Protein Identification of Seminal Plasma in Bali Bull (Bos javanicus)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Approval
2.2. Semen Samples
2.3. SDS-PAGE and Staining Gel
2.4. Protein Quantification
2.5. Peptide Fractionation and Liquid Chromatography–Mass Spectrometry (LC-MS/MS) Analysis
2.6. Protein Identification
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Correction Statement
References
- Martojo, H. Indigenous Bali Cattle Is Most Suitable for Sustainable Small Farming in Indonesia. Reprod. Domest. Anim. 2012, 47, 10–14. [Google Scholar] [CrossRef] [PubMed]
- Purwantara, B.; Noor, R.R.; Andersson, G.; Rodriguez-Martinez, H. Banteng and Bali Cattle in Indonesia: Status and Forecasts. Reprod. Domest. Anim. 2012, 47, 2–6. [Google Scholar] [CrossRef] [PubMed]
- Sarsaifi, K.; Haron, A.W.; Vejayan, J.; Yusoff, R.; Hani, H.; Omar, M.A.; Hong, L.W.; Yimer, N.; Ying Ju, T.; Othman, A.M. Two-Dimensional Polyacrylamide Gel Electrophoresis of Bali Bull (Bos Javanicus) Seminal Plasma Proteins and Their Relationship with Semen Quality. Theriogenology 2015, 84, 956–968. [Google Scholar] [CrossRef]
- Chacur, M.G.M. Seminal plasma proteins as potential markers of relative fertility in Zebu Bulls (Bos taurus-indicus). Electrophoresis 2012, 11, 13. [Google Scholar] [CrossRef]
- Samanta, L.; Parida, R.; Dias, T.R.; Agarwal, A. The Enigmatic Seminal Plasma: A Proteomics Insight from Ejaculation to Fertilization. Reprod. Biol. Endocrinol. 2018, 16, 1–11. [Google Scholar] [CrossRef]
- Druart, X.; de Graaf, S. Seminal Plasma Proteomes and Sperm Fertility. Anim. Reprod. Sci. 2018, 194, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Nongbua, T.; Guo, Y.; Edman, A.; Humblot, P.; Morrell, J.M. Effect of Bovine Seminal Plasma on Bovine Endometrial Epithelial Cells in Culture. Reprod. Domest. Anim. 2018, 53, 85–92. [Google Scholar] [CrossRef]
- Aitken, J.; Fisher, H. Reactive Oxygen Species Generation and Human Spermatozoa: The Balance of Benefit and Risk. Bioessays 2006, 1999, 1–6. [Google Scholar] [CrossRef]
- Rodríguez-Villamil, P.; Hoyos-Marulanda, V.; Martins, J.A.M.; Oliveira, A.N.; Aguiar, L.H.; Moreno, F.B.; Velho, A.L.M.C.S.; Monteiro-Moreira, A.C.; Moreira, R.A.; Vasconcelos, I.M.; et al. Purification of Binder of Sperm Protein 1 (BSP1) and Its Effects on Bovine in Vitro Embryo Development after Fertilization with Ejaculated and Epididymal Sperm. Theriogenology 2016, 85, 540–554. [Google Scholar] [CrossRef]
- Kasimanickam, V.; Kasimanickam, R.; Arangasamy, A.; Saberivand, A.; Stevenson, J.S.; Kastelic, J.P. Association between MRNA Abundance of Functional Sperm Function Proteins and Fertility of Holstein Bulls. Theriogenology 2012, 78, 2007–2019.e2. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Kumar, D.; Singh, I.; Yadav, P.S. Seminal Plasma Proteome: Promising Biomarkers for Bull Fertility. Agric. Res. 2012, 1, 78–86. [Google Scholar] [CrossRef]
