The Development of Smart Dairy Farm System and Its Application in Nutritional Grouping and Mastitis Prediction
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. SDFS Establishment and Data Collection
2.1.1. Setup of SDFS
2.1.2. Data Collection in Dairy Farm
2.2. Application Scene of Smart Dairy Farm System
2.2.1. Nutrition Grouping
2.2.2. Mastitis Prediction
2.3. Statistical Analysis
3. Results
3.1. Application of SDFS
3.1.1. Nutrient Grouping
3.1.2. Mastitis Prediction
4. Discussion
4.1. Nutrition Grouping
4.2. Smart Prediction of Mastitis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Misra, N.; Dixit, Y.; Al-Mallahi, A.; Bhullar, M.; Upadhyay, R.; Martynenko, A. IoT, Big Data, and Artificial Intelligence in Agriculture and Food Industry. IEEE Internet Things 2022, 9, 6305–6324. [Google Scholar] [CrossRef]
- Neethirajan, S.; Kemp, B. Digital Twins in Livestock Farming. Animals 2021, 11, 1008. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Ma, X.; Shu, L.; Hancke, G.; Abu-Mahfouz, A.M. From Industry 4.0 to Agriculture 4.0: Current Status, Enabling Technologies, and Research Challenges. IEEE Trans Ind. Inform. 2021, 17, 4322–4334. [Google Scholar] [CrossRef]
- Garibaldi, M.J. The need for fuzzy AI. IEEE/CAA J. Autom. Sin. 2019, 6, 610–622. [Google Scholar] [CrossRef]
- Ghahramani, M.; Qiao, Y.; Zhou, M.; O’Hagan, A.; Sweeney, J. AI-based modeling and data-driven evaluation for smart manufacturing processes. IEEE/CAA J. Autom. Sin. 2020, 7, 1026–1037. [Google Scholar] [CrossRef]
- Elijah, O.; Rahman, T.A.; Orikumhi, I.; Leow, C.Y.; Hindia, M.N. An Overview of Internet of Things (IoT) and Data Analytics in Agriculture: Benefits and Challenges. IEEE Internet Things J. 2018, 5, 3758–3773. [Google Scholar] [CrossRef]
- Gengler, N. Symposium review: Challenges and opportunities for evaluating and using the genetic potential of dairy cattle in the new era of sensor data from automation. J. Dairy Sci. 2019, 102, 5756–5763. [Google Scholar] [CrossRef]
- De Paepe, M.; Pieters, J.G.; Mendes, L.B.; Van Weyenberg, S.; Merci, B.; Demeyer, P. Wind tunnel study of ammonia transfer from a manure pit fitted with a dairy cattle slatted floor. Environ. Technol. 2016, 37, 202–215. [Google Scholar] [CrossRef]
- Talukder, S.; Kerrisk, K.L.; Ingenhoff, L.; Thomson, P.C.; Garcia, S.C.; Celi, P. Infrared technology for estrus detection and as a predictor of time of ovulation in dairy cows in a pasture-based system. Theriogenology 2014, 81, 925–935. [Google Scholar] [CrossRef] [PubMed]
- Fadul-Pacheco, L.; Wangen, S.R.; Da, S.T.; Cabrera, V.E. Addressing Data Bottlenecks in the Dairy Farm Industry. Animals 2022, 12, 721. [Google Scholar] [CrossRef] [PubMed]
- Adrion, F.; Keller, M.; Bozzolini, G.B.; Umstatter, C. Setup, Test and Validation of a UHF RFID System for Monitoring Feeding Behaviour of Dairy Cows. Sensors 2020, 20, 7035. [Google Scholar] [CrossRef]
