Animal Welfare Assessment Protocols for Bulls in Artificial Insemination Centers: Requirements, Principles, and Criteria
Abstract
:Simple Summary
Abstract
1. Introduction
2. Main Principles, Application, and Animal Welfare Assessment
3. Animal Physiological Stress Response Due to Poor Animal Welfare
4. Resource-Based Requirements
4.1. Space and Bedding (Good Housing—Comfort around Resting and Ease of Movement)
4.2. Temperature and Air Quality (Good Housing—Thermal Comfort)
4.3. Access to Food and Water (Good Feeding)
5. Animal-Based Requirements
5.1. Health-Related Measures (Good Health)
5.2. Bull Behavior and Libido Measurements (Appropriate Behavior)
6. Management-Based Requirements
7. Discussion
8. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Parkinson, T.J.; Morrell, J.M. Artificial Insemination. In Veterinary Reproduction and Obstetrics; W.B. Saunders: Philadelphia, PA, USA, 2019; pp. 746–777. [Google Scholar] [CrossRef]
- Walker, J.; Perry, G.; Daly, R.; Olson, K. Bull Management and Nutrition. In Range Beef Cow Symposium; XXI; RBCS: Casper, WY, USA, 2009; p. 277. [Google Scholar]
- Dasi, T.; Selvaraj, K.; Pullakhandam, R.; Kulkarni, B. Animal source foods for the alleviation of double burden of malnutrition in countries undergoing nutrition transition. Anim. Front. 2019, 9, 32–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- González-Recio, O.; López-Paredes, J.; Ouatahar, L.; Charfeddine, N.; Ugarte, E.; Alenda, R.; Jiménez-Montero, J. Mitigation of greenhouse gases in dairy cattle via genetic selection: 2. Incorporating methane emissions into the breeding goal. J. Dairy Sci. 2020, 103, 7210–7221. [Google Scholar] [CrossRef] [PubMed]
- Broom, D.M. Animal welfare: Concepts and measurement2. J. Anim. Sci. 1991, 69, 4167–4175. [Google Scholar] [CrossRef] [PubMed]
- Quality, W. Welfare Quality® assessment protocol for cattle. Welf. Qual. Consort. Lelystad Neth. 2009. Available online: http://www.welfarequality.net/media/1088/cattle_protocol_without_veal_calves.pdf (accessed on 30 January 2023).
- Fraser, D. Animal welfare. In Advances in Agricultural Animal Welfare; Woodhead Publishing: Sawston, UK, 2018; pp. 129–143. [Google Scholar] [CrossRef]
- Blokhuis, H.J.; Veissier, I.; Miele, M.; Jones, B.C. The Welfare Quality project and beyond: Safeguarding farm animal well-being. Acta Agric. Scand. Sect. A Anim. Sci. 2010, 60, 129–140. [Google Scholar] [CrossRef]
- Krueger, A.; Cruickshank, J.; Trevisi, E.; Bionaz, M. Systems for evaluation of welfare on dairy farms. J. Dairy Res. 2020, 87, 13–19. [Google Scholar] [CrossRef]
- Fraser, D. Animal welfare assurance programs in food production: A framework for assessing the options. Anim. Welf. 2006, 15, 93–104. [Google Scholar] [CrossRef]
- Mellor, D.J.; Reid, C. Concepts of Animal Well-Being and Predicting the Impact of Procedures on Experimental Animals. 1994, pp. 3–18. Available online: https://www.wellbeingintlstudiesrepository.org/exprawel/7/ (accessed on 30 January 2023).