- Iskandar, H.; Sonjaya, H.; Arifiantini, R.I.; Hasbi, H. Bull Sperm and Seminal Plasma Proteins and their Relationship with Fertility: A Review. Online J. Anim. Feed Res. 2022, 12, 292–301. [Google Scholar] [CrossRef]
- Killian, G.J.; Chapman, D.A.; Rogowski, L.A. Fertility-Associated Proteins in Holstein Bull Seminal Plasma. Biol. Reprod. 1993, 49, 1202–1207. [Google Scholar] [CrossRef]
- Boccaletto, P.; Siddique, M.A.M.; Cosson, J. Proteomics: A Valuable Approach to Elucidate Spermatozoa Post –Testicular Maturation in the Endangered Acipenseridae Family. Anim. Reprod. Sci. 2018, 192, 18–27. [Google Scholar] [CrossRef]
- Li, J.; Zhao, W.; Akbani, R.; Liu, W.; Ju, Z.; Ling, S.; Vellano, C.P.; Roebuck, P.; Yu, Q.; Eterovic, A.K.; et al. Characterization of Human Cancer Cell Lines by Reverse-Phase Protein Arrays. Cancer Cell 2017, 31, 225–239. [Google Scholar] [CrossRef]
- Sobsey, C.A.; Ibrahim, S.; Richard, V.R.; Gaspar, V.; Mitsa, G.; Lacasse, V.; Zahedi, R.P.; Batist, G.; Borchers, C.H. Targeted and Untargeted Proteomics Approaches in Biomarker Development. J. Surg. CI Res. 2014, 5, 47–55. [Google Scholar] [CrossRef]
- Yoshida, M.; Kawano, N.; Yoshida, K. Control of Sperm Motility and Fertility: Diverse Factors and Common Mechanisms. Cell. Mol. Life Sci. 2008, 65, 3446–3457. [Google Scholar] [CrossRef] [PubMed]
- Pini, T.; Leahy, T.; Soleilhavoup, C.; Tsikis, G.; Labas, V.; Combes-Soia, L.; Harichaux, G.; Rickard, J.P.; Druart, X.; De Graaf, S.P. Proteomic Investigation of Ram Spermatozoa and the Proteins Conferred by Seminal Plasma. J. Proteome Res. 2016, 15, 3700–3711. [Google Scholar] [CrossRef] [PubMed]
- Viana, A.G.A.; Martins, A.M.A.; Pontes, A.H.; Fontes, W.; Castro, M.S.; Ricart, C.A.O.; Sousa, M.V.; Kaya, A.; Topper, E.; Memili, E.; et al. Proteomic Landscape of Seminal Plasma Associated with Dairy Bull Fertility. Sci. Rep. 2018, 8, 16323. [Google Scholar] [CrossRef]
- Feugang, J.M.; Liao, S.F.; Willard, S.T.; Ryan, P.L. In-Depth Proteomic Analysis of Boar Spermatozoa through Shotgun and Gel-Based Methods. BMC Genom. 2018, 19, 62. [Google Scholar] [CrossRef]
- Fu, Q.; Pan, L.; Huang, D.; Wang, Z.; Hou, Z.; Zhang, M. Proteomic Profiles of Buffalo Spermatozoa and Seminal Plasma. Theriogenology 2019, 134, 74–82. [Google Scholar] [CrossRef]
- Griffin, R.A.; Swegen, A.; Baker, M.A.; Ogle, R.A.; Smith, N.; Aitken, R.J.; Skerrett-Byrne, D.A.; Fair, S.; Gibb, Z. Proteomic Analysis of Spermatozoa Reveals Caseins Play a Pivotal Role in Preventing Short-Term Periods of Subfertility in Stallions. Biol. Reprod. 2022, 106, 741–755. [Google Scholar] [CrossRef] [PubMed]
- Assumpcao, T.; Fontes, W.; Sousa, M.; Ricart, C. Proteome Analysis of Nelore Bull (Bos Taurus Indicus) Seminal Plasma. Protein Pept. Lett. 2005, 12, 813–817. [Google Scholar] [CrossRef] [PubMed]