- Njubi, D.M.; Wakhungu, J.W.; Badamana, M.S. Use of test-day records to predict first lactation 305-day milk yield using artificial neural network in Kenyan Holstein-Friesian dairy cows. Trop. Anim. Health Prod. 2010, 42, 639–644. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, M.; Lu, X.; Caro, D.; Gao, J.; Zhang, J.; Cullen, B.; Li, Q. Emissions of non-CO2 greenhouse gases from livestock in China during 2000–2015: Magnitude, trends and spatiotemporal patterns. J. Environ. Manag. 2019, 242, 40–45. [Google Scholar] [CrossRef] [PubMed]
- Navarro, E.; Costa, N.; Pereira, A. A Systematic Review of IoT Solutions for Smart Farming. Sensors 2020, 20, 4231. [Google Scholar] [CrossRef] [PubMed]
- Nikkilä, R.; Seilonen, I.; Koskinen, K. Software architecture for farm management information systems in precision agriculture. Comput. Electron. Agric. 2010, 70, 328–336. [Google Scholar] [CrossRef]
- Barrientos-Blanco, J.A.; White, H.; Shaver, R.D.; Cabrera, V.E. Improving nutritional accuracy and economics through a multiple ration-grouping strategy. J Dairy Sci. 2020, 103, 3774–3785. [Google Scholar] [CrossRef] [PubMed]
- Harrison, N.D.; Kelly, E.L. Affordable RFID loggers for monitoring animal movement, activity, and behaviour. PLoS ONE 2022, 17, e0276388. [Google Scholar] [CrossRef]
- Schingoethe, D.J. A 100-Year Review: Total mixed ration feeding of dairy cows. J. Dairy Sci. 2017, 100, 10143–10150. [Google Scholar] [CrossRef]
- Aquilani, C.; Confessore, A.; Bozzi, R.; Sirtori, F.; Pugliese, C. Review: Precision Livestock Farming technologies in pasture-based livestock systems. Animal 2022, 16, 100429. [Google Scholar] [CrossRef]
- Wang, S.J.; Fox, D.G.; Cherney, D.J.; Chase, L.E.; Tedeschi, L.O. Whole-herd optimization with the Cornell Net Carbohydrate and Protein System. III. Application of an optimization model to evaluate alternatives to reduce nitrogen and phosphorus mass balance. J. Dairy Sci. 2000, 83, 2160–2169. [Google Scholar] [CrossRef]
- Cabrera, V.E.; Barrientos-Blanco, J.A.; Delgado, H.; Fadul-Pacheco, L. Symposium review: Real-time continuous decision making using big data on dairy farms. J. Dairy Sci. 2020, 103, 3856–3866. [Google Scholar] [CrossRef] [PubMed]
- Coffey, E.M.; Vinson, W.E.; Pearson, R.E. Somatic cell counts and infection rates for cows of varying somatic cell count in initial test of first lactation. J. Dairy Sci. 1986, 69, 552–555. [Google Scholar] [CrossRef] [PubMed]
- Amburgh, M.E.; Collao-Saenz, E.A.; Higgs, R.J.; Ross, D.A.; Recktenwald, E.B.; Raffrenato, E.; Chase, L.E.; Foskolos, A. The Cornell Net Carbohydrate and Protein System: Updates to the model and evaluation of version 6.5. J. Dairy Sci. 2015, 98, 6361–6380. [Google Scholar] [CrossRef] [PubMed]
