Non-Synonymous Variants in Fat QTL Genes among High- and Low-Milk-Yielding Indigenous Breeds
Abstract
:Highlights
- Differentially expressed milk fat QTL genes explored with whole genome se-quencing for variant analysis.
- Identified non-synonymous SNPs for hub and bottleneck QTL genes associated with milk fat traits.
- Identified differential pattern(s) of SNPs in fat QTLs between high and low milk yield breeds.
- Impact of the identified SNP pattern(s) on milk fat traits can be further explored.
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Retrieval from the Public Repository
2.2. Bioinformatics Analysis of Milk Transcriptome
2.3. Breed Selection, Sampling, Genomic DNA Extraction, and Whole-Genome Sequencing
2.4. Bioinformatic Analysis (Variant Calling, SNP Annotation, and Functional Enrichment)
2.5. SNP Validation through Real-Time Sequence-Based Pyrosequencing
3. Results
3.1. Meta-Analysis of Cattle-Milk-Fat-Component-Associated QTLs and Related Genes
3.2. Milk Transcriptome Data Processing and Gene Expression Analysis of Fat QTL Genes
3.3. Protein Interaction Network Analysis of Milk Fat QTL Genes
3.4. Variant Analysis of Hub and Bottleneck Genes among Indigenous Breeds
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dairying, D.O.A.H.A.; Ministry of Fisheries, A.H.A.D.; India, G.O. Annual Report. Department of Animal Husbandry and Dairying, 2021–2022. Available online: https://dahd.nic.in/sites/default/filess/Annual%20Report%20English.pdf (accessed on 19 November 2020).
- Ministry of Fisheries; Animal Husbandry & Dairying. 20th Livestock Census; PIB Delhi: New Delhi, India, 2019. [Google Scholar]
- Madalena, F.E.; Toledo-Alvarado, H.; Cala-Moreno, N. Bos indicus Breeds and Bos indicus × Bos taurus Crosses☆. In Encyclopedia of Dairy Sciences, 3rd ed.; McSweeney, P.L.H., McNamara, J.P., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 30–47. [Google Scholar]
- Grisart, B.; Coppieters, W.; Farnir, F.; Karim, L.; Ford, C.; Berzi, P.; Cambisano, N.; Mni, M.; Reid, S.; Simon, P.; et al. Positional candidate cloning of a QTL in dairy cattle: Identification of a missense mutation in the bovine DGAT1 gene with major effect on milk yield and composition. Genome Res. 2002, 12, 222–231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weikard, R.; Kuhn, C.; Goldammer, T.; Freyer, G.; Schwerin, M. The bovine PPARGC1A gene: Molecular characterization and association of an SNP with variation of milk fat synthesis. Physiol Genom. 2005, 21, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Winter, A.; Krämer, W.; Werner, F.A.O.; Kollers, S.; Kata, S.; Durstewitz, G.; Buitkamp, J.; Womack, J.E.; Thaller, G.; Fries, R. Association of a lysine-232/alanine polymorphism in a bovine gene encoding acyl-CoA:diacylglycerol acyltransferase (DGAT1) with variation at a quantitative trait locus for milk fat content. Proc. Natl. Acad. Sci. USA 2002, 99, 9300–9305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blott, S.; Kim, J.-J.; Moisio, S.; Schmidt-Küntzel, A.; Cornet, A.; Berzi, P.; Cambisano, N.; Ford, C.; Grisart, B.; Johnson, D.; et al. Molecular Dissection of a Quantitative Trait Locus: A Phenylalanine-to-Tyrosine Substitution in the Transmembrane Domain of the Bovine Growth Hormone Receptor Is Associated With a Major Effect on Milk Yield and Composition. Genetics 2003, 163, 253–266. [Google Scholar] [CrossRef]
- Cohen-Zinder, M.; Seroussi, E.; Larkin, D.M.; Loor, J.J.; Everts-van der Wind, A.; Lee, J.-H.; Drackley, J.K.; Band, M.R.; Hernandez, A.G.; Shani, M.; et al. Identification of a missense mutation in the bovine ABCG2 gene with a major effect on the QTL on chromosome 6 affecting milk yield and composition in Holstein cattle. Genome Res. 2005, 15, 936–944. [Google Scholar] [CrossRef] [Green Version]
- Salehi, A.; Nasiri, K.; Aminafshar, M.; Sayaadnejad, M.B.; Sobhani, R. The Association of Bovine Osteopontin (OPN) Gene with Milk Production Traits in Iranian Holstein Bulls. Iran. J. Biotechnol. 2015, 13, 43–48. [Google Scholar] [CrossRef] [Green Version]
- Olsen, H.G.; Nilsen, H.; Hayes, B.; Berg, P.R.; Svendsen, M.; Lien, S.; Meuwissen, T. Genetic support for a quantitative trait nucleotide in the ABCG2 gene affecting milk composition of dairy cattle. BMC Genet 2007, 8, 32. [Google Scholar] [CrossRef] [Green Version]
- Sheehy, P.A.; Riley, L.G.; Raadsma, H.W.; Williamson, P.; Wynn, P.C. A functional genomics approach to evaluate candidate genes located in a QTL interval for milk production traits on BTA6. Anim Genet. 2009, 40, 492–498. [Google Scholar] [CrossRef]
- Zhou, C.; Li, C.; Cai, W.; Liu, S.; Yin, H.; Shi, S.; Zhang, Q.; Zhang, S. Genome-wide association study for milk protein composition traits in a Chinese Holstein population using a single-step approach. Front. Genet. 2019, 10, 72. [Google Scholar] [CrossRef] [Green Version]
