Obadina, A.O.; Sanni, L.O.; Pintado, M.E. Screening and molecular identification of lactic acid bacteria from gari and fufu and gari effluents. Ann. Microbiol. 2017, 67, 123–133. [Google Scholar] [CrossRef]
- Siroli, L. Lactobacillus paracasei A13 and highpressure homogenization stress response. Microorganisms 2020, 8, 439. [Google Scholar] [CrossRef] [Green Version]
- Simons, A. Bacteriocins, antimicrobial peptides from bacterial origin: Overview of their biology and their impact against multidrug-resistant bacteria. Microorganisms 2020, 8, 639. [Google Scholar] [CrossRef] [PubMed]
- Gama, J.A.; Zilhão, R.; Dionisio, F. Impact of plasmid interactions with the chromosome and other plasmids on the spread of antibiotic resistance. Plasmid 2018, 99, 82–88. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Tomar, S.K.; Goswami, P.; Sangwan, V.; Singh, R. Antibiotic resistance among commercially available probiotics. Food Res. Int. 2014, 57, 176–195. [Google Scholar] [CrossRef]
- Cauwerts, K.; Pasmans, F.; Devriese, L.A.; Haesebrouck, F.; Decostere, A. Cloacal Lactobacillus isolates from broilers often display resistance toward tetracycline antibiotics. Microb. Drug Resist. 2006, 12, 284–288. [Google Scholar] [CrossRef] [PubMed]
- Dec, M.; Urban-Chmiel, R.; Stępień-Pyśniak, D.; Wernicki, A. Assessment of antibiotic susceptibility in Lactobacillus isolates from chickens. Gut Pathog. 2017, 9, 54. [Google Scholar] [CrossRef]
- Álvarez-Martínez, F.J.; Barrajón-Catalán, E.; Micol, V. Tackling antibiotic resistance with compounds of natural origin: A comprehensive review. Biomedicines 2020, 8, 405. [Google Scholar] [CrossRef] [PubMed]
- Brilhante, M.; Perreten, V.; Donà, V. Multidrug resistance and multivirulence plasmids in enterotoxigenic and hybrid Shiga toxin-producing/enterotoxigenic Escherichia coli isolated from diarrheic pigs in Switzerland. Vet. J. 2019, 244, 60–68. [Google Scholar] [CrossRef] [PubMed]
- Soundharrajan, I.; Yoon, Y.H.; Muthusamy, K.; Jung, J.-S.; Lee, H.J.; Han, O.-K.; Choi, K.C. Isolation of Lactococcus lactis from Whole Crop Rice and Determining Its Probiotic and Antimicrobial Properties towards Gastrointestinal Associated Bacteria. Microorganisms 2021, 9, 2513. [Google Scholar] [CrossRef] [PubMed]
Organisms | Score | Similarity | Value E | Coincidences |
---|---|---|---|---|
NCBI | NCBI | NCBI | NCBI | |
Lactobacillus vaginalis (CLP2) | 260 | 91.67% | 5e-65 | 44 |
Lactobacillus vaginalis (CLP3) | 1104 | 95.67% | 0 | 44 |
Lactobacillus reuteri (CLP4) | 1086 | 97.36% | 0 | 95 |
Lactobacillus vaginalis (CLP5) | 737 | 97.24% | 0 | 58 |
Lactobacillus vaginalis (CLP6) | 1077 | 96.51% | 0 | 51 |
Items | Growth (Log CFU/mL) of Isolated Bacterial Strains | SEM± | p Value | ||||
---|---|---|---|---|---|---|---|
CLP 2 | CLP 3 | CLP4 | CLP5 | CLP6 | |||
pH | |||||||
2 | 7.67 b | 7.54 c | 7.87 a | 6.65 d | 7.57 c | 0.10 | <0.001 |