- Higgs, R.J.; Chase, L.E.; Amburgh, M.E. Development and evaluation of equations in the Cornell Net Carbohydrate and Protein System to predict nitrogen excretion in lactating dairy cows. J. Dairy Sci. 2012, 95, 2004–2014. [Google Scholar] [CrossRef] [PubMed]
- Koess, C.; Hamann, J. Detection of mastitis in the bovine mammary gland by flow cytometry at early stages. J. Dairy Res. 2008, 75, 225–232. [Google Scholar] [CrossRef] [PubMed]
- Wiggans, G.R.; Shook, G.E. A lactation measure of somatic cell count. J. Dairy Sci. 1987, 70, 2666–2672. [Google Scholar] [CrossRef] [PubMed]
- Min, X.; Ping, F.Q.; Che, S.Y.; Liu, Y.P. CXCR2 gene polymorphism is associated with mastitis and milk quality in dairy cows. Heredity 2008, 4, 463–468. [Google Scholar]
- Khatun, M.; Thomson, P.C.; Kerrisk, K.L.; Lyons, N.A.; Clark, C.; Molfino, J.; Garcia, S.C. Development of a new clinical mastitis detection method for automatic milking systems. J. Dairy Sci. 2018, 101, 9385–9395. [Google Scholar] [CrossRef]
- Chen, S.; Lin, K.H.; Mittra, R. A Measurement Technique for Verifying the Match Condition of Assembled RFID Tags. IEEE Trans. Instrum. Meas. 2010, 59, 2123–2133. [Google Scholar] [CrossRef]
- Attaran, M. The impact of 5G on the evolution of intelligent automation and industry digitization. J. Ambient. Intell. Humaniz. Comput. 2021, 1–17. [Google Scholar] [CrossRef]
- Herlin, A.; Brunberg, E.; Hultgren, J.; Hogberg, N.; Rydberg, A.; Skarin, A. Animal Welfare Implications of Digital Tools for Monitoring and Management of Cattle and Sheep on Pasture. Animals 2021, 11, 829. [Google Scholar] [CrossRef] [PubMed]
- Roche, J.R.; Friggens, N.C.; Kay, J.K.; Fisher, M.W.; Stafford, K.J.; Berry, D.P. Invited review: Body condition score and its association with dairy cow productivity, health, and welfare. J. Dairy Sci. 2009, 92, 5769–5801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bach, A.; Terre, M.; Vidal, M. Symposium review: Decomposing efficiency of milk production and maximizing profit. J. Dairy Sci. 2020, 103, 5709–5725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Y.; Liang, D.; Shaver, R.D.; Cabrera, V.E. An income over feed cost nutritional grouping strategy. J. Dairy Sci. 2019, 102, 4682–4693. [Google Scholar] [CrossRef]
- Cabrera, V.E.; Kalantari, A.S. Economics of production efficiency: Nutritional grouping of the lactating cow. J. Dairy Sci. 2016, 99, 825–841. [Google Scholar] [CrossRef] [Green Version]
- White, R.R.; Capper, J.L. Precision diet formulation to improve performance and profitability across various climates: Modeling the implications of increasing the formulation frequency of dairy cattle diets. J. Dairy Sci. 2014, 97, 1563–1577. [Google Scholar] [CrossRef] [Green Version]
- Jiao, H.P.; Dale, A.J.; Carson, A.F.; Murray, S.; Gordon, A.W.; Ferris, C.P. Effect of concentrate feed level on methane emissions from grazing dairy cows. J. Dairy Sci. 2014, 97, 7043–7053. [Google Scholar] [CrossRef] [Green Version]