- Schennink, A.; Stoop, W.M.; Visker, M.H.P.W.; Heck, J.M.L.; Bovenhuis, H.; Van Der Poel, J.J.; van Valenberg, H.; van Arendonk, J. DGAT1 underlies large genetic variation in milk-fat composition of dairy cows. Anim. Genet. 2007, 38, 467–473. [Google Scholar] [CrossRef]
- Viitala, S.; Szyda, J.; Blott, S.; Schulman, N.; Lidauer, M.; Mäki-Tanila, A.; Georges, M.; Vilkki, J. The Role of the Bovine Growth Hormone Receptor and Prolactin Receptor Genes in Milk, Fat and Protein Production in Finnish Ayrshire Dairy Cattle. Genetics 2006, 173, 2151–2164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kułaj, D.; Pokorska, J.; Ochrem, A.; Dusza, M.; Makulska, J. Effects of the c.8514C > T polymorphism in the osteopontin gene (OPN) on milk production, milk composition and disease susceptibility in Holstein-Friesian cattle. Ital. J. Anim. Sci. 2019, 18, 546–553. [Google Scholar] [CrossRef]
- Tantia, M.S.; Vijh, R.K.; Mishra, B.P.; Mishra, B.; Kumar, S.T.B.; Sodhi, M. DGAT1 and ABCG2 polymorphism in Indian cattle (Bos indicus) and buffalo (Bubalus bubalis) breeds. BMC Veter-Res. 2006, 2, 32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, Z.-L.; Park, C.A.; Reecy, J.M. Building a livestock genetic and genomic information knowledgebase through integrative developments of Animal QTLdb and CorrDB. Nucleic Acids Res. 2019, 47, D701–D710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bobbo, T.; Cecchinato, A.; Cipolat-Gotet, C.; Stocco, G.; Bittante, G. Effect of breed and dairy system on milk composition and udder health traits in multi-breed dairy herds. In Proceedings of the 22nd International Symposium "Animal Science Days”, Keszthely, Hungary, September 2014. [Google Scholar] [CrossRef]
- Gaunt, S. Genetic Variation in the Yields and Contents of Milk Constituents [Quantitative Differences; Milk Proteins, Lactose, Ash, Non-Fat Solids; Dairy Cows Breeds; Ayrshire; Brown Swiss; Guernsey; Holstein Friesian; Jersey]; International Dairy Federation: Schaerbeek, Belgium, 1980. [Google Scholar]
- Kebede, E. Effect of cattle breed on milk composition in the same management conditions. Ethiop. J. Agric. Sci. 2018, 28, 53–64. [Google Scholar]
- Srivastava, A.; Patel, J.; Ankuya, K.; Chauhan, H.; Pawar, M.; Gupta, J. Conservation of indigenous cattle breeds. J. Anim. Res. 2019, 9, 1–12. [Google Scholar] [CrossRef]
- Hu, Z.-L.; Park, C.A.; Wu, X.-L.; Reecy, J.M. Animal QTLdb: An improved database tool for livestock animal QTL/association data dissemination in the post-genome era. Nucleic Acids Res. 2012, 41, D871–D879. [Google Scholar] [CrossRef] [Green Version]
- Reimand, J.; Arak, T.; Adler, P.; Kolberg, L.; Reisberg, S.; Peterson, H.; Vilo, J. g:Profiler—A web server for functional interpretation of gene lists (2016 update). Nucleic Acids Res. 2016, 44, W83–W89. [Google Scholar] [CrossRef]
- Ge, S.X.; Jung, D.; Yao, R. ShinyGO: A graphical gene-set enrichment tool for animals and plants. Bioinformatics 2020, 36, 2628–2629. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Gable, A.L.; Nastou, K.C.; Lyon, D.; Kirsch, R.; Pyysalo, S.; Doncheva, N.T.; Legeay, M.; Fang, T.; Bork, P. The STRING database in 2021: Customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2021, 49, D605–D612. [Google Scholar] [CrossRef]
- Chin, C.-H.; Chen, S.-H.; Wu, H.-H.; Ho, C.-W.; Ko, M.-T.; Lin, C.-Y. cytoHubba: Identifying hub objects and sub-networks from complex interactome. BMC Syst. Biol. 2014, 8 (Suppl. 4), S11. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.; Kim, P.M.; Sprecher, E.; Trifonov, V.; Gerstein, M. The importance of bottlenecks in protein networks: Correlation with gene essentiality and expression dynamics. PLoS Comput. Biol. 2007, 3, e59. [Google Scholar] [CrossRef]
- Bhat, S.A.; Ahmad, S.M.; Ibeagha-Awemu, E.M.; Bhat, B.A.; Dar, M.A.; Mumtaz, P.T.; Shah, R.; Ganai, N. Comparative transcriptome analysis of mammary epithelial cells at different stages of lactation reveals wide differences in gene expression and pathways regulating milk synthesis between Jersey and Kashmiri cattle. PLoS ONE 2019, 14, e0211773. [Google Scholar] [CrossRef] [Green Version]
- Kawakami, E.; Nakaoka, S.; Ohta, T.; Kitano, H. Weighted enrichment method for prediction of transcription regulators from transcriptome and global chromatin immunoprecipitation data. Nucleic Acids Res. 2016, 44, 5010–5021. [Google Scholar] [CrossRef] [Green Version]
- Andrews, S. FastQC Version 0.11. 5. A Quality Control Tool for High Throughput Sequence Data, 2016. Available online: www.bioinformatics.babraham.ac.uk (accessed on 19 November 2020).
