Estimation of a Within-Herd Transmission Rate for African Swine Fever in Vietnam
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population and Data Collection
2.2. Model Structure
2.3. Model Parameters
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Approximate Posterior Distribution and R Code
Appendix B. Cross-Correlations between Parameters in the Accepted Particles
Appendix C. Repeated Simulations from the Posterior Distribution Versus Empirical Data
References
- Le, V.P.; Jeong, D.G.; Yoon, S.W.; Kwon, H.M.; Trinh, T.B.N.; Nguyen, T.L.; Bui, T.T.N.; Oh, J.; Kim, J.B.; Cheong, K.M.; et al. Outbreak of African Swine Fever, Vietnam, 2019. Emerg. Infect. Dis. 2019, 25, 1433. [Google Scholar] [CrossRef] [PubMed]
- Constable, P.; Hinchcliff, K.; Done, S.; Gruenberg, W. Veterinary Medicine: A Textbook of the Diseases of Cattle, Horses, Sheep, Pigs and Goats; Sanders Ltd.: London, UK, 2016. [Google Scholar]
- Sánchez-Vizcaíno, J.M.; Mur, L.; Martínez-López, B. African Swine Fever: An Epidemiological Update. Transbound. Emerg. Dis. 2012, 59, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Depner, K.; Gortazar, C.; Guberti, V.; Masiulis, M.; More, S.; Olßsevskis, E.; Thulke, H.H.; Viltrop, A.; Wozniakowski, G.; Abrahantes, J.C.; et al. Epidemiological Analyses of African Swine Fever in the Baltic States and Poland. EFSA J. 2017, 15, e05068. [Google Scholar] [CrossRef] [PubMed]
- Rvachev, L.A.; Longini, I.M. A Mathematical Model for the Global Spread of Influenza. Math. Biosci. 1985, 75, 3–22. [Google Scholar] [CrossRef]
- Anderson, R.M.; NG, T.W.; Boily, M.C.; May, R.M. The Influence of Different Sexual-Contact Patterns between Age Classes on the Predicted Demographic Impact of AIDS in Developing Countries. Ann. N. Y. Acad. Sci. 1989, 569, 240–274. [Google Scholar] [CrossRef]
- Ferguson, N.M.; Keeling, M.J.; Edmunds, W.J.; Gani, R.; Grenfell, B.T.; Anderson, R.M.; Leach, S. Planning for Smallpox Outbreaks. Nature 2003, 425, 681–685. [Google Scholar] [CrossRef]
- Ngwa, G.A.; Shu, W.S. A Mathematical Model for Endemic Malaria with Variable Human and Mosquito Populations. Math. Comput. Model. 2000, 32, 747–763. [Google Scholar] [CrossRef]
- Morris, R.S.; Wilesmith, J.W.; Stern, M.W.; Sanson, R.L.; Stevenson, M.A. Predictive Spatial Modelling of Alternative Control Strategies for the Foot-and-Mouth Disease Epidemic in Great Britain, 2001. Vet. Rec. 2001, 149, 137–144. [Google Scholar] [CrossRef]
- Keeling, M.J.; Woolhouse, M.E.J.; Shaw, D.J.; Matthews, L.; Chase-Topping, M.; Haydon, D.T.; Cornell, S.J.; Kappey, J.; Wilesmith, J.; Grenfell, B.T. Dynamics of the 2001 UK Foot and Mouth Epidemic: Stochastic Dispersal in a Heterogeneous Landscape. Science (1979) 2001, 294, 813–817. [Google Scholar] [CrossRef]
- Ferguson, N.M.; Donnelly, C.A.; Anderson, R.M. Transmission Intensity and Impact of Control Policies on the Foot and Mouth Epidemic in Great Britain. Nature 2001, 413, 542–548. [Google Scholar] [CrossRef]
- Wong, Z.S.Y.; Bui, C.M.; Chughtai, A.A.; MacIntyre, C.R. A Systematic Review of Early Modelling Studies of Ebola Virus Disease in West Africa. Epidemiol. Infect. 2017, 145, 1069–1094. [Google Scholar] [CrossRef]
- van Kerkhove, M.D.; Ferguson, N.M. Epidemic and Intervention Modelling—A Scientific Rationale for Policy Decisions? Lessons from the 2009 Influenza Pandemic. Bull. World Health Organ. 2012, 90, 306. [Google Scholar] [CrossRef]