- Bai, Z.; Ma, W.; Ma, L.; Velthof, G.L.; Wei, Z.; Havlik, P.; Zhang, F. China’s livestock transition: Driving forces, impacts, and consequences. Sci. Adv. 2018, 4, r8534. [Google Scholar] [CrossRef] [Green Version]
- Kalantari, A.S.; Armentano, L.E.; Shaver, R.D.; Cabrera, V.E. Economic impact of nutritional grouping in dairy herds. J. Dairy Sci. 2016, 99, 1672–1692. [Google Scholar] [CrossRef]
- Contreras-Govea, F.E.; Cabrera, V.E.; Armentano, L.E.; Shaver, R.D.; Crump, P.M.; Beede, D.K.; VandeHaar, M.J. Constraints for nutritional grouping in Wisconsin and Michigan dairy farms. J. Dairy Sci. 2015, 98, 1336–1344. [Google Scholar] [CrossRef] [Green Version]
- Goncalves, J.L.; Kamphuis, C.; Vernooij, H.; Araujo, J.J.; Grenfell, R.C.; Juliano, L.; Dos, S.M. Pathogen effects on milk yield and composition in chronic subclinical mastitis in dairy cows. Vet. J. 2020, 262, 105473. [Google Scholar] [CrossRef] [PubMed]
- Bochniarz, M.; Szczubial, M.; Brodzki, P.; Krakowski, L.; Dabrowski, R. Serum amyloid A as an marker of cow s mastitis caused by Streptococcus sp. Comp. Immunol. Microbiol. Infect. Dis. 2020, 72, 101498. [Google Scholar] [CrossRef]
- Feng, Y.; Niu, H.; Wang, F.; Ivey, S.J.; Wu, J.J.; Qi, H.; Almeida, R.A.; Eda, S.; Cao, Q. SocialCattle: IoT-Based Mastitis Detection and Control Through Social Cattle Behavior Sensing in Smart Farms. IEEE Internet Things J. 2022, 9, 10130–10138. [Google Scholar] [CrossRef]
- Liangyu, S.; Wenlong, L.; Yongjie, T.; Siyuan, M.; Ying, Y. Establishment and predictive analysis of Chinese Holstein Mastitis Risk Assessment Model. China J. Anim. Husb. 2021, 57, 84–90. [Google Scholar]
- Wenlong, L.; Tingting, Z.; Liangyu, S.; Ying, Y. Application and optimization of dairy cow Mastitis Risk Assessment System in Chinese Holstein herd. China J. Anim. Husb. 2021, 57, 65–72. [Google Scholar]
- Sun, Z.; Samarasinghe, S.; Jago, J. Detection of mastitis and its stage of progression by automatic milking systems using artificial neural networks. J. Dairy Res. 2010, 77, 168–175. [Google Scholar] [CrossRef] [Green Version]
- Kamphuis, C.; Mollenhorst, H.; Heesterbeek, J.A.; Hogeveen, H. Detection of clinical mastitis with sensor data from automatic milking systems is improved by using decision-tree induction. J. Dairy Sci. 2010, 93, 3616–3627. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Wang, B.; Shu, S.; Zhang, H.; Xu, C.; Wu, L.; Xia, C. Critical thresholds of liver function parameters for ketosis prediction in dairy cows using receiver operating characteristic (ROC) analysis. Vet. Q. 2015, 35, 159–164. [Google Scholar] [CrossRef]
- Jadhav, P.V.; Das, D.N.; Suresh, K.P.; Shome, B.R. Threshold somatic cell count for delineation of subclinical mastitis cases. Vet. World 2018, 11, 789–793. [Google Scholar] [CrossRef] [Green Version]