- Ewels, P.; Magnusson, M.; Lundin, S.; Käller, M. MultiQC: Summarize analysis results for multiple tools and samples in a single report. Bioinformatics 2016, 32, 3047–3048. [Google Scholar] [CrossRef] [Green Version]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [Green Version]
- Dobin, A.; Gingeras, T.R. Mapping RNA-seq reads with STAR. Curr. Protoc. Bioinform. 2015, 51, 11.14.1–11.14.19. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Dewey, C.N. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 2011, 12, 323. [Google Scholar] [CrossRef] [Green Version]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Aggarwal, A.; Singh, S.; Badrealam, K.; Renuka, A.K.; Anil, K. Haematological and hormonal profile of various breeds of cattle and buffalo under varied seasons and environmental conditions. ICAR-National Dairy Research Institute, Karnal. NDRI Publ. Np 2016, 146, 2016. [Google Scholar]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef]
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows—Wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garrison, E.; Marth, G. Haplotype-based variant detection from short-read sequencing. arXiv 2012, preprint. arXiv:1207.3907 2012. [Google Scholar]
- Van Der Auwera, G.A.; Carneiro, M.O.; Hartl, C.; Poplin, R.; Del Angel, G.; Levy-Moonshine, A.; Jordan, T.; Shakir, K.; Roazen, D.; Thibault, J.; et al. From FastQ Data to High-Confidence Variant Calls: The Genome Analysis Toolkit Best Practices Pipeline. Curr. Protoc. Bioinform. 2013, 43, 11.10.1–11.10.33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Danecek, P.; Auton, A.; Abecasis, G.; Albers, C.A.; Banks, E.; DePristo, M.A.; Handsaker, R.E.; Lunter, G.; Marth, G.T.; Sherry, S.T.; et al. The variant call format and VCFtools. Bioinformatics 2011, 27, 2156–2158. [Google Scholar] [CrossRef]
- Cingolani, P.; Platts, A.; Wang, L.L.; Coon, M.; Nguyen, T.; Wang, L.; Land, S.J.; Lu, X.; Ruden, D.M. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 2012, 6, 80–92. [Google Scholar] [CrossRef] [Green Version]
- Zinicola, M.; Bicalho, M.; Santin, T.; Marques, E.; Bisinotto, R.; Bicalho, R. Effects of recombinant bovine interleukin-8 (rbIL-8) treatment on health, metabolism, and lactation performance in Holstein cattle II: Postpartum uterine health, ketosis, and milk production. J. Dairy Sci. 2019, 102, 10316–10328. [Google Scholar] [CrossRef]
- Goto, K.; Hozumi, Y.; Nakano, T.; Saino-Saito, S.; Martelli, A.M. Lipid Messenger, Diacylglycerol, and its Regulator, Diacylglycerol Kinase, in Cells, Organs, and Animals: History and Perspective. Tohoku J. Exp. Med. 2008, 214, 199–212. [Google Scholar] [CrossRef] [Green Version]
- Birsoy, K.; Berry, R.; Wang, T.; Ceyhan, O.; Tavazoie, S.; Friedman, J.M.; Rodeheffer, M.S. Analysis of gene networks in white adipose tissue development reveals a role for ETS2 in adipogenesis. Development 2011, 138, 4709–4719. [Google Scholar] [CrossRef] [Green Version]
- Manisha, D.; Rank, D.; Vataliya, P.; Joshi, C. Oxidized low density lipoprotein receptor 1 (OLR1) gene polymorphism in Mehsana buffaloes (Bubalus bubalis). Buffalo Bull. 2013, 32, 260–264. [Google Scholar]
- Park, J.Y.; Jang, H.; Curry, T.E.; Sakamoto, A.; Jo, M. Prostate androgen-regulated mucin-like protein 1: A novel regulator of progesterone metabolism. Mol. Endocrinol. 2013, 27, 1871–1886. [Google Scholar] [CrossRef] [Green Version]