- Jobim, M.I.M.; Oberst, E.R.; Salbego, C.G.; Souza, D.O.; Wald, V.B.; Tramontina, F.; Mattos, R.C. Two-Dimensional Polyacrylamide Gel Electrophoresis of Bovine Seminal Plasma Proteins and Their Relation with Semen Freezability. Theriogenology 2004, 61, 255–266. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.E.; Li, S.H.; Minabe, S.; Anderson, A.L.; Dun, M.D.; Maeda, K.I.; Matsuda, F.; Chang, H.W.; Nixon, B.; Tsai, P.S.J. Mouse Quiescin Sulfhydryl Oxidases Exhibit Distinct Epididymal Luminal Distribution with Segment-Specific Sperm Surface Associations. Biol. Reprod. 2018, 99, 1022–1033. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.K.; Brar, P.S.; Cheema, R.S.; Kaur, M.; Bansal, A.K. Characterization of Buffalo Bull Frozen-Thawed Sperm Proteins through SDS-PAGE and Their Correlation with HOST and in Vitro Acrosome Reaction. Indian J. Anim. Sci. 2014, 84, 949–953. [Google Scholar]
- Candiano, G.; Bruschi, M.; Musante, L.; Santucci, L.; Ghiggeri, G.M.; Carnemolla, B.; Orecchia, P.; Zardi, L.; Righetti, P.G. Blue Silver: A Very Sensitive Colloidal Coomassie G-250 Staining for Proteome Analysis. Electrophoresis 2004, 25, 1327–1333. [Google Scholar] [CrossRef]
- González-Cadavid, V.; Martins, J.A.M.; Moreno, F.B.; Andrade, T.S.; Santos, A.C.L.; Monteiro-Moreira, A.C.O.; Moreira, R.A.; Moura, A.A. Seminal Plasma Proteins of Adult Boars and Correlations with Sperm Parameters. Theriogenology 2014, 82, 697–707. [Google Scholar] [CrossRef]
- Bradford, A.M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 Years of Image Analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef]
- Arshid, S.; Tahir, M.; Fontes, B.; de Souza Montero, E.F.; Castro, M.S.; Sidoli, S.; Roepstorff, P.; Fontes, W. High Performance Mass Spectrometry Based Proteomics Reveals Enzyme and Signaling Pathway Regulation in Neutrophils during the Early Stage of Surgical Trauma. Proteom. Clin. Appl. 2017, 11, 1600001. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Franceschini, A.; Wyder, S.; Forslund, K.; Heller, D.; Huerta-Cepas, J.; Simonovic, M.; Roth, A.; Santos, A.; Tsafou, K.P.; et al. STRING V10: Protein-Protein Interaction Networks, Integrated over the Tree of Life. Nucleic Acids Res. 2015, 43, D447–D452. [Google Scholar] [CrossRef] [PubMed]
- Lasko, J.; Schlingmann, K.; Klocke, A.; Mengel, G.A.; Turner, R. Calcium/Calmodulin and CAMP/Protein Kinase-A Pathways Regulate Sperm Motility in the Stallion. Anim. Reprod. Sci. 2012, 132, 169–177. [Google Scholar] [CrossRef] [PubMed]
- Sankhala, R.S.; Swamy, M.J. The Major Protein of Bovine Seminal Plasma, PDC-109, Is a Molecular Chaperone. Biochemistry 2010, 49, 3908–3918. [Google Scholar] [CrossRef] [PubMed]
- Thérien, I.; Bergeron, A.; Bousquet, D.; Manjunath, P. Isolation and Characterization of Glycosaminoglycans from Bovine Follicular Fluid and Their Effect on Sperm Capacitation. Mol. Reprod. Dev. 2005, 71, 97–106. [Google Scholar] [CrossRef]
