Reproductive Microbiomes in Domestic Livestock: Insights Utilizing 16S rRNA Gene Amplicon Community Sequencing
Abstract
:Simple Summary
Abstract
1. Introduction
2. 16S rRNA Gene Amplicon Community Sequencing
3. Dairy Cattle
3.1. Female Reproductive Microbiome
3.1.1. Vaginal Microbiome
3.1.2. Uterine Microbiome
3.1.3. Placental Microbiome
3.1.4. Colostrum and Milk Microbiome
3.2. Male Reproductive Microbiome
Semen Microbiome
4. Beef Cattle
4.1. Female Reproductive Microbiome
4.1.1. Vaginal Microbiome
4.1.2. Uterine Microbiome
4.1.3. Placental Microbiome
4.2. Male Reproductive Microbiome
Penile and Semen Microbiome
5. Sheep and Goats
5.1. Female Reproductive Microbiome
5.1.1. Vaginal and Uterine Microbiome
5.1.2. Placental Microbiome
5.1.3. Colostrum and Milk Microbiome
5.2. Male Reproductive Microbiome
Semen Microbiome
6. Swine
6.1. Female Reproductive Microbiome
6.1.1. Vaginal Microbiome
6.1.2. Uterine Microbiome
6.1.3. Placental Microbiome
6.1.4. Colostrum and Milk Microbiome
6.2. Male Reproductive Microbiome
Semen Microbiome
7. Equines
7.1. Female Reproductive Microbiome
7.1.1. Vaginal and Uterine Microbiome
7.1.2. Placental and Lactational Microbiome
7.2. Male Reproductive Microbiome
Semen Microbiome
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Wade, W. Unculturable bacteria--the uncharacterized organisms that cause oral infections. J. R. Soc. Med. 2002, 95, 81–83. [Google Scholar] [CrossRef] [PubMed]
- Huttenhower, C.; Gevers, D.; Knight, R.; Abubucker, S.; Badger, J.H.; Chinwalla, A.T.; Creasy, H.H.; Earl, A.M.; FitzGerald, M.G.; Fulton, R.S.; et al. Structure, function and diversity of the healthy human microbiome. Nature 2012, 486, 207–214. [Google Scholar] [CrossRef] [Green Version]
- Ravel, J.; Gajer, P.; Abdo, Z.; Schneider, G.M.; Koenig, S.S.K.; McCulle, S.L.; Karlebach, S.; Gorle, R.; Russell, J.; Tacket, C.O.; et al. Vaginal microbiome of reproductive-age women. Proc. Natl. Acad. Sci. USA 2011, 108 (Suppl. S1), 4680–4687. [Google Scholar] [CrossRef] [Green Version]
- Sirota, I.; Zarek, S.M.; Segars, J.H. Potential Influence of the Microbiome on Infertility and Assisted Reproductive Technology. Semin. Reprod. Med. 2014, 32, 035–042. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moreno, I.; Codoñer, F.M.; Vilella, F.; Valbuena, D.; Martinez-Blanch, J.F.; Jimenez-Almazán, J.; Alonso, R.; Alamá, P.; Remohí, J.; Pellicer, A.; et al. Evidence that the endometrial microbiota has an effect on implantation success or failure. Am. J. Obstet. Gynecol. 2016, 215, 684–703. [Google Scholar] [CrossRef] [Green Version]
- Pergialiotis, V.; Karampetsou, N.; Perrea, D.N.; Konstantopoulos, P.; Daskalakis, G. The Impact of Bacteriospermia on Semen Parameters: A Meta-Analysis. J. Fam. Reprod. Health 2018, 12, 73–83. [Google Scholar]
- Farahani, L.; Tharakan, T.; Yap, T.; Ramsay, J.W.; Jayasena, C.; Minhas, S. The semen microbiome and its impact on sperm function and male fertility: A systematic review and meta-analysis. Andrology 2021, 9, 115–144. [Google Scholar] [CrossRef]
- Clarridge, J.E. Impact of 16S rRNA Gene Sequence Analysis for Identification of Bacteria on Clinical Microbiology and Infectious Diseases. Clin. Microbiol. Rev. 2004, 17, 840–862. [Google Scholar] [CrossRef] [Green Version]
- Weinroth, M.D.; Belk, A.D.; Dean, C.; Noyes, N.; Dittoe, D.K.; Rothrock, M.J.; Ricke, S.C.; Myer, P.R.; Henniger, M.T.; Ramírez, G.A.; et al. Considerations and best practices in animal science 16S ribosomal RNA gene sequencing microbiome studies. J. Anim. Sci. 2022, 100, skab346. [Google Scholar] [CrossRef]
- Chao, A. Nonparametric estimation of the number of classes in a population. Scand. J. Stat. 1984, 11, 265–270. [Google Scholar]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef] [Green Version]
- Bray, J.R.; Curtis, J.T. An Ordination of the Upland Forest Communities of Southern Wisconsin. Ecol. Monogr. 1957, 27, 325–349. [Google Scholar] [CrossRef]
- Lozupone, C.; Knight, R. UniFrac: A New Phylogenetic Method for Comparing Microbial Communities. Appl. Environ. Microbiol. 2005, 71, 8228–8235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clemmons, B.A.; Reese, S.T.; Dantas, F.G.; Franco, G.A.; Smith, T.P.; Adeyosoye, O.I.; Pohler, K.G.; Myer, P.R. Vaginal and uterine bacterial communities in postpartum lactating cows. Front. Microbiol. 2017, 8, 1047. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.-Y.; Deng, F.; Zhang, M.; Jia, X.; Lai, S.-J. Characterization of vaginal microbiota associated with pregnancy outcomes of artificial insemination in dairy cows. J. Microbiol. Biotechnol. 2020, 30, 804–810. [Google Scholar] [CrossRef]