- Alfadhel, M.; Nashabat, M.; Al Qahtani, H.; Alfares, A.; Al Mutairi, F.; Al Shaalan, H.; Douglas, G.V.; Wierenga, K.; Juusola, J.; Alrifai, M.T.; et al. Mutation in SLC6A9 encoding a glycine transporter causes a novel form of non-ketotic hyperglycinemia in humans. Qual. Life Res. 2016, 135, 1263–1268. [Google Scholar] [CrossRef] [Green Version]
- Vitavska, O.; Wieczorek, H. Putative role of an SLC45 H+/sugar cotransporter in mammalian spermatozoa. PflÜGers Arch.-Eur. J. Physiol. 2017, 469, 1433–1442. [Google Scholar] [CrossRef] [Green Version]
- Dunn, J.T.; Dunn, A.D. The importance of thyroglobulin structure for thyroid hormone biosynthesis. Biochimie 1999, 81, 505–509. [Google Scholar] [CrossRef]
- Nagy, D.; Gönczi, M.; Dienes, B.; Szöőr, Á.; Fodor, J.; Nagy, Z.; Tóth, A.; Fodor, T.; Bai, P.; Szücs, G.; et al. Silencing the KCNK9 potassium channel (TASK-3) gene disturbs mitochondrial function, causes mitochondrial depolarization, and induces apoptosis of human melanoma cells. Arch. Dermatol. Res. 2014, 306, 885–902. [Google Scholar] [CrossRef]
- Jiang, J.; Liu, L.; Gao, Y.; Shi, L.; Li, Y.; Liang, W.; Sun, D. Determination of genetic associations between indels in 11 candidate genes and milk composition traits in Chinese Holstein population. BMC Genet. 2019, 20, 48. [Google Scholar] [CrossRef] [Green Version]
- Xu, Q.; Mei, G.; Sun, D.; Zhang, Q.; Zhang, Y.; Yin, C.; Chen, H.; Ding, X.; Liu, J. Detection of genetic association and functional polymorphisms of UGDH affecting milk production trait in Chinese Holstein cattle. BMC Genom. 2012, 13, 590. [Google Scholar] [CrossRef] [Green Version]
- Krzywinska, E.; Zorawski, M.D.; Taracha, A.; Kotarba, G.; Kikulska, A.; Mlacki, M.; Kwiatkowska, K.; Wilanowski, T. Threonine 454 phosphorylation in Grainyhead-like 3 is important for its function and regulation by the p38 MAPK pathway. Biochim. et Biophys. Acta 2018, 1865, 1002–1011. [Google Scholar] [CrossRef]
- Lahiri, A.; Hedl, M.; Abraham, C. MTMR3 risk allele enhances innate receptor-induced signaling and cytokines by decreasing autophagy and increasing caspase-1 activation. Proc. Natl. Acad. Sci. USA 2015, 112, 10461–10466. [Google Scholar] [CrossRef] [Green Version]
- Deák, F.; Mátés, L.; Korpos, É.; Zvara, Á.; Szénási, T.; Kiricsi, M.; Mendler, L.; Keller-Pintér, A.; Ózsvári, B.; Juhász, H.; et al. Extracellular deposition of matrilin-2 controls the timing of the myogenic program during muscle regeneration. J. Cell Sci. 2014, 127, 3240. [Google Scholar] [CrossRef] [Green Version]
- Song, H.; Liu, L.; Song, Z.; Ren, Y.; Li, C.; Huo, J. P4HA3 is Epigenetically Activated by Slug in Gastric Cancer and its Deregulation is Associated With Enhanced Metastasis and Poor Survival. Technol Cancer Res Treat 2018, 17, 1533033818796485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khalifeh-Soltani, A.; Gupta, D.; Ha, A.; Iqbal, J.; Hussain, M.; Podolsky, M.J.; Atabai, K. Mfge8 regulates enterocyte lipid storage by promoting enterocyte triglyceride hydrolase activity. JCI Insight 2016, 1, e87418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsuzaka, T.; Kuba, M.; Koyasu, S.; Yamamoto, Y.; Motomura, K.; Arulmozhiraja, S.; Ohno, H.; Sharma, R.; Shimura, T.; Okajima, Y.; et al. Hepatocyte ELOVL Fatty Acid Elongase 6 Determines Ceramide Acyl-Chain Length and Hepatic Insulin Sensitivity in Mice. Hepatology 2019, 71, 1609–1625. [Google Scholar] [CrossRef] [PubMed]