- Miles, A.M.; McArt, J.; Leal, Y.F.; Stambuk, C.R.; Virkler, P.D.; Huson, H.J. Udder and teat conformational risk factors for elevated somatic cell count and clinical mastitis in New York Holsteins. Prev. Vet. Med. 2019, 163, 7–13. [Google Scholar] [CrossRef]
Ingredient | TMR Diet Formulation (kg) Pens (OG) | ||||
---|---|---|---|---|---|
1 | 2 and 3 | 4 and 7 | 5 and 8 | 6 and 9 | |
Corn silage | 23.00 | 23.00 | 23.31 | 23.32 | 23.21 |
Alfalfa hay | 2.34 | 2.20 | 2.31 | 2.40 | 2.31 |
Oat hay | 2.38 | 2.18 | 2.39 | 2.50 | 2.39 |
Corn grain fine | 3.10 | 2.70 | 3.35 | 2.92 | 3.21 |
Soybean meal | 2.93 | 2.66 | 3.32 | 3.00 | 3.12 |
Soft wheat bran | 1.294 | 1.263 | 1.45 | 1.38 | 1.32 |
Soybean steam flaked | 1.280 | 1.291 | 1.44 | 1.38 | 1.32 |
Beet pulp pellet | 1.287 | 1.312 | 1.46 | 1.37 | 1.36 |
Calcium salt of fatty acids | 0.10 | 0.00 | 0.40 | 0.10 | 0.15 |
Sugarcane molasses | 0.51 | 0.35 | 0.60 | 0.30 | 0.56 |
Cottonseed meal | 0.50 | 0.40 | 0.62 | 0.30 | 0.60 |
Premix | 0.40 | 0.55 | 0.45 | 0.55 | 0.40 |
Nutritional composition | |||||
ME (Mcal/day) | 56.29 | 52.87 | 61.51 | 56.21 | 58.28 |
MP (g/day) | 2518.80 | 2344.80 | 2732.50 | 2484.10 | 2604.02 |
CP (%) | 16.76 | 16.46 | 17.10 | 16.63 | 17.02 |
Crude fat (%) | 4.00 | 3.69 | 4.97 | 4.04 | 4.14 |
NFC (%) | 37.85 | 37.32 | 37.34 | 37.02 | 37.80 |
NDF (%) | 33.98 | 34.49 | 32.97 | 34.30 | 33.65 |
peNDF (%) | 24.77 | 25.23 | 24.03 | 25.01 | 24.23 |
Starch (%) | 24.26 | 24.15 | 24.24 | 23.92 | 24.14 |
Predicted DMI (kg/cow per day) | 21.66 | 20.60 | 23.30 | 21.81 | 22.60 |
Ingredient | TMR Diet Formulation (kg) Pen (NG) | ||||||||
---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
Corn silage | 22.00 | 22.15 | 22.00 | 22.20 | 22.20 | 22.30 | 22.60 | 22.43 | 22.41 |
Alfalfa hay | 2.20 | 2.20 | 2.00 | 2.21 | 2.21 | 2.31 | 2.40 | 2.28 | 2.28 |
Oat hay | 2.00 | 2.00 | 2.00 | 2.34 | 2.34 | 2.32 | 2.52 | 2.22 | 2.28 |
Corn grain fine | 3.32 | 3.14 | 2.84 | 3.54 | 3.43 | 3.22 | 3.66 | 3.57 | 3.36 |
Soybean meal | 3.34 | 3.20 | 2.87 | 3.54 | 3.44 | 3.24 | 3.69 | 3.58 | 3.34 |
Soft wheat bran | 1.17 | 1.20 | 1.27 | 1.57 | 1.37 | 1.16 | 1.44 | 1.38 | 1.36 |
Soybean steam flaked | 1.13 | 1.11 | 1.27 | 1.43 | 1.23 | 1.13 | 1.54 | 1.37 | 1.27 |
Beet pulp pellet | 1.30 | 1.30 | 1.21 | 1.40 | 1.20 | 1.11 | 1.46 | 1.36 | 1.26 |
Calcium salt of fatty acids | 0.40 | 0.25 | 0.10 | 0.44 | 0.33 | 0.25 | 0.50 | 0.43 | 0.25 |
Sugarcane molasses | 0.62 | 0.60 | 0.40 | 0.62 | 0.60 | 0.60 | 0.60 | 0.56 | 0.56 |
Cottonseed meal | 0.58 | 0.50 | 0.40 | 0.60 | 0.54 | 0.58 | 0.60 | 0.60 | 0.60 |
Premix | 0.41 | 0.45 | 0.40 | 0.43 | 0.43 | 0.35 | 0.40 | 0.38 | 0.38 |
Nutritional composition of diet | |||||||||
ME (Mcal/day) | 57.85 | 55.90 | 52.82 | 61.55 | 58.99 | 57.01 | 63.75 | 61.76 | 58.62 |