- Williams, A.D.C.; Hall, I.M.; Rubin, G.J.; Amlôt, R.; Leach, S. An Individual-Based Simulation of Pneumonic Plague Transmission Following an Outbreak and the Significance of Intervention Compliance. Epidemics 2011, 3, 95–102. [Google Scholar] [CrossRef]
- Brooks-Pollock, E.; de Jong, M.C.M.; Keeling, M.J.; Klinkenberg, D.; Wood, J.L.N. Eight Challenges in Modelling Infectious Livestock Diseases. Epidemics 2015, 10, 1–5. [Google Scholar] [CrossRef]
- Keeling, M.J.; Rohani, P. Modeling Infectious Diseases in Humans and Animals. Model. Infect. Dis. Hum. Anim. 2011, 1–368. [Google Scholar] [CrossRef]
- Begon, M.; Bennett, M.; Bowers, R.G.; French, N.P.; Hazel, S.M.; Turner, J. A Clarification of Transmission Terms in Host-Microparasite Models: Numbers, Densities and Areas. Epidemiol. Infect. 2002, 129, 147. [Google Scholar] [CrossRef]
- Kirkeby, C.; Halasa, T.; Gussmann, M.; Toft, N.; Græsbøll, K. Methods for Estimating Disease Transmission Rates: Evaluating the Precision of Poisson Regression and Two Novel Methods. Sci. Rep. 2017, 7, 9496. [Google Scholar] [CrossRef]
- Bouma, A.; Claassen, I.; Natih, K.; Klinkenberg, D.; Donnelly, C.A.; Koch, G.; van Boven, M. Estimation of Transmission Parameters of H5N1 Avian Influenza Virus in Chickens. PLoS Pathog. 2009, 5, e1000281. [Google Scholar] [CrossRef]
- Backer, J.A.; Berto, A.; McCreary, C.; Martelli, F.; van der Poel, W.H.M. Transmission Dynamics of Hepatitis E Virus in Pigs: Estimation from Field Data and Effect of Vaccination. Epidemics 2012, 4, 86–92. [Google Scholar] [CrossRef]
- Sunnåker, M.; Busetto, A.G.; Numminen, E.; Corander, J.; Foll, M.; Dessimoz, C. Approximate Bayesian Computation. PLoS Comput. Biol. 2013, 9, e1002803. [Google Scholar] [CrossRef] [Green Version]
- Beaumont, M.A.; Zhang, W.; Balding, D.J. Approximate Bayesian Computation in Population Genetics. Genetics 2002, 162, 2025–2035. [Google Scholar] [CrossRef] [PubMed]
- Kendall, D.G. An Artificial Realization of a Simple “Birth-And-Death” Process. J. R. Stat. Soc. Ser. B 1950, 12, 116–119. [Google Scholar] [CrossRef]
- Gillespie, D.T. A General Method for Numerically Simulating the Stochastic Time Evolution of Coupled Chemical Reactions. J. Comput. Phys. 1976, 22, 403–434. [Google Scholar] [CrossRef]
- Lloyd, A.L. Realistic Distributions of Infectious Periods in Epidemic Models: Changing Patterns of Persistence and Dynamics. Theor. Popul. Biol. 2001, 60, 59–71. [Google Scholar] [CrossRef] [PubMed]
- Wearing, H.J.; Rohani, P.; Keeling, M.J. Appropriate Models for the Management of Infectious Diseases. PLoS Med. 2005, 2, e174. [Google Scholar] [CrossRef]
- Tavaré, S.; Balding, D.J.; Griffiths, R.C.; Donnelly, P. Inferring Coalescence Times from DNA Sequence Data. Genetics 1997, 145, 505. [Google Scholar] [CrossRef]
- Sisson, S.A.; Fan, Y.; Tanaka, M.M. Sequential Monte Carlo without Likelihoods. Proc. Natl. Acad. Sci. USA 2007, 104, 1760–1765. [Google Scholar] [CrossRef]
- Liu, J.S.; Chen, R. Sequential Monte Carlo Methods for Dynamic Systems. J. Am. Stat. Assoc. 2012, 93, 1032–1044. [Google Scholar] [CrossRef]
- Nguyen, V.T.; Cho, K.H.; Mai, N.T.A.; Park, J.Y.; Trinh, T.B.N.; Jang, M.K.; Nguyen, T.T.H.; Vu, X.D.; Nguyen, T.L.; Nguyen, V.D.; et al. Multiple Variants of African Swine Fever Virus Circulating in Vietnam. Arch. Virol. 2022, 167, 1137–1140. [Google Scholar] [CrossRef]
- R: The R Project for Statistical Computing. Available online: https://www.r-project.org/ (accessed on 1 December 2022).