- Moreno, C.G.; Luque, A.T.; Galvão, K.N.; Otero, M.C. Bacterial communities from vagina of dairy healthy heifers and cows with impaired reproductive performance. Res. Vet. Sci. 2022, 142, 15–23. [Google Scholar] [CrossRef]
- Quadros, D.L.; Zanella, R.; Bondan, C.; Zanella, G.C.; Facioli, F.L.; da Silva, A.N.; Zanella, E.L. Study of vaginal microbiota of Holstein cows submitted to an estrus synchronization protocol with the use of intravaginal progesterone device. Res. Vet. Sci. 2020, 131, 1–6. [Google Scholar] [CrossRef]
- Quereda, J.J.; Barba, M.; Mocé, M.L.; Gomis, J.; Jiménez-Trigos, E.; García-Muñoz, Á.; Gómez-Martín, Á.; González-Torres, P.; Carbonetto, B.; García-Roselló, E. Vaginal Microbiota Changes During Estrous Cycle in Dairy Heifers. Res. Vet. Sci. 2020, 7, 371. [Google Scholar] [CrossRef]
- Kudo, H.; Sugiura, T.; Higashi, S.; Oka, K.; Takahashi, M.; Kamiya, S.; Tamura, Y.; Usui, M. Characterization of Reproductive Microbiota of Primiparous Cows During Early Postpartum Periods in the Presence and Absence of Endometritis. Res. Vet. Sci. 2021, 8, 736996. [Google Scholar] [CrossRef]
- Bicalho, M.; Santin, T.; Rodrigues, M.; Marques, C.; Lima, S.; Bicalho, R. Dynamics of the microbiota found in the vaginas of dairy cows during the transition period: Associations with uterine diseases and reproductive outcome. J. Dairy Sci. 2017, 100, 3043–3058. [Google Scholar] [CrossRef]
- Miranda-CasoLuengo, R.; Lu, J.; Williams, E.J.; Miranda-CasoLuengo, A.A.; Carrington, S.D.; Evans, A.C.O.; Meijer, W.G. Delayed differentiation of vaginal and uterine microbiomes in dairy cows developing postpartum endometritis. PLoS ONE 2019, 14, e0200974. [Google Scholar] [CrossRef] [Green Version]
- Bicalho, M.; Machado, V.; Higgins, C.; Lima, F.; Bicalho, R. Genetic and functional analysis of the bovine uterine microbiota. Part I: Metritis versus healthy cows. J. Dairy Sci. 2017, 100, 3850–3862. [Google Scholar] [CrossRef] [PubMed]
- Esposito, G.; Lim, J.J.; Tasara, T.; Irons, P.C.; Webb, E.C.; Chapwanya, A. 0137 The endometrial microbiome in transition cows fed an energy-restricted diet. J. Anim. Sci. 2016, 94, 64–65. [Google Scholar] [CrossRef] [Green Version]
- Moore, S.; Ericsson, A.; Poock, S.; Melendez, P.; Lucy, M. Hot topic: 16S rRNA gene sequencing reveals the microbiome of the virgin and pregnant bovine uterus. J. Dairy Sci. 2017, 100, 4953–4960. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pascottini, O.B.; Spricigo, J.F.W.; Van Schyndel, S.J.; Mion, B.; Rousseau, J.; Weese, J.S.; LeBlanc, S.J. Effects of parity, blood progesterone, and non-steroidal anti-inflammatory treatment on the dynamics of the uterine microbiota of healthy postpartum dairy cows. PLoS ONE 2021, 16, e0233943. [Google Scholar] [CrossRef]
- Cunha, F.; Jeon, S.J.; Daetz, R.; Vieira-Neto, A.; Laporta, J.; Jeong, K.C.; Barbet, A.F.; Risco, C.A.; Galvão, K.N. Quantifying known and emerging uterine pathogens, and evaluating their association with metritis and fever in dairy cows. Theriogenology 2018, 114, 25–33. [Google Scholar] [CrossRef]
- Jeon, S.J.; Neto, A.V.; Gobikrushanth, M.; Daetz, R.; Mingoti, R.D.; Parize, A.C.B.; de Freitas, S.L.; da Costa, A.N.L.; Bicalho, R.C.; Lima, S.; et al. Uterine Microbiota Progression from Calving until Establishment of Metritis in Dairy Cows. Appl. Environ. Microbiol. 2015, 81, 6324–6332. [Google Scholar] [CrossRef] [Green Version]
- Bicalho, M.; Lima, S.; Higgins, C.; Machado, V.; Lima, F.; Bicalho, R. Genetic and functional analysis of the bovine uterine microbiota. Part II: Purulent vaginal discharge versus healthy cows. J. Dairy Sci. 2017, 100, 3863–3874. [Google Scholar] [CrossRef] [Green Version]
- de Goffau, M.C.; Lager, S.; Sovio, U.; Gaccioli, F.; Cook, E.; Peacock, S.J.; Parkhill, J.; Charnock-Jones, D.S.; Smith, G. Human placenta has no microbiome but can contain potential pathogens. Nature 2019, 572, 329–334. [Google Scholar] [CrossRef]
- Lauder, A.P.; Roche, A.M.; Sherrill-Mix, S.; Bailey, A.; Laughlin, A.L.; Bittinger, K.; Leite, R.; Elovitz, M.A.; Parry, S.; Bushman, F.D. Comparison of placenta samples with contamination controls does not provide evidence for a distinct placenta microbiota. Microbiome 2016, 4, 29. [Google Scholar] [CrossRef] [Green Version]
- Guzman, C.E.; Bereza-Malcolm, L.T.; De Groef, B.; Franks, A.E. Presence of Selected Methanogens, Fibrolytic Bacteria, and Proteobacteria in the Gastrointestinal Tract of Neonatal Dairy Calves from Birth to 72 Hours. PLoS ONE 2015, 10, e0133048. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guzman, C.E.; Wood, J.L.; Egidi, E.; White-Monsant, A.C.; Semenec, L.; Grommen, S.V.H.; Hill-Yardin, E.L.; De Groef, B.; Franks, A.E. A pioneer calf foetus microbiome. Sci. Rep. 2020, 10, 17712. [Google Scholar] [CrossRef] [PubMed]
