Developing Methods for Maintaining Genetic Diversity in Novel Aquaculture Species: The Case of Seriola lalandi
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Production System and Data Sampling
2.2. Genotyping-By-Sequencing (GBS) Panel Construction
2.3. Genotype Detection and Parentage Analysis Using the GBS Panel
3. Results
3.1. Genotyping-By-Sequencing (GBS) Marker Panel Assessment
3.2. Parentage Testing and Distribution of Genetic Contributions
4. Discussion
4.1. Predicted Rates of Inbreeding in S. lalandi
4.2. Low-Density Marker Panels, Genomic Prediction, and Two-Stage Selection Programmes
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nugroho, E. Population Genetic Studies on the Aquaculture Fish in Genus Seriola for Their Risk Management. Ph.D. Thesis, Northeastern University, Shenyang, China, 2001. [Google Scholar]
- Randall, J.E.; Lim, K.K.P. A Checklist of the Fishes of the South China Sea. Raffles Bull. Zool. 2000, 8, 569–667. [Google Scholar]
- Lovatelli, A.; Holthus, P.F.; Food and Agriculture Organization of the United Nations (Eds.) Capture-Based Aquaculture: Global Overview; FAO Fisheries Technical Paper; Food and Agriculture Organization of the United Nations: Rome, Italy, 2008; ISBN 978-92-5-106030-8. [Google Scholar]
- Fernández, G.; Cichero, D.; Patel, A.; Martínez, V. Genetic Structure of Chilean Populations of Seriola lalandi for the Diversification of the National Aquaculture in the North of Chile. Lat. Am. J. Aquat. Res. 2015, 43, 374–379. [Google Scholar] [CrossRef]
- Eschmeyer, W.N.; Herald, E.S. A Field Guide to Pacific Coast Fishes: North America; Houghton Mifflin Harcourt: Boston, MA, USA, 1999; ISBN 978-0-618-00212-2. [Google Scholar]
- Dyer, B.S.; Westneat, M.W. Of Juan Fernández Archipelago and Desventuradas Islands, Chile. Rev. Biol. Mar. Oceanogr. 2010, 1, 589–617. [Google Scholar] [CrossRef] [Green Version]
- Risk Assessment for Metazoan Parasites of Yellowtail Kingfish Seriola lalandi (Perciformes: Carangidae) in South Australian Sea-Cage Aquaculture-ScienceDirect. Available online: https://www.sciencedirect.com/science/article/pii/S0044848607002761?casa_token=KywUG1A7EhQAAAAA:iNT1wbiCqiFrCcll-CcXqEtVgDOQRCXEQ-bz2N5nm8M2_CzLC3ct8U-isFyOj1sbv5BZRFPdMG0C (accessed on 22 September 2022).
- Symonds, J.; Walker, S.; Pether, S.; Gublin, Y.; McQueen, D.; King, A.; Irvine, G.; Setiawan, A.; Forsythe, J.; Bruce, M. Developing Yellowtail Kingfish (Seriola lalandi) and Hāpuku (Polyprion oxygeneios) for New Zealand Aquaculture. N. Z. J. Mar. Freshw. Res. 2014, 48, 371–384. [Google Scholar] [CrossRef] [Green Version]
- Kingfish Company Obtains Federal Permit for Maine RAS Facility. Available online: https://www.rastechmagazine.com/kingfish-company-obtains-federal-permit-for-maine-ras-facility/ (accessed on 23 September 2022).
- Growing RAS in Chile. Available online: https://www.rastechmagazine.com/growing-ras-in-chile/ (accessed on 23 September 2022).