- Meredith, M.; Kruschke, J. Package “HDInterval” Type Package Title Highest (Posterior) Density Intervals 2022. Available online: https://cran.r-project.org/web/packages/HDInterval/index.html (accessed on 1 December 2022).
- United Nations Universal Declaration of Human Rights; United Nations: New York, NY, USA, 1948.
- Guinat, C.; Porphyre, T.; Gogin, A.; Dixon, L.; Pfeiffer, D.U.; Gubbins, S. Inferring Within-Herd Transmission Parameters for African Swine Fever Virus Using Mortality Data from Outbreaks in the Russian Federation. Transbound. Emerg. Dis. 2018, 65, e264–e271. [Google Scholar] [CrossRef] [Green Version]
- Korennoy, F.I.; Gulenkin, V.M.; Gogin, A.E.; Vergne, T.; Karaulov, A.K. Estimating the Basic Reproductive Number for African Swine Fever Using the Ukrainian Historical Epidemic of 1977. Transbound. Emerg. Dis. 2017, 64, 1858–1866. [Google Scholar] [CrossRef]
- Gulenkin, V.M.; Korennoy, F.I.; Karaulov, A.K.; Dudnikov, S.A. Cartographical Analysis of African Swine Fever Outbreaks in the Territory of the Russian Federation and Computer Modeling of the Basic Reproduction Ratio. Prev. Vet. Med. 2011, 102, 167–174. [Google Scholar] [CrossRef]
- Olugasa, B.; Ijagbone, I. Pattern of Spread of African Swine Fever in South-Western Nigeria, 1997–2005. Vet. Ital. 2007, 43, 621–628. [Google Scholar]
- Barongo, M.B.; Ståhl, K.; Bett, B.; Bishop, R.P.; Fèvre, E.M.; Aliro, T.; Okoth, E.; Masembe, C.; Knobel, D.; Ssematimba, A. Estimating the Basic Reproductive Number (R0) for African Swine Fever Virus (ASFV) Transmission between Pig Herds in Uganda. PLoS ONE 2015, 10, e0125842. [Google Scholar] [CrossRef]
- Nga, B.T.T.; Padungtod, P.; Depner, K.; Chuong, V.D.; Duy, D.T.; Anh, N.D.; Dietze, K. Implications of Partial Culling on African Swine Fever Control Effectiveness in Vietnam. Front. Vet. Sci. 2022, 9, 1289. [Google Scholar] [CrossRef]
- Schulz, K.; Conraths, F.J.; Blome, S.; Staubach, C.; Sauter-Louis, C. African Swine Fever: Fast and Furious or Slow and Steady? Viruses 2019, 11, 866. [Google Scholar] [CrossRef]
- de Carvalho Ferreira, H.C.; Backer, J.A.; Weesendorp, E.; Klinkenberg, D.; Stegeman, J.A.; Loeffen, W.L.A. Transmission Rate of African Swine Fever Virus under Experimental Conditions. Vet. Microbiol. 2013, 165, 296–304. [Google Scholar] [CrossRef]
- Guerra, F.M.; Bolotin, S.; Lim, G.; Heffernan, J.; Deeks, S.L.; Li, Y.; Crowcroft, N.S. The Basic Reproduction Number (R0) of Measles: A Systematic Review. Lancet Infect. Dis. 2017, 17, e420–e428. [Google Scholar] [CrossRef]
- Costard, S.; Wieland, B.; de Glanville, W.; Jori, F.; Rowlands, R.; Vosloo, W.; Roger, F.; Pfeiffer, D.U.; Dixon, L.K. African Swine Fever: How Can Global Spread Be Prevented? Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 2683–2696. [Google Scholar] [CrossRef]
- Villanueva-Cabezas, J.P.; Rajkhowa, A.; Campbell, A.J.D. One Health Needs a Vision beyond Zoonoses. Transbound. Emerg. Dis. 2020, 67, 2271–2273. [Google Scholar] [CrossRef]