- Nichols, K.; Dijkstra, J.; van Laar, H.; Kim, J.; Cant, J.; Bannink, A. Expression of genes related to energy metabolism and the unfolded protein response in dairy cow mammary cells is affected differently during dietary supplementation with energy from protein and fat. J. Dairy Sci. 2019, 102, 6603–6613. [Google Scholar] [CrossRef]
- Sato, H.; Nagashima, K.; Ogura, M.; Sato, Y.; Tahara, Y.; Ogura, K.; Yamano, G.; Sugizaki, K.; Fujita, N.; Tatsuoka, H.; et al. Src regulates insulin secretion and glucose metabolism by influencing subcellular localization of glucokinase in pancreatic β-cells. J. Diabetes Investig. 2015, 7, 171–178. [Google Scholar] [CrossRef]
- Argov-Argaman, N.; Mida, K.; Cohen, B.C.; Visker, M.; Hettinga, K. Milk fat content and DGAT1 genotype determine lipid composition of the milk fat globule membrane. PLoS ONE 2013, 8, e68707. [Google Scholar] [CrossRef] [Green Version]
- Bovenhuis, H.; Visker, M.H.; van Valenberg, H.J.; Buitenhuis, A.J.; van Arendonk, J.A. Effects of the DGAT1 polymorphism on test-day milk production traits throughout lactation. J. Dairy Sci. 2015, 98, 6572–6582. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.; Loh, K.; Song, Z.-Y.; Yang, H.-Q.; Zhang, Y.; Lin, S. Update on glycerol-3-phosphate acyltransferases: The roles in the development of insulin resistance. Nutr. Diabetes 2018, 8, 1–10. [Google Scholar] [CrossRef]
- Kordaß, T.; Osen, W.; Eichmüller, S.B. Controlling the Immune Suppressor: Transcription Factors and MicroRNAs Regulating CD73/NT5E. Front. Immunol. 2018, 9, 813. [Google Scholar] [CrossRef] [Green Version]
- Han, B.; Yuan, Y.; Liang, R.; Li, Y.; Liu, L.; Sun, D. Genetic Effects of LPIN1 Polymorphisms on Milk Production Traits in Dairy Cattle. Genes 2019, 10, 265. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Jiang, L.; Liu, X.; Yang, J.; Wei, J.; Xu, J.; Zhang, Q.; Liu, J.-F. A Post-GWAS Replication Study Confirming the PTK2 Gene Associated with Milk Production Traits in Chinese Holstein. PLoS ONE 2013, 8, e83625. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Khan, M.Z.; Xiao, J.; Alugongo, G.M.; Chen, X.; Chen, T.; Liu, S.; He, Z.; Wang, J.; Shah, M.K.; et al. Genetic Markers Associated with Milk Production Traits in Dairy Cattle. Agriculture 2021, 11, 1018. [Google Scholar] [CrossRef]
- Wei, S.; Zhang, M.; Zheng, Y.; Yan, P. ZBTB16 Overexpression Enhances White Adipogenesis and Induces Brown-Like Adipocyte Formation of Bovine White Intramuscular Preadipocytes. Cell. Physiol. Biochem. 2018, 48, 2528–2538. [Google Scholar] [CrossRef]
- Pedrosa, V.B.; Schenkel, F.S.; Chen, S.-Y.; Oliveira, H.R.; Casey, T.M.; Melka, M.G.; Brito, L.F. Genomewide Association Analyses of Lactation Persistency and Milk Production Traits in Holstein Cattle Based on Imputed Whole-Genome Sequence Data. Genes 2021, 12, 1830. [Google Scholar] [CrossRef]
- Ogorevc, J.; Kunej, T.; Razpet, A.; Dovc, P. Database of cattle candidate genes and genetic markers for milk production and mastitis. Anim. Genet. 2009, 40, 832–851. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Maltecca, C.; Tal-Stein, R.; Lipkin, E.; Khatib, H. Association of Bovine Fibroblast Growth Factor 2 (FGF2) Gene with Milk Fat and Productive Life: An Example of the Ability of the Candidate Pathway Strategy to Identify Quantitative Trait Genes. J. Dairy Sci. 2008, 91, 2475–2480. [Google Scholar] [CrossRef] [Green Version]