- Karstrup, C.C.; Klitgaard, K.; Jensen, T.K.; Agerholm, J.S.; Pedersen, H.G. Presence of bacteria in the endometrium and placentomes of pregnant cows. Theriogenology 2017, 99, 41–47. [Google Scholar] [CrossRef]
- Zhu, H.; Yang, M.; Loor, J.J.; Elolimy, A.; Li, L.; Xu, C.; Wang, W.; Yin, S.; Qu, Y. Analysis of Cow-Calf Microbiome Transfer Routes and Microbiome Diversity in the Newborn Holstein Dairy Calf Hindgut. Front. Nutr. 2021, 8, 736270. [Google Scholar] [CrossRef]
- Cremonesi, P.; Ceccarani, C.; Curone, G.; Severgnini, M.; Pollera, C.; Bronzo, V.; Riva, F.; Addis, M.F.; Filipe, J.; Amadori, M.; et al. Milk microbiome diversity and bacterial group prevalence in a comparison between healthy Holstein Friesian and Rendena cows. PLoS ONE 2018, 13, e0205054. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gryaznova, M.V.; Syromyatnikov, M.Y.; Dvoretskaya, Y.D.; Solodskikh, S.A.; Klimov, N.T.; Mikhalev, V.I.; Zimnikov, V.I.; Mikhaylov, E.V.; Popov, V.N. Microbiota of Cow’s Milk with Udder Pathologies. Microorganisms 2021, 9, 1974. [Google Scholar] [CrossRef] [PubMed]
- Pollock, J.; Salter, S.J.; Nixon, R.; Hutchings, M.R. Milk microbiome in dairy cattle and the challenges of low microbial biomass and exogenous contamination. Anim. Microbiome 2021, 3, 80. [Google Scholar] [CrossRef]
- Scarsella, E.; Zecconi, A.; Cintio, M.; Stefanon, B. Characterization of Microbiome on Feces, Blood and Milk in Dairy Cows with Different Milk Leucocyte Pattern. Animals 2021, 11, 1463. [Google Scholar] [CrossRef]
- Taponen, S.; McGuinness, D.; Hiitiö, H.; Simojoki, H.; Zadoks, R.; Pyörälä, S. Bovine milk microbiome: A more complex issue than expected. Vet. Res. 2019, 50, 44. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Nan, X.; Zhao, Y.; Wang, H.; Wang, M.; Jiang, L.; Zhang, F.; Xue, F.; Hua, D.; Li, K.; et al. Coupling 16S rDNA Sequencing and Untargeted Mass Spectrometry for Milk Microbial Composition and Metabolites from Dairy Cows with Clinical and Subclinical Mastitis. J. Agric. Food Chem. 2020, 68, 8496–8508. [Google Scholar] [CrossRef]
- Andrews, T.; Neher, D.A.; Weicht, T.R.; Barlow, J.W. Mammary microbiome of lactating organic dairy cows varies by time, tissue site, and infection status. PLoS ONE 2019, 14, e0225001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaczorowski, Ł.; Powierska-Czarny, J.; Wolko, Ł.; Piotrowska-Cyplik, A.; Cyplik, P.; Czarny, J. The Influence of Bacteria Causing Subclinical Mastitis on the Structure of the Cow’s Milk Microbiome. Molecules 2022, 27, 1829. [Google Scholar] [CrossRef] [PubMed]
- Dalanezi, F.; Joaquim, S.; Guimarães, F.; Guerra, S.; Lopes, B.; Schmidt, E.; Cerri, R.; Langoni, H. Influence of pathogens causing clinical mastitis on reproductive variables of dairy cows. J. Dairy Sci. 2020, 103, 3648–3655. [Google Scholar] [CrossRef] [PubMed]
- Lima, S.F.; Teixeira, A.G.; Lima, F.S.; Ganda, E.K.; Higgins, C.H.; Oikonomou, G.; Bicalho, R.C. The bovine colostrum microbiome and its association with clinical mastitis. J. Dairy Sci. 2017, 100, 3031–3042. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hang, B.P.T.; Wredle, E.; Dicksved, J. Analysis of the developing gut microbiota in young dairy calves—Impact of colostrum microbiota and gut disturbances. Trop. Anim. Health Prod. 2020, 53, 50. [Google Scholar] [CrossRef]
- Sannat, C.; Nair, A.; Sahu, S.B.; Sahasrabudhe, S.A.; Kumar, A.; Gupta, A.K.; Shende, R.K. Effect of species, breed, and age on bacterial load in bovine and bubaline semen. Vet. World 2015, 8, 461–466. [Google Scholar] [CrossRef] [Green Version]
- González-Marín, C.; Roy, R.; López-Fernández, C.; Diez, B.; Carabaño, M.; Fernández, J.; Kjelland, M.; Moreno, J.; Gosálvez, J. Bacteria in bovine semen can increase sperm DNA fragmentation rates: A kinetic experimental approach. Anim. Reprod. Sci. 2011, 123, 139–148. [Google Scholar] [CrossRef]
- Rana, P.; Singh, M.; Dhaka, Y. In vitro antibiogram of bacterial isolates from preputial washings and cow bull semen. Haryana Vet. 2020, 59, 213–215. [Google Scholar]
- Parker, A.M.; House, J.; Hazelton, M.S.; Bosward, K.L.; Sheehy, P.A. Comparison of culture and a multiplex probe PCR for identifying Mycoplasma species in bovine milk, semen and swab samples. PLoS ONE 2017, 12, e0173422. [Google Scholar] [CrossRef] [Green Version]