- Gjedrem, T. Genetic Improvement of Cold-Water Fish Species. Aquac. Res. 2000, 31, 25–33. [Google Scholar] [CrossRef]
- Aho, T.; Rönn, J.; Piironen, J.; Björklund, M. Impacts of Effective Population Size on Genetic Diversity in Hatchery Reared Brown Trout (Salmo trutta L.) Populations. Aquaculture 2006, 253, 244–248. [Google Scholar] [CrossRef]
- Eknath, A.E.; Doyle, R.W. Effective Population Size and Rate of Inbreeding in Aquaculture of Indian Major Carps. Aquaculture 1990, 85, 293–305. [Google Scholar] [CrossRef]
- Martinez, V.; Dettleff, P.J.; Galarce, N.; Bravo, C.; Dorner, J.; Iwamoto, R.N.; Naish, K. Estimates of Effective Population Size in Commercial and Hatchery Strains of Coho Salmon (Oncorhynchus kisutch (Walbaum, 1792)). Animals 2022, 12, 647. [Google Scholar] [CrossRef]
- Morvezen, R.; Boudry, P.; Laroche, J.; Charrier, G. Stock Enhancement or Sea Ranching? Insights from Monitoring the Genetic Diversity, Relatedness and Effective Population Size in a Seeded Great Scallop Population (Pecten maximus). Heredity 2016, 117, 142–148. [Google Scholar] [CrossRef] [Green Version]
- Saura, M.; Caballero, A.; Santiago, E.; Fernández, A.; Morales-González, E.; Fernández, J.; Cabaleiro, S.; Millán, A.; Martínez, P.; Palaiokostas, C.; et al. Estimates of Recent and Historical Effective Population Size in Turbot, Seabream, Seabass and Carp Selective Breeding Programmes. Genet. Sel. Evol. 2021, 53, 85. [Google Scholar] [CrossRef]
- Vela Avitúa, S.; Montaldo, H.H.; Márquez Valdelamar, L.; Campos Montes, G.R.; Castillo Juárez, H. Decline of Genetic Variability in a Captive Population of Pacific White Shrimp Penaeus (Litopenaeus) vannamei Using Microsatellite and Pedigree Information. Electron. J. Biotechnol. 2013, 16, 9. [Google Scholar] [CrossRef]
- Nguyen, N.H.; Whatmore, P.; Miller, A.; Knibb, W. Quantitative Genetic Properties of Four Measures of Deformity in Yellowtail Kingfish Seriola lalandi Valenciennes, 1833. J. Fish Dis. 2016, 39, 217–228. [Google Scholar] [CrossRef] [PubMed]
- Whatmore, P.; Nguyen, N.H.; Miller, A.; Lamont, R.; Powell, D.; D’Antignana, T.; Bubner, E.; Elizur, A.; Knibb, W. Genetic Parameters for Economically Important Traits in Yellowtail Kingfish Seriola lalandi. Aquaculture 2013, 400–401, 77–84. [Google Scholar] [CrossRef]
- Dettleff, P.; Hernandez, E.; Partridge, G.; Lafarga-De la Cruz, F.; Martinez, V. Understanding the Population Structure and Reproductive Behavior of Hatchery-Produced Yellowtail Kingfish (Seriola lalandi). Aquaculture 2020, 522, 734948. [Google Scholar] [CrossRef]
- Martinez, V. Genome wide association of sex dtermibnation in Seriola lalandi. in preparation.
- Zimin, A.V.; Puiu, D.; Luo, M.-C.; Zhu, T.; Koren, S.; Marçais, G.; Yorke, J.A.; Dvořák, J.; Salzberg, S.L. Hybrid Assembly of the Large and Highly Repetitive Genome of Aegilops tauschii, a Progenitor of Bread Wheat, with the MaSuRCA Mega-Reads Algorithm. Genome Res. 2017, 27, 787–792. [Google Scholar] [CrossRef] [Green Version]
- Martinez, V. Diversification of Marine Aquaculture through Genomics: Applications to Breeding Programs in Novel Species. In Proceedings of the Plant and Animal Genome XXVII, San Diego, CA, USA, 14 January 2019; Available online: https://www.youtube.com/watch?v=oIGf6-3ExVc (accessed on 10 March 2021).