MP (g/day) | 2572.00 | 2491.80 | 2336.40 | 2764.50 | 2630.60 | 2526.70 | 2863.90 | 2766.10 | 2622.80 |
CP (%) | 17.25 | 17.07 | 16.98 | 17.46 | 17.28 | 17.18 | 17.56 | 17.57 | 17.37 |
Crude fat (%) | 4.91 | 4.39 | 4.09 | 5.11 | 4.71 | 4.43 | 5.28 | 5.06 | 4.46 |
NFC (%) | 38.01 | 38.04 | 37.83 | 37.52 | 37.90 | 38.05 | 37.33 | 37.74 | 37.90 |
NDF (%) | 32.19 | 32.77 | 33.63 | 32.35 | 32.52 | 33.00 | 32.36 | 32.26 | 32.91 |
peNDF (%) | 22.93 | 23.52 | 24.28 | 22.44 | 23.29 | 24.26 | 22.67 | 22.65 | 23.51 |
Starch (%) | 24.47 | 24.37 | 24.59 | 23.96 | 24.28 | 24.23 | 23.70 | 24.25 | 24.29 |
Predicted DMI (kg/cow per day) | 22.14 | 21.64 | 20.73 | 23.64 | 22.88 | 22.30 | 24.14 | 23.47 | 22.92 |
Group | SCC 1, 104/mL | SCS 2 |
---|---|---|
Health Group | SCC ≤ 20 | SCS ≤ 4 |
Risk Group | SCC > 20 | SCS > 4 |
Variable | Abbreviation | Name |
---|---|---|
State of illness | Health | 0 |
Risk | 1 | |
Milk yield 2 | cnl2 | X3 |
Fat percentage 1 | rzl1 | X6 |
Fat percentage 2 | rzl2 | X7 |
Fat percentage 3 | rzl3 | X8 |
Protein percentage 1 | dbl1 | X10 |
Lactose percentage 4 | rtl4 | X17 |
Fat/protein ratio1 | zdb1 | X18 |
Fat/protein ratio 3 | zdb3 | X20 |
Month 5 | yuefen5 | X26 |
Parity | Pen | Stage | Milk yield | p Value | |
---|---|---|---|---|---|
OG 1 | NG 2 | ||||
1 | 1 | Early | 37.45 + 3.45 a | 39.28 + 2.90 b | 0.031 |
2 | Mid | 35.78 + 4.22 a | 37.87 + 3.19 b | 0.035 | |
3 | Late | 33.10 ±2.90 a | 34.84 ±2.33 b | 0.013 | |
2 | 4 | Early | 40.17 ±4.07 a | 42.29 ± 2.98 b | 0.025 |
5 | Mid | 38.34 ± 4.22 | 39.74 ± 3.47 | 0.165 | |
6 | Late | 36.48 ± 3.70 a | 38.20 ± 2.75 b | 0.046 | |
≥3 | 7 | Early | 41.22 ± 4.36 a | 43.58 ± 3.83 b | 0.030 |
8 | Mid | 39.20 ± 3.81 a | 41.64 ± 4.55 b | 0.029 | |
9 | Late | 37.55 ± 3.38 a | 39.31 ± 3.14 b | 0.041 |
Parity | Pen | Stage | N Intake (g) | NG- OG | N Production (g) | p Value | N Efficiency (%) | p Value | Changes in N Efficiency 3 (%) | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|
OG 1 | NG 2 | OG | NG | OG | NG | |||||||
1 | 1 | Early | 598.88 | 617.10 | 18.22 | 201.94 ± 0.90 B | 216.19 ± 0.76 A | <0.001 | 33.72 ± 0.15 B | 35.03 ± 0.12 A | <0.001 | 3.88 |
2 | Mid | 579.68 | 597.89 | 18.21 | 197.86 ± 1.06 B | 210.80 ± 1.06 A | <0.001 | 34.13 ± 0.18 B | 35.26 ± 0.18 A | <0.001 | 3.31 | |
3 | Late | 546.03 | 565.11 | 20.50 | 184.87 ± 0.90 B | 194.38 ± 1.16 A | <0.001 | 33.86 ± 0.17 B | 34.40 ± 0.20 A | <0.001 | 1.59 | |
2 | 4 | Early | 654.1 | 666.13 | 12.03 | 224.40 ± 0.70 B | 233.28 ± 0.83 A | <0.001 | 34.31 ± 0.11 B | 35.02 ± 0.12 A | <0.001 | 2.07 |
5 | Mid | 624.9 | 634.84 | 9.94 | 215.92 ± 1.07 B | 219.03 ± 1.07 A | <0.001 | 34.55 ± 0.17 | 34.50 ± 0.17 | 0.248 | −0.14 | |
6 | Late | 598.03 | 610.95 | 12.92 | 203.08 ± 1.01 B | 212.16 ± 0.95 A | <0.001 | 33.96 ± 0.17 B | 34.73 ± 0.15 A | <0.001 | 2.27 | |