- Medo, J.; Žiarovská, J.; Ďuračka, M.; Tvrdá, E.; Baňas, Š.; Gábor, M.; Kyseľ, M.; Kačániová, M. Core Microbiome of Slovak Holstein Friesian Breeding Bulls’ Semen. Animals 2021, 11, 3331. [Google Scholar] [CrossRef]
- Cojkic, A.; Niazi, A.; Guo, Y.; Hallap, T.; Padrik, P.; Morrell, J.M. Identification of Bull Semen Microbiome by 16S Sequencing and Possible Relationships with Fertility. Microorganisms 2021, 9, 2431. [Google Scholar] [CrossRef] [PubMed]
- Marques, L.; Buzinhani, M.; Neto, R.; Oliveira, R.; Yamaguti, M.; Guimarães, A.; Timenetsky, J. Detection of Ureaplasma di-versum in bovine semen straws for artificial insemination. Vet. Rec. 2009, 165, 572. [Google Scholar] [CrossRef]
- Pickett, A.T.; Cooke, R.F.; Mackey, S.J.; Brandão, A.P.; Colombo, E.A.; Oliveira Filho, R.V.; de Melo, G.D.; Pohler, K.G.; Poole, R.K. Shifts in bacterial communities in the rumen, vagina, and uterus of beef heifers receiving different levels of concentrate. J. Anim. Sci. 2022, 100, skac338. [Google Scholar] [CrossRef] [PubMed]
- Swartz, J.D.; Lachman, M.; Westveer, K.; O’Neill, T.; Geary, T.; Kott, R.W.; Berardinelli, J.G.; Hatfield, P.G.; Thomson, J.M.; Roberts, A. Characterization of the vaginal microbiota of ewes and cows reveals a unique microbiota with low levels of lac-tobacilli and near-neutral pH. Front. Vet. Sci. 2014, 1, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Messman, R.D.; Contreras-Correa, Z.E.; Paz, H.A.; Perry, G.; Lemley, C.O. Vaginal bacterial community composition and concentrations of estradiol at the time of artificial insemination in Brangus heifers. J. Anim. Sci. 2020, 98, skaa178. [Google Scholar] [CrossRef] [PubMed]
- Ault, T.B.; Clemmons, B.A.; Reese, S.T.; Dantas, F.G.; Franco, G.A.; Smith, T.P.; Edwards, J.L.; Myer, P.R.; Pohler, K.G. Uterine and vaginal bacterial community diversity prior to artificial insemination between pregnant and nonpregnant postpartum cows1. J. Anim. Sci. 2019, 97, 4298–4304. [Google Scholar] [CrossRef]
- Ault, T.B.; Clemmons, B.A.; Reese, S.T.; Dantas, F.G.; Franco, G.A.; Smith, T.P.; Edwards, J.L.; Myer, P.R.; Pohler, K.G. Bacterial taxonomic composition of the postpartum cow uterus and vagina prior to artificial insemination1. J. Anim. Sci. 2019, 97, 4305–4313. [Google Scholar] [CrossRef]
- Smith, M.S.; Hickman-Brown, K.J.; McAnally, B.E.; Oliveira Filho, R.V.; de Melo, G.D.; Pohler, K.G.; Poole, R.K. PSIII-14 Re-productive Microbiome and Cytokine Profiles of Postpartum Beef Cows in Relation to Fertility. J. Anim. Sci. 2022, 100, 246–247. [Google Scholar] [CrossRef]
- Dias, N.W.; Sales, A.; Timlin, C.; Pancini, S.; Currin, J.; Mercadante, V.R.G. PSII-21 Vaginitis incidence and effects on fertility of beef females enrolled on estrus synchronization protocols using a controlled internal drug release (CIDR) device. J. Anim. Sci. 2019, 97, 242. [Google Scholar] [CrossRef]
- Poole, R.; Pickett, A.; Filho, R.O.; de Melo, G.; Palanisamy, V.; Dass, S.C.; Cooke, R.; Pohler, K. Shifts in uterine bacterial communities associated with endogenous progesterone and 17β-estradiol concentrations in beef cattle. Domest. Anim. Endocrinol. 2023, 82, 106766. [Google Scholar] [CrossRef]
- Hummel, G.; Woodruff, K.; Austin, K.; Knuth, R.; Lake, S.; Cunningham-Hollinger, H. Late Gestation Maternal Feed Restriction Decreases Microbial Diversity of the Placenta While Mineral Supplementation Improves Richness of the Fetal Gut Microbiome in Cattle. Animals 2021, 11, 2219. [Google Scholar] [CrossRef] [PubMed]
- Hummel, G.L.; Woodruff, K.L.; Austin, K.J.; Smith, T.L.; Cunningham-Hollinger, H.C. Evidence for the amnion-fetal gut-microbial axis in late gestation beef calves1. Transl. Anim. Sci. 2020, 4, S174–S177. [Google Scholar] [CrossRef] [PubMed]
- Mändar, R.; Punab, M.; Borovkova, N.; Lapp, E.; Kiiker, R.; Korrovits, P.; Metspalu, A.; Krjutškov, K.; Nõlvak, H.; Preem, J.-K.; et al. Complementary seminovaginal microbiome in couples. Res. Microbiol. 2015, 166, 440–447. [Google Scholar] [CrossRef] [PubMed]
- Wickware, C.L.; Johnson, T.A.; Koziol, J.H. Composition and diversity of the preputial microbiota in healthy bulls. Theriogenology 2020, 145, 231–237. [Google Scholar] [CrossRef]
- Koziol, J.H.; Sheets, T.; Wickware, C.L.; Johnson, T.A. Composition and diversity of the seminal microbiota in bulls and its association with semen parameters. Theriogenology 2022, 182, 17–25. [Google Scholar] [CrossRef]
- Webb, E.M.; Holman, D.B.; Schmidt, K.N.; Crouse, M.S.; Dahlen, C.R.; Cushman, R.A.; Snider, A.P.; McCarthy, K.L.; Amat, S. A longitudinal characterization of the seminal microbiota and antibiotic resistance in yearling beef bulls subjected to different rate of gains using 16S rRNA gene sequencing and culturing. Preprint (Version 1) available at Research Square 2022. [Google Scholar] [CrossRef]