- Catchen, J.; Amores, A.; Bassham, S. Chromonomer: A Tool Set for Repairing and Enhancing Assembled Genomes Through Integration of Genetic Maps and Conserved Synteny. G3 (Bethesda) 2020, 10, 4115–4128. [Google Scholar] [CrossRef]
- Rastas, P. Lep-MAP3: Robust Linkage Mapping Even for Low-Coverage Whole Genome Sequencing Data. Bioinformatics 2017, 33, 3726–3732. [Google Scholar] [CrossRef] [Green Version]
- Martinez, V.; Galarce, N. 023 The Reference Genome of Seriola lalandi Gave Insights on Sex Determination and Major Histocompatibility Variation. 2023; in preparation. [Google Scholar]
- Li, H.; Durbin, R. Fast and Accurate Short Read Alignment with Burrows-Wheeler Transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R.; 1000 Genome Project Data Processing Subgroup. The Sequence Alignment/Map Format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef] [Green Version]
- Tarasov, A.; Vilella, A.J.; Cuppen, E.; Nijman, I.J.; Prins, P. Sambamba: Fast Processing of NGS Alignment Formats. Bioinformatics 2015, 31, 2032–2034. [Google Scholar] [CrossRef] [Green Version]
- Danecek, P.; Auton, A.; Abecasis, G.; Albers, C.A.; Banks, E.; DePristo, M.A.; Handsaker, R.E.; Lunter, G.; Marth, G.T.; Sherry, S.T.; et al. The Variant Call Format and VCFtools. Bioinformatics 2011, 27, 2156–2158. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.C.; Chow, C.C.; Tellier, L.C.; Vattikuti, S.; Purcell, S.M.; Lee, J.J. Second-Generation PLINK: Rising to the Challenge of Larger and Richer Datasets. GigaScience 2015, 4, s13742-015. [Google Scholar] [CrossRef] [PubMed]
- Jamieson, A.; C S Taylor, S. Comparisons of Three Probability Formulae for Parentage Exclusion. Anim. Genet. 1997, 28, 397–400. [Google Scholar] [CrossRef] [PubMed]
- Botstein, D.; White, R.L.; Skolnick, M.; Davis, R.W. Construction of a Genetic Linkage Map in Man Using Restriction Fragment Length Polymorphisms. Am. J. Hum. Genet. 1980, 32, 314–331. [Google Scholar]
- Whalen, A.; Gorjanc, G.; Hickey, J.M. Parentage Assignment with Genotyping-by-Sequencing Data. J. Anim. Breed. Genet. 2019, 136, 102–112. [Google Scholar] [CrossRef] [Green Version]
- Martinez, V. Marker-Assisted Selection in Fish and Shellfish Breeding Schemes. In Marker-Assisted Selection: Current Status and Future Perspectives in Crops, Livestock, Forestry and Fish; Guimaraes, E.P., Ruane, J., Scherf, B.D., Sonnino, A., Dargie, J.D., Eds.; Food and Agriculture Organization of the United Nations: Rome, Italy, 2007; 494p. [Google Scholar]
- Woolliams, J.A.; Berg, P.; Dagnachew, B.S.; Meuwissen, T.H.E. Genetic Contributions and Their Optimization. J. Anim. Breed. Genet. 2015, 132, 89–99. [Google Scholar] [CrossRef]
- Waples, R.S.; Waples, R.K. Inbreeding Effective Population Size and Parentage Analysis without Parents. Mol. Ecol. Resour. 2011, 11 (Suppl. 1), 162–171. [Google Scholar] [CrossRef] [Green Version]
- Boichard, D.; Maignel, L.; Verrier, É. The Value of Using Probabilities of Gene Origin to Measure Genetic Variability in a Population. Genet. Sel. Evol. 1997, 29, 5. [Google Scholar] [CrossRef]
- Hauville, M.; Zambonino-Infante, J.; Migaud, H.; Bell, J.G.B.; Main, K. Effects of Probiotics on Pompano (Trachinotus carolinus), Common Snook (Centropomus undecimalis), and Red Drum (Sciaenops ocellatus) Larvae. Commun. Agric. Appl. Biol. Sci. 2013, 78, 180–183. [Google Scholar]
- Schmidt, E.; Stuart, K.; Hyde, J.; Purcell, C.; Drawbridge, M. Spawning Dynamics and Egg Production Characteristics of Captive Seriola dorsalis Assessed Using Parentage Analyses. Aquac. Res. 2021, 52, 4050–4063. [Google Scholar] [CrossRef]