≥3 | 7 | Early | 677.66 | 691.39 | 13.73 | 231.61 ± 1.09 B | 237.45 ± 1.39 A | <0.001 | 34.18 ± 0.16 B | 34.37 ± 0.15 A | <0.001 | 0.56 |
8 | Mid | 645.23 | 663.15 | 17.92 | 218.02 ± 0.96 B | 228.40 ± 1.99 A | <0.001 | 33.79 ± 0.15 B | 34.49 ± 0.15 A | <0.001 | 2.07 | |
9 | Late | 623.76 | 635.36 | 11.6 | 210.00 ± 0.96 B | 217.73 ± 1.53 A | <0.001 | 33.67 ± 0.15 B | 34.40 ± 0.14 A | <0.001 | 2.17 |
Parity | Pen | Stage | CH4, g/d/Head | Difference (%) | CO2, kg/d/Head | Difference (%) | ||
---|---|---|---|---|---|---|---|---|
OG 1 | NG 2 | OG | NG | |||||
1 | 1 | Early | 451.46 | 450.78 | −0.15 | 13.16 | 13.14 | −0.15 |
2 | Mid | 445.10 | 443.55 | −0.35 | 12.97 | 12.95 | −0.15 | |
3 | Late | 432.10 | 428.40 | −0.86 | 12.51 | 12.46 | −0.40 | |
2 | 4 | Early | 474.76 | 472.24 | −0.53 | 13.90 | 13.82 | −0.58 |
5 | Mid | 461.90 | 459.06 | −0.61 | 13.50 | 13.46 | −0.30 | |
6 | Late | 453.69 | 452.21 | −0.33 | 13.23 | 13.10 | −0.98 | |
≥3 | 7 | Early | 486.24 | 485.58 | −0.14 | 14.26 | 14.18 | −0.56 |
8 | Mid | 475.23 | 469.33 | −1.24 | 13.86 | 13.72 | −1.01 | |
9 | Late | 463.48 | 458.97 | −0.97 | 13.56 | 13.39 | −1.25 |
Variable | Abbreviation | Β 1 | OR 2 | 95%CI 3 | p Value | |
---|---|---|---|---|---|---|
Milk yield 2 | cnl2 | 0.14 | 1.15 | 1.01 | 1.31 | 0.031 |
Fat percentage 1 | rzl1 | 1.90 | 6.72 | 0.93 | 48.79 | 0.036 |
Fat percentage 2 | rzl2 | 0.95 | 2.60 | 0.77 | 8.71 | 0.127 |
Fat percentage 3 | rzl3 | 1.20 | 3.32 | 1.41 | 7.81 | 0.003 |
Protein percentage 1 | dbl1 | −2.73 | 0.07 | 0.00 | 1.46 | 0.054 |
Lactose percentage 4 | rtl4 | −4.02 | 0.02 | 0.00 | 0.15 | 0.000 |
Fat/protein ratio 1 | zdb1 | −4.53 | 0.01 | 0.00 | 4.16 | 0.102 |
Fat/protein ratio 3 | zdb3 | −2.55 | 0.08 | 0.01 | 1.19 | 0.043 |
Month 5 | yuefen5 | 0.14 | 1.15 | 1.02 | 1.30 | 0.021 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, T.; Zhang, J.; Zhang, X.; Chen, Y.; Zhang, R.; Guo, K. The Development of Smart Dairy Farm System and Its Application in Nutritional Grouping and Mastitis Prediction. Animals 2023, 13, 804. https://doi.org/10.3390/ani13050804
Hu T, Zhang J, Zhang X, Chen Y, Zhang R, Guo K. The Development of Smart Dairy Farm System and Its Application in Nutritional Grouping and Mastitis Prediction. Animals. 2023; 13(5):804. https://doi.org/10.3390/ani13050804
Chicago/Turabian StyleHu, Tingting, Jinmen Zhang, Xinrui Zhang, Yidan Chen, Renlong Zhang, and Kaijun Guo. 2023. "The Development of Smart Dairy Farm System and Its Application in Nutritional Grouping and Mastitis Prediction" Animals 13, no. 5: 804. https://doi.org/10.3390/ani13050804
APA StyleHu, T., Zhang, J., Zhang, X., Chen, Y., Zhang, R., & Guo, K. (2023). The Development of Smart Dairy Farm System and Its Application in Nutritional Grouping and Mastitis Prediction. Animals, 13(5), 804. https://doi.org/10.3390/ani13050804