- Luecke, S.M.; Webb, E.M.; Dahlen, C.R.; Reynolds, L.P.; Amat, S. Seminal and vagino-uterine microbiome and their individual and interactive effects on cattle fertility. Front. Microbiol. 2022, 13, 1029128. [Google Scholar] [CrossRef]
- Fasanya, O.O.A.; Adegboye, D.S.; Molokwu, E.C.I.; Dim, N.I. Microbiology of the genitalia of nulliparous and postpartum Savanna Brown goats. Vet. Res. Commun. 1987, 11, 191–198. [Google Scholar] [CrossRef]
- Sawyer, G. Observations on the bacterial population of the os cervix of the ewe before and after embryo death. Aust. Vet. J. 1977, 53, 542–544. [Google Scholar] [CrossRef]
- Ababneh, M.M.; Degefa, T. Bacteriological Findings and Hormonal Profiles in the Postpartum Balady Goats. Reprod. Domest. Anim. 2006, 41, 12–16. [Google Scholar] [CrossRef]
- Manes, J.; Fiorentino, M.; Kaiser, G.; Hozbor, F.; Alberio, R.; Sanchez, E.; Paolicchi, F. Changes in the aerobic vaginal flora after treatment with different intravaginal devices in ewes. Small Rumin. Res. 2010, 94, 201–204. [Google Scholar] [CrossRef]
- Timoney, J.; Gillespie, J.; Scott, F.; Barlough, J. The genus pasteurella. In Hagan and Bruner’s Microbiology and Infectious Disease of Domestic Animals; Cornell University Press: Ithaca, NY, USA, 1988; pp. 104–116. [Google Scholar]
- Odugbo, M.; Odama, L.; Umoh, J.; Lamorde, A. Pasteurella multocida pneumonic infection in sheep: Prevalence, clinical and pathological studies. Small Rumin. Res. 2006, 66, 273–277. [Google Scholar] [CrossRef]
- Serrano, M.; Climent, E.; Freire, F.; Martínez-Blanch, J.F.; González, C.; Reyes, L.; Solaz-Fuster, M.C.; Calvo, J.; Jiménez, M.; Codoñer, F.M. Influence of the Ovine Genital Tract Microbiota on the Species Artificial Insemination Outcome. A Pilot Study in Commercial Sheep Farms. Biotech 2020, 9, 16. [Google Scholar] [CrossRef] [PubMed]
- Koester, L.R.; Petry, A.L.; Youngs, C.R.; Schmitz-Esser, S. Ewe Vaginal Microbiota: Associations With Pregnancy Outcome and Changes During Gestation. Front. Microbiol. 2021, 12, 745884. [Google Scholar] [CrossRef] [PubMed]
- Kilian, M.; Biberstein, E. Genus II. Haemophilus. Bergey’s Man. Syst. Bacteriol. 1984, 1, 558–569. [Google Scholar]
- Smith, K.E.; Garza, A.L.; Robinson, C.; Ashley, R.L.; Ivey, S.L. 1039 WS Influence of sampling location and pregnancy on composition of the microbiome associated with the reproductive tract of the ewe. J. Anim. Sci. 2016, 94, 498. [Google Scholar] [CrossRef] [Green Version]
- Murphy, E.C.; Frick, I.-M. Gram-positive anaerobic cocci—Commensals and opportunistic pathogens. FEMS Microbiol. Rev. 2013, 37, 520–553. [Google Scholar] [CrossRef] [Green Version]
- Kirkbride, C.A. Diagnoses in 1,784 Ovine Abortions and Stillbirths. J. Vet. Diagn. Investig. 1993, 5, 398–402. [Google Scholar] [CrossRef] [Green Version]
- Moeller, R.B. Causes of Caprine Abortion: Diagnostic Assessment of 211 Cases (1991–1998). J. Vet. Diagn. Investig. 2001, 13, 265–270. [Google Scholar] [CrossRef]
- Yaeger, M.J.; Sahin, O.; Plummer, P.J.; Wu, Z.; Stasko, J.A.; Zhang, Q. The pathology of natural and experimentally induced Campylobacter jejuni abortion in sheep. J. Vet. Diagn. Investig. 2021, 33, 1096–1105. [Google Scholar] [CrossRef]
- Bi, Y.; Tu, Y.; Zhang, N.; Wang, S.; Zhang, F.; Suen, G.; Shao, D.; Li, S.; Diao, Q. Multiomics analysis reveals the presence of a microbiome in the gut of fetal lambs. Gut 2021, 70, 853–864. [Google Scholar] [CrossRef]
- Zou, X.; Liu, G.; Meng, F.; Hong, L.; Li, Y.; Lian, Z.; Yang, Z.; Luo, C.; Liu, D. Exploring the Rumen and Cecum Microbial Community from Fetus to Adulthood in Goat. Animals 2020, 10, 1639. [Google Scholar] [CrossRef] [PubMed]
- Zadoks, R.N.; Tassi, R.; Martin, E.; Holopainen, J.; McCallum, S.; Gibbons, J.; Ballingall, K.T. Comparison of bacteriological culture and PCR for detection of bacteria in ovine milk—Sheep are not small cows. J. Dairy Sci. 2014, 97, 6326–6333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esteban-Blanco, C.; Gutiérrez-Gil, B.; Puente-Sánchez, F.; Marina, H.; Tamames, J.; Acedo, A.; Arranz, J.J. Microbiota characterization of sheep milk and its association with somatic cell count using 16s rRNA gene sequencing. J. Anim. Breed. Genet. 2020, 137, 73–83. [Google Scholar] [CrossRef] [PubMed]
- Esteban-Blanco, C.; Gutiérrez-Gil, B.; Marina, H.; Pelayo, R.; Suárez-Vega, A.; Acedo, A.; Arranz, J.-J. The Milk Microbiota of the Spanish Churra Sheep Breed: New Insights into the Complexity of the Milk Microbiome of Dairy Species. Animals 2020, 10, 1463. [Google Scholar] [CrossRef]