Gene ID | log2FC | p-Value | Trait Name | Description |
---|---|---|---|---|
Hub genes | ||||
ENSBTAG00000008938 (SRC) | 1.480587 | 0.002561 | MFY; MPP; MPY; TDMY | SRC proto-oncogene, non-receptor tyrosine kinase |
ENSBTAG00000026356 (DGAT1) | 0.921104 | 0.032625 | MFP; MFY; MPP. MPY; MKCP; MY | Diacylglycerol O-acyltransferase 1 |
ENSBTAG00000007867 (STAT1) | 1.938208 | 0.0000648 | MFP; MPP; MPY; MY | Signal transducer and activator of transcription 1 |
ENSBTAG00000005691 (FGF2) | −1.55871 | 0.042228 | MFY; MY | Fibroblast growth factor 2 |
ENSBTAG00000019716 (CXCL8) | 7.097327 | 0.000000000000077 | MFY; MPP; MPY;TDMY | C-X-C motif chemokine ligand 8 |
ENSBTAG00000006240 (TLR4) | 3.918383 | 0.0000000123 | MFP; MPP; MY | Toll like receptor 4 |
ENSBTAG00000001335 (GHR) | −1.97171 | 0.02566 | MFP; MFY; MPP; MPY; MY | Growth hormone receptor |
ENSBTAG00000012855 (LPL) | −1.61377 | 0.008224 | MFP; MFY; MPP | Lipoprotein lipase |
ENSBTAG00000009578 (PTK2) | −0.97617 | 0.043672 | MFP; MFY; MPP; MPY; MY | Protein tyrosine kinase 2 |
ENSBTAG00000000546 (ERBB2) | −1.89535 | 0.048867 | MFP; MFY; MPP; MPY; MY | Erb-b2 receptor tyrosine kinase 2 |
ENSBTAG00000021527 (IGF1R) | 1.798566 | 0.003947 | MFP; MFY; MPP; MPY; MY | Insulin like growth factor 1 receptor |
ENSBTAG00000007476 (BTRC) | 2.698919 | 0.0000384 | MFY | Beta-transducin repeat containing E3 ubiquitin protein ligase |
ENSBTAG00000014357 (SDC2) | −1.96312 | 0.029226 | MFP; MPP | Syndecan 2 |
ENSBTAG00000048655 (NT5E) | −2.97069 | 0.000136 | MFP; MFY; MPY | 5′-nucleotidase ecto |
ENSBTAG00000007689 (LPIN1) | −2.38799 | 0.001822 | MFP; MFY; MPP; MPY; TDMY | Lipin 1 |
ENSBTAG00000003300 (MFGE8) | −1.90426 | 0.015698 | MFP; MPP | Milk fat globule EGF and factor V/VIII domain containing |
ENSBTAG00000020536 (HERC6) | 1.37883 | 0.00206 | MFP; MFY; MPP; MPY | HECT and RLD domain containing E3 ubiquitin protein ligase family member 6 |
Bottleneck Genes | ||||
ENSBTAG00000026356 (DGAT1) | 0.921104 | 0.032625 | MFP; MFY; MPP; MPY; MKCP; MY | Diacylglycerol O-acyltransferase 1 |
ENSBTAG00000008938 (SRC) | 1.480587 | 0.002561 | MFY; MPP; MPY; TDMY | SRC proto-oncogene, non-receptor tyrosine kinase |
ENSBTAG00000008432 (NUP98) | 1.307627 | 0.033165 | MFP | Nucleoporin 98 and 96 precursor |
ENSBTAG00000027629 (ANK1) | −2.3949 | 0.000752 | MFY; MPY | Ankyrin 1 |
ENSBTAG00000011266 (ZBTB16) | −1.84946 | 0.011504 | MFY | Zinc finger and BTB domain containing 16 |
ENSBTAG00000016525 (ITGA1) | −2.10583 | 0.004815 | MFY; MPP; MPY; MY | Integrin subunit alpha 1 |
ENSBTAG00000019716 (CXCL8) | 7.097327 | 0.000000000000077 | MFY; MPP; MPY; TDMY | C-X-C motif chemokine ligand 8 |
ENSBTAG00000007867 (STAT1) | 1.938208 | 0.0000648 | MFP; MPP; MPY; MY | Signal transducer and activator of transcription 1 |
ENSBTAG00000000546 (ERBB2) | −1.89535 | 0.048867 | MFP; MFY; MPP; MPY; MY | Erb-b2 receptor tyrosine kinase 2 |
ENSBTAG00000007476 (BTRC) | 2.698919 | 0.0000384 | MFY | Beta-transducin repeat containing E3 ubiquitin protein ligase |
ENSBTAG00000010106 (CCND3) | −1.78227 | 0.000135 | MFP; MPP; MPY; MY | Cyclin D3 |
ENSBTAG00000001335 (GHR) | −1.97171 | 0.02566 | MFP; MFY; MPP; MPY; MY | Growth hormone receptor |
ENSBTAG00000006240 (TLR4) | 3.918383 | 0.0000000123 | MFP; MPP; MY | Toll like receptor 4 |