3 | 10.21 a | 8.91 d | 9.58 b | 9.65 b | 9.40 c | 0.02 | <0.001 |
4 | ____ | 10.2 a | 10.2 a | 8.91 c | 9.94 b | 0.01 | <0.001 |
5.6 | ____ | 9.94 ab | 10.4 a | 10.3 b | 10.2 c | 0.02 | <0.001 |
6 | 9.31 d | 7.98 | 10.8 a | 10.2 b | 10.1 c | 0.02 | <0.001 |
7 | 8.56 b | 7.43 d | 8.79 a | 8.54 b | 7.70 c | 0.02 | <0.001 |
Temperature (°C) | |||||||
30 °C | ____ | _____ | 10.4 a | 7.23 b | _____ | 0.02 | <0.001 |
42 °C | 7.63 c | 7.24 d | 11.0 a | 7.99 b | 5.89 d | 0.05 | <0.001 |
NaCl (%) | |||||||
2 | ____ | _____ | 8.81 a | 5.75 b | _____ | 0.08 | <0.001 |
4 | ____ | _____ | 9.87 | _____ | _____ | 0.05 | >0.999 |
7 | _____ | _____ | 9.82 | _____ | _____ | 0.05 | >0.999 |
10 | _____ | _____ | 9.17 | _____ | _____ | 0.05 | >0.999 |
Bile salts (%) | |||||||
0.05 | _____ | _____ | 11.2 a | 10.3 b | 9.88 c | 0.03 | <0.001 |
0.10 | _____ | _____ | 10.7 a | 10.3 b | 9.82 c | 0.07 | 0.003 |
0.15 | _____ | _____ | 9.50 a | 9.35 a | 6.75 b | 0.08 | <0.001 |
0.30 | _____ | _____ | 9.15 a | 8.14 b | 6.78 c | 0.04 | <0.001 |
Pathogenic Strains | Lactobacillus reuteri (CLP4) |
---|---|
Inhibition Halo (mm) | |
Escherichia coli ATCC® 11775TM | 12.50 |
Salmonella Typhimurium ATCC® 14028TM | 14.00 |
Clostridium perfringens ATCC® 13124TM | 11.50 |
SEM± | 0.850 |
p value | 0.193 |
Strains | Antibiotics (mm) * | ||
---|---|---|---|
Amoxicillin | Ampicillin | Tetracycline | |
Lactobacillus reuteri (CLP4) | 32.00 b | 34.00 b | 31.00 b |
Escherichia coli ATCC 11775 | 33.00 b | 35.00 b | 35.67 ab |
Salmonella Typhimurium ATCC 14028 | 36.00 b | 39.00 a | 40.00 a |
Clostridium perfringens ATCC 13124 | 41.00 a | 32.00 b | 33.00 b |
SEM± | 1.443 | 1.155 | 1.509 |
p value | 0.009 | 0.015 | 0.015 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Melara, E.G.; Avellaneda, M.C.; Rondón, A.J.; Rodríguez, M.; Valdivié, M.; Martínez, Y. Characterization of Autochthonous Strains from the Cecal Content of Creole Roosters for a Potential Use as Probiotics. Animals 2023, 13, 455. https://doi.org/10.3390/ani13030455
Melara EG, Avellaneda MC, Rondón AJ, Rodríguez M, Valdivié M, Martínez Y. Characterization of Autochthonous Strains from the Cecal Content of Creole Roosters for a Potential Use as Probiotics. Animals. 2023; 13(3):455. https://doi.org/10.3390/ani13030455
Chicago/Turabian StyleMelara, Elvia Guadalupe, Mavir Carolina Avellaneda, Ana Julia Rondón, Marlen Rodríguez, Manuel Valdivié, and Yordan Martínez. 2023. "Characterization of Autochthonous Strains from the Cecal Content of Creole Roosters for a Potential Use as Probiotics" Animals 13, no. 3: 455. https://doi.org/10.3390/ani13030455
APA StyleMelara, E. G., Avellaneda, M. C., Rondón, A. J., Rodríguez, M., Valdivié, M., & Martínez, Y. (2023). Characterization of Autochthonous Strains from the Cecal Content of Creole Roosters for a Potential Use as Probiotics. Animals, 13(3), 455. https://doi.org/10.3390/ani13030455