- Toquet, M.; Gómez-Martín, Á.; Bataller, E. Review of the bacterial composition of healthy milk, mastitis milk and colostrum in small ruminants. Res. Vet. Sci. 2021, 140, 1–5. [Google Scholar] [CrossRef]
- McInnis, E.A.; Kalanetra, K.M.; Mills, D.A.; Maga, E.A. Analysis of raw goat milk microbiota: Impact of stage of lactation and lysozyme on microbial diversity. Food Microbiol. 2015, 46, 121–131. [Google Scholar] [CrossRef]
- Polveiro, R.C.; Vidigal, P.M.P.; de Oliveira Mendes, T.A.; Yamatogi, R.S.; da Silva, L.S.; Fujikura, J.M.; Da Costa, M.M.; Moreira, M.A.S. Distinguishing the milk microbiota of healthy goats and goats diagnosed with subclinical mastitis, clinical mastitis, and gangrenous mastitis. Front. Microbiol. 2022, 13, 918706. [Google Scholar] [CrossRef]
- Otter, A. Bacterial isolates from the semen of rams with suspected infertility. Vet. Rec. 2008, 162, 623–624. [Google Scholar] [CrossRef]
- Yániz, J.L.; Marco-Aguado, M.A.; Mateos, J.A.; Santolaria, P. Bacterial contamination of ram semen, antibiotic sensitivities, and effects on sperm quality during storage at 15 C. Anim. Reprod. Sci. 2010, 122, 142–149. [Google Scholar] [CrossRef]
- Tvrdá, E.; Kačániová, M.; Baláži, A.; Vašíček, J.; Vozaf, J.; Jurčík, R.; Ďuračka, M.; Žiarovská, J.; Kováč, J.; Chrenek, P. The Impact of Bacteriocenoses on Sperm Vitality, Immunological and Oxidative Characteristics of Ram Ejaculates: Does the Breed Play a Role? Animals 2021, 12, 54. [Google Scholar] [CrossRef] [PubMed]
- García-Pastor, L.; Blasco, J.; Barberán, M. Pasteurellosis as a cause of genital lesions in rams. A descriptive study. Small Rumin. Res. 2009, 87, 111–115. [Google Scholar] [CrossRef]
- Mocé, M.L.; Esteve, I.C.; Pérez-Fuentes, S.; Gómez, E.A.; Mocé, E. Microbiota in Goat Buck Ejaculates Differs Between Breeding and Non-breeding Seasons. Front. Vet. Sci. 2022, 9, 867671. [Google Scholar] [CrossRef] [PubMed]
- Bara, M.; McGowan, M.; O’BOYLE, D.; Cameron, R. A study of the microbial flora of the anterior vagina of normal sows during different stages of the reproductive cycle. Aust. Vet. J. 1993, 70, 256–259. [Google Scholar] [CrossRef] [PubMed]
- Qi, X.; Yun, C.; Pang, Y.; Qiao, J. The impact of the gut microbiota on the reproductive and metabolic endocrine system. Gut Microbes 2021, 13, 1894070. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Liu, M.; Ke, S.; Huang, X.; Fang, S.; He, M.; Fu, H.; Chen, C.; Huang, L. Gut and Vagina Microbiota Associated with Estrus Return of Weaning Sows and Its Correlation with the Changes in Serum Metabolites. Front. Microbiol. 2021, 12, 690091. [Google Scholar] [CrossRef]
- Wang, J.; Li, C.; Nesengani, L.T.; Gong, Y.; Zhang, S.; Lu, W. Characterization of vaginal microbiota of endometritis and healthy sows using high-throughput pyrosequencing of 16S rRNA gene. Microb. Pathog. 2017, 111, 325–330. [Google Scholar] [CrossRef]
- Kiefer, Z.E.; Koester, L.R.; Studer, J.M.; Chipman, A.L.; Mainquist-Whigham, C.; Keating, A.F.; Schmitz-Esser, S.; Ross, J.W. Vaginal microbiota differences associated with pelvic organ prolapse risk during late gestation in commercial sows. Biol. Reprod. 2021, 105, 1545–1561. [Google Scholar] [CrossRef]
- Hickman-Brown, K.J.; Smith, M.S.; McAnally, B.E.; Cain, J.W.; Seo, H.; Bazer, F.W.; Johnson, G.A.; Wiegert, J.G.; Poole, R.K. Microbiome composition of vaginal, cervical, and uterine tissues in cyclic and pregnant gilts. In Proceedings of the Society for the Study of Reproduction, Spokane, WA, USA, 27-29 July 2022. [Google Scholar]
- Eustis, S.L.; Kirkbride, C.A.; Gates, C.; Haley, L.D. Porcine Abortions Associated with Fungi, Actinomycetes, and Rhodococcus sp. Vet. Pathol. 1981, 18, 608–613. [Google Scholar] [CrossRef] [Green Version]
- Kemper, N.; Preissler, R. Bacterial flora on the mammary gland skin of sows and in their colostrum. J. Swine Health Prod. 2011, 19, 112–115. [Google Scholar]
- Monteiro, M.S.; Poor, A.P.; Muro, B.B.; Carnevale, R.F.; Leal, D.F.; Garbossa, C.A.; Moreno, A.M.; Almond, G. The sow mi-crobiome: Current and future perspectives to maximize the productivity in swine herds. J. Swine Health Prod. 2022, 30, 238–250. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Mi, J.; Lv, N.; Gao, J.; Cheng, J.; Wu, R.; Ma, J.; Lan, T.; Liao, X. Lactation stage-dependency of the sow milk mi-crobiota. Front. Microbiol. 2018, 9, 945. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salcedo, J.; Frese, S.; Mills, D.; Barile, D. Characterization of porcine milk oligosaccharides during early lactation and their relation to the fecal microbiome. J. Dairy Sci. 2016, 99, 7733–7743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, H.; Zeng, X.; Zhang, G.; Hou, C.; Li, N.; Yu, H.; Shang, L.; Zhang, X.; Trevisi, P.; Yang, F.; et al. Maternal milk and fecal microbes guide the spatiotemporal development of mucosa-associated microbiota and barrier function in the porcine neonatal gut. BMC Biol. 2019, 17, 106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maradiaga, N.; Zeineldin, M.; Aldridge, B.; Lowe, J. Influence of maternal microbial communities on the mucosal microbiome of neonatal pigs. AASV 2014, 2014, 1–39. [Google Scholar]