ENSBTAG00000010660 (CACNA1C) | −2.82445 | 0.0000723 | MFY | Calcium voltage-gated channel subunit alpha1 C |
ENSBTAG00000012855 (LPL) | −1.61377 | 0.008224 | MFP; MFY; MPP | Lipoprotein lipase |
ENSBTAG00000031544 (DDIT3) | 2.367342 | 0.0000047 | MFP; MFY; MPP; MPY; MY | DNA damage inducible transcript 3 |
ENSBTAG00000005091 (DGKG) | 4.032464 | 0.000000442 | MFP; MPP; MY | Diacylglycerol kinase gamma |
ENSBTAG00000048655 (NT5E) | −2.97069 | 0.000136 | MFP; MFY; MPY | 5′-nucleotidase ecto |
Gene ID | Chr | Start | End | SNP Count | BiSNP |
---|---|---|---|---|---|
ENSBTAG00000007689 (LPIN1) | NC_040086.1 | 85168990 | 85299051 | 10 | 9 |
ENSBTAG00000009578 (PTK2) | NC_040089.1 | 2793205 | 2986179 | 1 | 1 |
ENSBTAG00000026356 (DGAT1) | NC_040089.1 | 547336 | 558673 | 2 | 2 |
ENSBTAG00000014357 (SDC2) | NC_040089.1 | 67885139 | 68006993 | 2 | 2 |
ENSBTAG00000008432 (NUP98) | NC_040090.1 | 32662235 | 32749000 | 2 | 2 |
ENSBTAG00000011266 (ZBTB16) | NC_040090.1 | 59519169 | 59723887 | 3 | 3 |
ENSBTAG00000005691 (FGF2) | NC_040092.1 | 37900967 | 37980582 | 2 | 2 |
ENSBTAG00000005091 (DGKG) | NC_040076.1 | 80595457 | 80821976 | 3 | 3 |
ENSBTAG00000016525 (ITGA1) | NC_040095.1 | 25934013 | 26116012 | 10 | 9 |
ENSBTAG00000001335 (GHR) | NC_040095.1 | 31683009 | 31993386 | 6 | 6 |
ENSBTAG00000003300 (MFGE8) | NC_040096.1 | 20516116 | 20540642 | 4 | 4 |
ENSBTAG00000021527 (IGF1R) | NC_040096.1 | 7856996 | 8161856 | 1 | 1 |
ENSBTAG00000027629 (ANK1) | NC_040102.1 | 36035255 | 36276595 | 5 | 4 |
ENSBTAG00000010660 (CACNA1C) | NC_040080.1 | 11268673 | 11659827 | 3 | 3 |
ENSBTAG00000031544 (DDIT3) | NC_040080.1 | 64346323 | 64350540 | 1 | 1 |
ENSBTAG00000020536 (HERC6) | NC_040081.1 | 36492384 | 36549974 | 9 | 9 |
ENSBTAG00000019716 (CXCL8) | NC_040081.1 | 88364933 | 88368713 | 1 | 1 |
ENSBTAG00000006240 (TLR4) | NC_040083.1 | 107075099 | 107086126 | 6 | 5 |
ENSBTAG00000012855 (LPL) | NC_040083.1 | 66717576 | 66744131 | 1 | 1 |
ENSBTAG00000048655 (NT5E) | NC_040084.1 | 64029657 | 64102659 | 6 | 6 |
Gene | GHR | GHR | TLR4 | TLR4 | LPIN1 | LPIN1 | LPIN1 | CACNA1C | ZBTB16 | ITGA1 | ANK1 | ANK1 | NT5E | NT5E | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Genomic location | 31685773 | 31685984 | 107083326 | 107083914 | 85187074 | 85209309 | 85211528 | 11271411 | 59717709 | 25983121 | 36054194 | 36076037 | 64035090 | 64065719 | |
Genomic Variant | Ref | C | A | A | C | G | C | C | C | C | C | G | G | C | G |
Alt | G | G | C | A | A | T | G | T | T | T | A | A | T | A | |
Protein Variant Pos(Ref/Alt) | 392 (G/A) | 462 (N/D) | 151 (A/T) | 347 (N/G) | 772 (R/K) | 631 (A/E) | 542 (R/P) | 204 (E/K) | 393 (V/M) | 588 (V/M) | 111 (P/S) | 127 (R/H) | 475 (C/F) | 151 (A/V) | |
Sahiwal 1 | C/C | A/A | A/A | C/C | G/G | C/C | C/C | C/C | C/C | C/C | G/G | G/G | C/C | G/G | |
Sahiwal 2 | C/C | A/A | A/A | C/C | G/G | C/C | C/C | C/C | C/C | C/C | G/G | G/G | C/C | G/G | |
Sahiwal 3 | C/C | A/A | A/A | C/C | G/G | C/C | C/C | C/C | C/C | C/C | G/G | G/G | C/C | G/G | |
Sahiwal 4 | C/C | A/A | A/A | C/C | G/G | C/C | C/C | C/C | C/C | C/C | G/G | G/G | C/C | G/G | |
Gir 1 | C/C | A/A | A/A | C/C | G/G | C/C | C/C | C/C | C/C | C/C | G/G | G/G | C/C | G/G | |
Gir 2 | C/C | A/A | A/A | C/C | G/G | C/C | C/C | C/C | C/C | C/C | G/G | G/G | C/C | G/G | |
Gir 3 | C/C | A/A | A/A | C/C | G/G | C/C | C/C | C/C | C/C | C/C | G/G | G/G | C/C | G/G | |