- Cannon, R.M. Sense and Sensitivity—Designing Surveys Based on an Imperfect Test. Prev. Vet. Med. 2001, 49, 141–163. [Google Scholar] [CrossRef] [PubMed]
- Bradhurst, R.A.; Roche, S.E.; East, I.J.; Kwan, P.; Graeme Garner, M. A Hybrid Modeling Approach to Simulating Foot-and-Mouth Disease Outbreaks in Australian Livestock. Front. Environ. Sci. 2015, 3, 17. [Google Scholar] [CrossRef] [Green Version]
Parameter | Description | Prior Use in ABC-SMC | Prior Published Ranges | Outbreak Location and Year, Strain Virulence, and References |
---|---|---|---|---|
β | Transmission coefficient | Uniform (0.001, 10) | 0.7 to 2.2 0.8 to 1.3 | Russia 2010–2014, moderate virulence [34] Ukraine 1977, high virulence [35] |
σ | Inverse of the average latent period | Uniform (1/35, 1) | 1/(5.8 to 9.7) | Russia 2010–2014, moderate virulence [34] |
γ | Inverse of the average duration of infectiousness | Uniform (1/35, 1) | 1/(4.5 to 8.3) 1/15 1/(13 to 19) | Russia 2010–2014, moderate virulence [34] Russia 2007–2010, moderate virulence [36] Nigeria 1997–2005, moderate virulence [37] |
R0 | Basic reproductive ratio | No prior calculated output | 4.4 to 17 3.9 to 16 1.6 to 3.2 5.7 to 9.2 | Russia 2010–2014, moderate virulence [34] Russia 2007–2010, moderate virulence [36] Uganda 2010–2011, high virulence [38] Ukraine 1977, high virulence [35] |
Parameter | Median (95% HPD) | 1/Median (95% HPD) |
---|---|---|
3.3 (0.4, 8.9) | - | |
10.2 (2.1, 18.8) | 0.10 (0.04, 0.31) | |
3.2 (2.0, 4.4) | 0.32 (0.20, 0.45) | |
10.4 (1.1, 30.4) | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Le, V.P.; Lan, N.T.; Canevari, J.T.; Villanueva-Cabezas, J.P.; Padungtod, P.; Trinh, T.B.N.; Nguyen, V.T.; Pfeiffer, C.N.; Oberin, M.V.; Firestone, S.M.; et al. Estimation of a Within-Herd Transmission Rate for African Swine Fever in Vietnam. Animals 2023, 13, 571. https://doi.org/10.3390/ani13040571
Le VP, Lan NT, Canevari JT, Villanueva-Cabezas JP, Padungtod P, Trinh TBN, Nguyen VT, Pfeiffer CN, Oberin MV, Firestone SM, et al. Estimation of a Within-Herd Transmission Rate for African Swine Fever in Vietnam. Animals. 2023; 13(4):571. https://doi.org/10.3390/ani13040571
Chicago/Turabian StyleLe, Van Phan, Nguyen Thi Lan, Jose Tobias Canevari, Juan Pablo Villanueva-Cabezas, Pawin Padungtod, Thi Bich Ngoc Trinh, Van Tam Nguyen, Caitlin N. Pfeiffer, Madalene V. Oberin, Simon M. Firestone, and et al. 2023. "Estimation of a Within-Herd Transmission Rate for African Swine Fever in Vietnam" Animals 13, no. 4: 571. https://doi.org/10.3390/ani13040571
APA StyleLe, V. P., Lan, N. T., Canevari, J. T., Villanueva-Cabezas, J. P., Padungtod, P., Trinh, T. B. N., Nguyen, V. T., Pfeiffer, C. N., Oberin, M. V., Firestone, S. M., & Stevenson, M. A. (2023). Estimation of a Within-Herd Transmission Rate for African Swine Fever in Vietnam. Animals, 13(4), 571. https://doi.org/10.3390/ani13040571