- Kuster, C.; Althouse, G. The impact of bacteriospermia on boar sperm storage and reproductive performance. Theriogenology 2016, 85, 21–26. [Google Scholar] [CrossRef]
- Althouse, G.C.; Lu, K.G. Bacteriospermia in extended porcine semen. Theriogenology 2005, 63, 573–584. [Google Scholar] [CrossRef]
- Úbeda, J.L.; Ausejo, R.; Dahmani, Y.; Falceto, M.V.; Usan, A.; Malo, C.; Perez-Martinez, F.C. Adverse effects of members of the Enterobacteriaceae family on boar sperm quality. Theriogenology 2013, 80, 565–570. [Google Scholar] [CrossRef]
- Gòdia, M.; Ramayo-Caldas, Y.; Zingaretti, L.M.; Darwich, L.; López, S.; Rodríguez-Gil, J.E.; Yeste, M.; Sánchez, A.; Clop, A. A pilot RNA-seq study in 40 pietrain ejaculates to characterize the porcine sperm microbiome. Theriogenology 2020, 157, 525–533. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, H.; Yang, Q.; Li, P.; Wen, Y.; Han, X.; Li, B.; Jiang, H.; Li, X. Genomic Sequencing Reveals the Diversity of Seminal Bacteria and Relationships to Reproductive Potential in Boar Sperm. Front. Microbiol. 2020, 11, 1873. [Google Scholar] [CrossRef]
- McAnally, B.E.; Smith, M.S.; Wiegert, J.G.; Poole, R.K. PSI-2 Analysis of Boar Semen Microbiome and Sperm Quality Parame-ters. J. Anim. Sci. 2022, 100, 231–232. [Google Scholar] [CrossRef]
- Bonet, S.; Delgado-Bermúdez, A.; Yeste, M.; Pinart, E. Study of boar sperm interaction with Escherichia coli and Clostridium perfringens in refrigerated semen. Anim. Reprod. Sci. 2018, 197, 134–144. [Google Scholar] [CrossRef] [PubMed]
- Pinart, E.; Domènech, E.; Bussalleu, E.; Yeste, M.; Bonet, S. A comparative study of the effects of Escherichia coli and Clos-tridium perfringens upon boar semen preserved in liquid storage. Anim. Reprod. Sci. 2017, 177, 65–78. [Google Scholar] [CrossRef] [PubMed]
- Sepúlveda, L.; Bussalleu, E.; Yeste, M.; Torner, E.; Bonet, S. How do different concentrations of Clostridium perfringens affect the quality of extended boar spermatozoa? Anim. Reprod. Sci. 2013, 140, 83–91. [Google Scholar] [CrossRef]
- Even, G.; Mottais, D.; Morien, F.; Pham, M.D.; Ostergaard, A.; Martel, S.; Merlin, S.; Audebert, C. Porcine bacteriospermia examined by high-throughput sequencing. Theriogenology 2020, 142, 268–275. [Google Scholar] [CrossRef]
- Barba, M.; Martínez-Boví, R.; Quereda, J.J.; Mocé, M.L.; Plaza-Dávila, M.; Jiménez-Trigos, E.; Gómez-Martín, Á.; Gonzá-lez-Torres, P.; Carbonetto, B.; García-Roselló, E. Vaginal microbiota is stable throughout the estrous cycle in arabian mares. Animals 2020, 10, 2020. [Google Scholar] [CrossRef]
- Holyoak, G.R.; Premathilake, H.U.; Lyman, C.C.; Sones, J.L.; Gunn, A.; Wieneke, X.; DeSilva, U. The healthy equine uterus harbors a distinct core microbiome plus a rich and diverse microbiome that varies with geographical location. Sci. Rep. 2022, 12, 14790. [Google Scholar] [CrossRef]
- Morris, L.H.; McCue, P.M.; Aurich, C. Equine endometritis: A review of challenges and new approaches. Reproduction 2020, 160, R95–R110. [Google Scholar] [CrossRef]
- Li, J.; Zhu, Y.; Mi, J.; Zhao, Y.; Holyoak, G.R.; Yi, Z.; Wu, R.; Wang, Z.; Zeng, S. Endometrial and vaginal microbiome in donkeys with and without clinical endometritis. Front. Microbiol. 2022, 13, 884574. [Google Scholar] [CrossRef]
- Xia, Y.; Cornelius, A.; Donnelly, C.; Bicalho, R.; Cheong, S.; Sones, J. Metagenomic analysis of the equine placental microbiome. Clin. 2017, 9, 452. [Google Scholar]
- Mols, K.; Boe-Hansen, G.; Mikkelsen, D.; Bryden, W.; Cawdell-Smith, A. 109 Is the equine gut colonised in utero by amniotic bacteria? J. Equine Vet. Sci. 2021, 100, 103572. [Google Scholar] [CrossRef]
- Quercia, S.; Freccero, F.; Castagnetti, C.; Soverini, M.; Turroni, S.; Biagi, E.; Rampelli, S.; Lanci, A.; Mariella, J.; Chinellato, E.; et al. Early colonisation and temporal dynamics of the gut microbial ecosystem in Standardbred foals. Equine Vet. J. 2019, 51, 231–237. [Google Scholar] [CrossRef]
- Aurich, C.; Spergser, J. Influence of bacteria and gentamicin on cooled-stored stallion spermatozoa. Theriogenology 2007, 67, 912–918. [Google Scholar] [CrossRef] [PubMed]