- Caballero, A.; Bravo, I.; Wang, J. Inbreeding Load and Purging: Implications for the Short-Term Survival and the Conservation Management of Small Populations. Heredity 2017, 118, 177–185. [Google Scholar] [CrossRef] [Green Version]
- Kimura, M.; Crow, J.F. On the Maximum Avoidance of Inbreeding. Genet. Res. 1963, 4, 399–415. [Google Scholar] [CrossRef]
- Hershberger, W.K.; Myers, J.M.; Iwamoto, R.N.; Mcauley, W.C.; Saxton, A.M. Genetic Changes in the Growth of Coho Salmon (Oncorhynchus kisutch) in Marine Net-Pens, Produced by Ten Years of Selection. Aquaculture 1990, 85, 187–197. [Google Scholar] [CrossRef]
- Nomura, T.; Yonezawa, K. A Comparison of Four Systems of Group Mating for Avoiding Inbreeding. Genet. Sel. Evol. 1996, 28, 141. [Google Scholar] [CrossRef]
- Martinez, V.; Kause, A.; Mäntysaari, E.; Mäki-Tanila, A. The Use of Alternative Breeding Schemes to Enhance Genetic Improvement in Rainbow Trout: II. Two-Stage Selection. Aquaculture 2006, 254, 195–202. [Google Scholar] [CrossRef]
- Poortenaar, C.W.; Hooker, S.H.; Sharp, N. Assessment of Yellowtail Kingfish (Seriola lalandi lalandi) Reproductive Physiology, as a Basis for Aquaculture Development. Aquaculture 2001, 201, 271–286. [Google Scholar] [CrossRef]
- Sonesson, A.K.; Woolliams, J.A.; Meuwissen, T.H. Genomic Selection Requires Genomic Control of Inbreeding. Genet. Sel. Evol. 2012, 44, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jibrila, I.; Ten Napel, J.; Vandenplas, J.; Veerkamp, R.F.; Calus, M.P.L. Investigating the Impact of Preselection on Subsequent Single-Step Genomic BLUP Evaluation of Preselected Animals. Genet. Sel. Evol. 2020, 52, 42. [Google Scholar] [CrossRef] [PubMed]
- Kriaridou, C.; Tsairidou, S.; Houston, R.D.; Robledo, D. Genomic Prediction Using Low Density Marker Panels in Aquaculture: Performance Across Species, Traits, and Genotyping Platforms. Front. Genet. 2020, 11, 124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Breeding Unit | ΔF1 | Ne1 | ΔF2 | Ne2 | ONF | ONM | NCF | NCM | ENF | Ekf | Ekm | Vkf | Vkm |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
R1 | 0.06 | 7.9 | 0.12 | 4.1 | 18 | 13 | 5 | 9 | 4 | 7 | 4 | 192 | 17 |
R2 | 0.06 | 8.6 | 0.09 | 5.8 | 15 | 9 | 5 | 10 | 4.9 | 12 | 3 | 292 | 6 |
R3 | 0.07 | 7.4 | 0.11 | 4.5 | 13 | 15 | 3 | 6 | 3.7 | 12 | 4 | 96 | 1 |
R3′ | 0.04 | 12.7 | 0.06 | 9.2 | 13 | 15 | 7 | 14 | 7.1 | 9 | 3 | 115 | 21 |
Overall | 0.02 | 23.8 | 0.03 | 15.1 | 46 | 35 | 17 | 41 | 13.3 | 12 | 6 | 293 | 25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martinez, V.; Galarce, N.; Setiawan, A. Developing Methods for Maintaining Genetic Diversity in Novel Aquaculture Species: The Case of Seriola lalandi. Animals 2023, 13, 913. https://doi.org/10.3390/ani13050913
Martinez V, Galarce N, Setiawan A. Developing Methods for Maintaining Genetic Diversity in Novel Aquaculture Species: The Case of Seriola lalandi. Animals. 2023; 13(5):913. https://doi.org/10.3390/ani13050913
Chicago/Turabian StyleMartinez, Víctor, Nicolas Galarce, and Alvin Setiawan. 2023. "Developing Methods for Maintaining Genetic Diversity in Novel Aquaculture Species: The Case of Seriola lalandi" Animals 13, no. 5: 913. https://doi.org/10.3390/ani13050913
APA StyleMartinez, V., Galarce, N., & Setiawan, A. (2023). Developing Methods for Maintaining Genetic Diversity in Novel Aquaculture Species: The Case of Seriola lalandi. Animals, 13(5), 913. https://doi.org/10.3390/ani13050913