Gir 4 | C/C | A/A | A/A | C/C | G/G | C/C | C/C | C/C | C/C | C/C | G/G | G/G | C/C | G/G | |
Amritmahal | C/C | A/A | A/A | C/C | G/A | C/C | C/C | C/C | C/C | C/C | G/G | G/G | C/C | G/G | |
Dangi | C/G | A/G | A/C | C/A | G/G | C/C | C/G | C/C | C/T | C/C | G/G | G/G | C/C | G/G | |
Gaolao | C/G | A/A | A/C | C/C | G/G | C/T | C/C | C/C | C/C | C/C | G/G | G/G | T/T | G/G | |
Deoni | C/C | A/A | A/C | C/C | G/G | C/C | C/G | C/T | C/T | C/C | G/G | G/G | C/C | G/A | |
Pulikulam | C/G | A/A | A/A | C/C | G/A | C/C | C/T | C/C | C/C | C/T | G/A | G/G | C/C | G/G | |
Hallikar | C/C | A/A | A/A | C/C | G/A | C/C | C/G | C/C | C/C | C/C | G/G | G/A | C/C | G/G |
Gene | MFGE8 | FGF2 | TLR4 | LPIN1 | NUP98 | PTK2 | ZBTB16 | ZBTB16 | DDIT3 | NT5E | |
---|---|---|---|---|---|---|---|---|---|---|---|
Genomic location | 20518217 | 37920746 | 107080326 | 85205642 | 32707374 | 2973942 | 59717979 | 59718206 | 64346576 | 64102580 | |
Genomic Variant | Ref | A | G | G | T | G | A | T | G | C | G |
Alt | T | A | A | G | A | C | C | A | T | T | |
Protein Variant Pos(Ref/Alt) | 328 (S/R) | 19 (G/R) | 67 (R/K) | 766 (S/P) | 548 (H/Y) | 904 (D/A) | 598 (G/R) | 627 (A/V) | 87 (S/L) | 8 (T/N) | |
Sahiwal 1 | A/A | G/G | G/A | T/T | G/G | A/A | T/T | G/G | C/T | G/G | |
Sahiwal 2 | A/A | G/G | G/G | T/G | G/G | A/A | T/T | G/G | C/C | G/T | |
Sahiwal 3 | A/A | G/A | G/G | T/T | G/A | A/A | T/T | G/A | C/C | G/G | |
Sahiwal 4 | A/A | - | G/G | T/T | G/A | A/A | T/T | G/G | C/C | G/G | |
Gir 1 | A/T | - | G/G | T/T | G/G | A/A | T/T | G/G | C/C | G/G | |
Gir 2 | A/A | - | G/G | T/T | G/G | A/A | T/T | G/G | C/C | G/G | |
Gir 3 | A/A | G/G | G/G | T/T | G/G | A/C | T/C | G/G | C/C | G/G | |
Gir 4 | A/A | G/G | G/G | T/T | G/G | A/A | T/T | G/G | C/C | G/G | |
Amritmahal | A/A | G/G | G/G | T/T | G/G | A/A | T/T | G/G | C/C | G/G | |
Dangi | A/A | G/G | G/G | T/T | G/G | A/A | T/T | G/G | C/C | G/G | |
Gaolao | A/A | G/G | G/G | T/T | G/G | A/A | T/T | G/G | C/C | G/G | |
Deoni | A/A | G/G | G/G | T/T | G/G | A/A | T/T | G/G | C/C | G/G | |
Pulikulam | A/A | G/G | G/G | T/T | G/G | A/A | T/T | G/G | C/C | G/G | |
Hallikar | A/A | G/G | G/G | T/T | G/G | A/A | T/T | A/A | C/C | G/G |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Topno, N.A.; Kesarwani, V.; Kushwaha, S.K.; Azam, S.; Kadivella, M.; Gandham, R.K.; Majumdar, S.S. Non-Synonymous Variants in Fat QTL Genes among High- and Low-Milk-Yielding Indigenous Breeds. Animals 2023, 13, 884. https://doi.org/10.3390/ani13050884
Topno NA, Kesarwani V, Kushwaha SK, Azam S, Kadivella M, Gandham RK, Majumdar SS. Non-Synonymous Variants in Fat QTL Genes among High- and Low-Milk-Yielding Indigenous Breeds. Animals. 2023; 13(5):884. https://doi.org/10.3390/ani13050884
Chicago/Turabian StyleTopno, Neelam A., Veerbhan Kesarwani, Sandeep Kumar Kushwaha, Sarwar Azam, Mohammad Kadivella, Ravi Kumar Gandham, and Subeer S. Majumdar. 2023. "Non-Synonymous Variants in Fat QTL Genes among High- and Low-Milk-Yielding Indigenous Breeds" Animals 13, no. 5: 884. https://doi.org/10.3390/ani13050884
APA StyleTopno, N. A., Kesarwani, V., Kushwaha, S. K., Azam, S., Kadivella, M., Gandham, R. K., & Majumdar, S. S. (2023). Non-Synonymous Variants in Fat QTL Genes among High- and Low-Milk-Yielding Indigenous Breeds. Animals, 13(5), 884. https://doi.org/10.3390/ani13050884