- Quiñones-Pérez, C.; Hidalgo, M.; Ortiz, I.; Crespo, F.; Vega-Pla, J.L. Characterization of the seminal bacterial microbiome of healthy, fertile stallions using next-generation sequencing. Anim. Reprod. 2021, 18, e20200052. [Google Scholar] [CrossRef] [PubMed]
- Al-Kass, Z.; Guo, Y.; Vinnere Pettersson, O.; Niazi, A.; Morrell, J.M. Metagenomic analysis of bacteria in stallion semen. Anim. Reprod. Sci. 2020, 221, 106568. [Google Scholar] [CrossRef] [PubMed]
Culture-Based Method | 16S rRNA Sequencing | References | |
---|---|---|---|
Dairy Cattle | |||
Vagina | Trueperella and Escherichia associated with metritis | Fusobacteria and Bacteroidetes phyla with metritis and endometritis | [19,20] |
Uterus | Trueperella pyogenes and Escherichia coli associated with metritis | Fusobacterium, Bacteroides, Prevotella, and Helococcus with metritis and endometritis | [19,22,26] |
Milk/Colostrum | Escherichia with mastitis | Streptococcus, Staphylococcus, and Escherichia with mastitis | [36,37,42] |
Semen | Myocplasma infection of embryos and endometritis through natural mating | Myocplasma infection of embryos and endometritis through natural mating | [49] |
Beef Cattle | |||
Vagina | Mycoplasma introduced via AI gun can cause abortion in cattle | Firmicutes and Proteobacteria shift with progesterone Fusobacterium found to be causative for morbidity and mortality Bacteroidetes associated with metritis | [57,65] |
Uterus | - | Corynebacterium has been associated with infertility and uterine disease | [57,60] |
Semen | Histophilus is found in mucosal membranes Campylobacter fetus causes campylobacteriosis | Enterococcus associated with poor semen quality | [64,65] |
Sheep and Goats | |||
Vagina | Pasteurella multocida associated with embryonic death in ewes | Pasteurellaceae family (Histophilus, Mannheimia) abundant in nonpregnant ewes | [69,74,75,76] |
Uterus | - | Finegoldia (Class Clostridia) abundant in nonpregnant ewes | [78] |
Placenta | Placentitis and abortion caused by Brucella, Campylobacter, Chlamydia, Listeria, and Coxiella | - | [79,80,81] |
Milk/Colostrum | Escherichia coli, Mannheimia, and Enterococcus cause mastitis or subclinical mastitis in sheep | Mycoplasma, Escherichia, and Enterococcus are bacteria responsible for mastitis in goats | [87,89] |
Semen | Mannheima haemolytica isolated from semen with poor sperm quality from rams | Faecalibacterium (Class Clostridia) associated with poor sperm quality in bucks | [90,93,94] |
Swine | |||
Vagina | - | Proteobacteria, Bacteroidetes, Escherichia-shigella, and Bacteroides with endometritis | [96,97,98,99] |
Uterus | - | - | - |
Placenta | Rhodococcus and Actinomadura madurae in the chorioallantois of aborted fetuses | - | [100,101] |
Semen | Enterobacteriaceae family, Costridium perfringens, and Pseudomonas aeruginosa more abundant in semen with poor sperm quality and decreased longevity | Clostridium spp. and Streptococcus spp. associated with decreased sperm quality and leading to infections | [108,109,110,113] |
Equines | |||
Vagina and Uterus | Streptococcus zooepidemicus, Staphylococcus aureus, and Escherichia isolated from mares with endometriosis | Ruminococcaceae and Lachnospiraceae families prevalent in donkeys with endometritis | [120,121] |
Semen | Streptococcus equisimilis and Pseudomonas aeruginosa reduce sperm motility and velocity | - | [125] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poole, R.K.; Soffa, D.R.; McAnally, B.E.; Smith, M.S.; Hickman-Brown, K.J.; Stockland, E.L. Reproductive Microbiomes in Domestic Livestock: Insights Utilizing 16S rRNA Gene Amplicon Community Sequencing. Animals 2023, 13, 485. https://doi.org/10.3390/ani13030485
Poole RK, Soffa DR, McAnally BE, Smith MS, Hickman-Brown KJ, Stockland EL. Reproductive Microbiomes in Domestic Livestock: Insights Utilizing 16S rRNA Gene Amplicon Community Sequencing. Animals. 2023; 13(3):485. https://doi.org/10.3390/ani13030485
Chicago/Turabian StylePoole, Rebecca K., Dallas R. Soffa, Brooke E. McAnally, Molly S. Smith, Kyle J. Hickman-Brown, and Erin L. Stockland. 2023. "Reproductive Microbiomes in Domestic Livestock: Insights Utilizing 16S rRNA Gene Amplicon Community Sequencing" Animals 13, no. 3: 485. https://doi.org/10.3390/ani13030485
APA StylePoole, R. K., Soffa, D. R., McAnally, B. E., Smith, M. S., Hickman-Brown, K. J., & Stockland, E. L. (2023). Reproductive Microbiomes in Domestic Livestock: Insights Utilizing 16S rRNA Gene Amplicon Community Sequencing. Animals, 13(3), 485. https://doi.org/10.3390/ani13030485