- Wilhelm, S.S.-L. gerhard aumüller; martin albrecht; parimal c. sen; karlheinrich röhm; beate Interaction of PDC-109, the Major Secretory Protein From. J. Androl. 2004, 25, 234–244. [Google Scholar]
- Lane, M.E.; Thérien, I.; Moreau, R.; Manjunath, P. Heparin and High-Density Lipoprotein Mediate Bovine Sperm Capacitation by Different Mechanisms. Biol. Reprod. 1999, 60, 169–175. [Google Scholar] [CrossRef]
- Yu, B.; Zhao, Y.; Zhao, W.; Chen, F.; Liu, Y.; Zhang, J.; Fu, W.; Zong, Z.; Yu, A.; Guan, Y. The Inhibitory Effect of BSP-A1/-A2 on Protein Kinase C and Tyrosine Protein Kinase. Cell Biochem. Funct. 2003, 21, 183–188. [Google Scholar] [CrossRef]
- Moura, A.A.; Chapman, D.A.; Koc, H.; Killian, G.J. Proteins of the Cauda Epididymal Fluid Associated with Fertility of Mature Dairy Bulls. J. Androl. 2006, 27, 534–541. [Google Scholar] [CrossRef]
- Rego, J.P.A.; Crisp, J.M.; Moura, A.A.; Nouwens, A.S.; Li, Y.; Venus, B.; Corbet, N.J.; Corbet, D.H.; Burns, B.M.; Boe-Hansen, G.B.; et al. Seminal Plasma Proteome of Electroejaculated Bos Indicus Bulls. Anim. Reprod. Sci. 2014, 148, 1–17. [Google Scholar] [CrossRef]
- Manjunath, P.; Thérien, I. Role of Seminal Plasma Phospholipid-Binding Proteins in Sperm Membrane Lipid Modification That Occurs during Capacitation. J. Reprod. Immunol. 2002, 53, 109–119. [Google Scholar] [CrossRef] [PubMed]
- Manjunath, P.; Lefebvre, J.; Jois, P.S.; Fan, J.; Wright, M.W. New Nomenclature for Mammalian BSP Genes. Biol. Reprod. 2009, 80, 394–397. [Google Scholar] [CrossRef]
- Zalata, A.; El-Samanoudy, A.Z.; Shaalan, D.; El-Baiomy, Y.; Taymour, M.; Mostafa, T. Seminal Clusterin Gene Expression Associated with Seminal Variables in Fertile and Infertile Men. J. Urol. 2012, 188, 1260–1264. [Google Scholar] [CrossRef] [PubMed]
- Jha, K.N.; Shumilin, I.A.; Digilio, L.C.; Chertihin, O.; Zheng, H.; Schmitz, G.; Visconti, P.E.; Flickinger, C.J.; Minor, W.; Herr, J.C. Biochemical and Structural Characterization of Apolipoprotein A-I Binding Protein, a Novel Phosphoprotein with a Potential Role in Sperm Capacitation. Endocrinology 2008, 149, 2108–2120. [Google Scholar] [CrossRef] [PubMed]
- Blanco-Vaca, F.; Escolà-Gil, J.C.; Martín-Campos, J.M.; Julve, J. Role of ApoA-II in Lipid Metabolism and Atherosclerosis: Advances in the Study of an Enigmatic Protein. J. Lipid Res. 2001, 42, 1727–1739. [Google Scholar] [CrossRef]
- Panner Selvam, M.K.; Agarwal, A. Proteomic Profiling of Seminal Plasma Proteins in Varicocele Patients. World J. Men’s Health 2019, 37, 90–98. [Google Scholar] [CrossRef]
- Rapoport, S.I.; Primiani, C.T.; Chen, C.T.; Ahn, K.; Ryan, V.H.; Agoulnik, I.U. Coordinated Expression of Phosphoinositide Metabolic Genes during Development and Aging of Human Dorsolateral Prefrontal Cortex. PLoS ONE 2015, 10, e0132675. [Google Scholar] [CrossRef]
- Chauvin, T.R.; Griswold, M.D. Characterization of the Expression and Regulation of Genes Necessary for Myo-Inositol Biosynthesis and Transport in the Seminiferous Epithelium. Biol. Reprod. 2004, 70, 744–751. [Google Scholar] [CrossRef]
- Koguchi, T.; Tanikawa, C.; Mori, J.; Kojima, Y.; Matsuda, K. Regulation of Myo-Inositol Biosynthesis by P53-ISYNA1 Pathway. Int. J. Oncol. 2016, 48, 2415–2424. [Google Scholar] [CrossRef]
- Napoletano, F.; Gibert, B.; Yacobi-Sharon, K.; Vincent, S.; Favrot, C.; Mehlen, P.; Girard, V.; Teil, M.; Chatelain, G.; Walter, L.; et al. P53-Dependent Programmed Necrosis Controls Germ Cell Homeostasis During Spermatogenesis. PLoS Genet. 2017, 13, e1007024. [Google Scholar] [CrossRef]
- Ostrowski, M.C.; Kistler, W.S.; Williams-Ashman, H.G. A flavoprotein responsible for the intense sulfhydryl oxidase activity of rat seminal vesicle secretion. Biochem. Biophys. Res. Commun. 1979, 87, 171–176. [Google Scholar] [CrossRef]
- Chang, T.S.K.; Morton, B. Epididymal Sulfhydryl Oxidase: A Sperm-Protective Enzyme from the Male Reproductive Tract. Biochem. Biophys. Res. Commun. 1975, 66, 309–315. [Google Scholar] [CrossRef] [PubMed]
- Cornwall, G.A.; Vindivich, D.; Tillman, S.; Chang, T.S. The Effect of Sulfhydryl Oxidation on the Morphology of Immature Hamster Epididymal Spermatozoa Induced to Acquire Motility in Vitro. Biol. Reprod. 1988, 39, 141–155. [Google Scholar] [CrossRef] [PubMed]
- Tury, A.; Mairet-Coello, G.; Esnard-Fève, A.; Benayoun, B.; Risold, P.Y.; Griffond, B.; Fellmann, D. Cell-Specific Localization of the Sulphydryl Oxidase QSOX in Rat Peripheral Tissues. Cell Tissue Res. 2006, 323, 91–103. [Google Scholar] [CrossRef] [PubMed]
- Qu, F.; Ying, X.; Guo, W.; Guo, Q.; Chen, G.; Liu, Y.; Ding, Z. The Role of Zn-A2 Glycoprotein in Sperm Motility Is Mediated by Changes in Cyclic AMP. Reproduction 2007, 134, 569–576. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iskandar, H.; Andersson, G.; Sonjaya, H.; Arifiantini, R.I.; Said, S.; Hasbi, H.; Maulana, T.; Baharun, A. Protein Identification of Seminal Plasma in Bali Bull (Bos javanicus). Animals 2023, 13, 514. https://doi.org/10.3390/ani13030514
Iskandar H, Andersson G, Sonjaya H, Arifiantini RI, Said S, Hasbi H, Maulana T, Baharun A. Protein Identification of Seminal Plasma in Bali Bull (Bos javanicus). Animals. 2023; 13(3):514. https://doi.org/10.3390/ani13030514
Chicago/Turabian StyleIskandar, Hikmayani, Göran Andersson, Herry Sonjaya, Raden Iis Arifiantini, Syahruddin Said, Hasbi Hasbi, Tulus Maulana, and Abdullah Baharun. 2023. "Protein Identification of Seminal Plasma in Bali Bull (Bos javanicus)" Animals 13, no. 3: 514. https://doi.org/10.3390/ani13030514
APA StyleIskandar, H., Andersson, G., Sonjaya, H., Arifiantini, R. I., Said, S., Hasbi, H., Maulana, T., & Baharun, A. (2023). Protein Identification of Seminal Plasma in Bali Bull (Bos javanicus). Animals, 13(3), 514. https://doi.org/10.3390/ani13030514