- Webster, J. Assessment of animal welfare: The five freedoms. In Animal Welfare: A Cool Eye towards Eden; Blackwell Science: Oxford, UK, 1994; pp. 10–14. [Google Scholar]
- Mellor, D.J.; Beausoleil, N.J.; Littlewood, K.E.; McLean, A.N.; McGreevy, P.D.; Jones, B.; Wilkins, C. The 2020 five domains model: Including human–animal interactions in assessments of animal welfare. Animals 2020, 10, 1870. [Google Scholar] [CrossRef]
- Broom, D.M.; Johnson, K.G.; Broom, D.M. Stress and Animal Welfare; Springer: Berlin/Heidelberg, Germany, 1993; Volume 993. [Google Scholar]
- Pacák, K. Stressor-specific activation of the hypothalamic-pituitary-adrenocortical axis. Physiol. Res. 2000, 49, S11–S17. [Google Scholar] [PubMed]
- Pacak, K.; Palkovits, M. Stressor specificity of central neuroendocrine responses: Implications for stress-related disorders. Endocr. Rev. 2001, 22, 502–548. [Google Scholar] [CrossRef] [Green Version]
- Ralph, C.; Lehman, M.; Goodman, R.L.; Tilbrook, A. Impact of psychosocial stress on gonadotrophins and sexual behaviour in females: Role for cortisol? Reproduction 2016, 152, R1–R14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cardoso, R.C.; West, S.M.; Maia, T.S.; Alves, B.R.; Williams, G.L. Nutritional control of puberty in the bovine female: Prenatal and early postnatal regulation of the neuroendocrine system. Domest. Anim. Endocrinol. 2020, 73, 106434. [Google Scholar] [CrossRef] [PubMed]
- Dobson, H.; Routly, J.E.; Smith, R.F. Understanding the trade-off between the environment and fertility in cows and ewes. Anim. Reprod. 2020, 17, e20200017. [Google Scholar] [CrossRef] [PubMed]
- Cain, D.W.; Cidlowski, J.A. Specificity and sensitivity of glucocorticoid signaling in health and disease. Best Pract. Res. Clin. Endocrinol. Metab. 2015, 29, 545–556. [Google Scholar] [CrossRef] [Green Version]
- Amweg, A.N.; Rodríguez, F.M.; Huber, E.; Marelli, B.E.; Gareis, N.C.; Belotti, E.M.; Rey, F.; Salvetti, N.R.; Ortega, H.H. Detection and activity of 11 beta hydroxylase (CYP11B1) in the bovine ovary. Reproduction 2017, 153, 433–441. [Google Scholar] [CrossRef] [Green Version]
- Huber, E.; Notaro, U.S.; Recce, S.; Rodríguez, F.M.; Ortega, H.H.; Salvetti, N.R.; Rey, F. Fetal programming in dairy cows: Effect of heat stress on progeny fertility and associations with the hypothalamic-pituitary-adrenal axis functions. Anim. Reprod. Sci. 2020, 216, 106348. [Google Scholar] [CrossRef]
- Chrousos, G.P.; Torpy, D.J.; Gold, P.W. Interactions between the hypothalamic-pituitary-adrenal axis and the female reproductive system: Clinical implications. Ann. Intern. Med. 1998, 129, 229–240. [Google Scholar] [CrossRef] [Green Version]
- Bhongade, M.B.; Prasad, S.; Jiloha, R.C.; Ray, P.C.; Mohapatra, S.; Koner, B.C. Effect of psychological stress on fertility hormones and seminal quality in male partners of infertile couples. Andrologia 2015, 47, 336–342. [Google Scholar] [CrossRef]
- Martínez-Miró, S.; Tecles, F.; Ramón, M.; Escribano, D.; Hernández, F.; Madrid, J.; Orengo, J.; Martínez-Subiela, S.; Manteca, X.; Cerón, J.J. Causes, consequences and biomarkers of stress in swine: An update. BMC Vet. Res. 2016, 12, 171. [Google Scholar] [CrossRef] [Green Version]
- Fernandez-Novo, A.; Pérez-Garnelo, S.; Villagrá, A.; Pérez-Villalobos, N.; Astiz, S. The Effect of Stress on Reproduction and Reproductive Technologies in Beef Cattle—A Review. Animals 2020, 10, 2096. [Google Scholar] [CrossRef]
- Mormède, P.; Andanson, S.; Aupérin, B.; Beerda, B.; Guémené, D.; Malmkvist, J.; Manteca, X.; Manteuffel, G.; Prunet, P.; van Reenen, C.G. Exploration of the hypothalamic–pituitary–adrenal function as a tool to evaluate animal welfare. Physiol. Behav. 2007, 92, 317–339. [Google Scholar] [CrossRef] [PubMed]
- Elsasser, T.H.; Klasing, K.C.; Filipov, N.; Thompson, F. The Metabolic Consequences of Stress: Targets for Stress and Priorities of Nutrient Use. In The Biology of Animal Stress: Basic Principles and Implications for Animal Welfare; CABI: Wallingford, UK, 2000; p. 77. [Google Scholar]
- Dallman, M. Stress and sickness decrease food intake and body weight: How does this happen? When does this adaptive response progress to pain and suffering. In Coping with Challenge. Welfare in Animals including Humans; Dahlem University Press: Berlin, Germany, 2001; pp. 301–316. [Google Scholar]
- Davidson, L.M.; Millar, K.; Jones, C.; Fatum, M.; Coward, K. Deleterious effects of obesity upon the hormonal and molecular mechanisms controlling spermatogenesis and male fertility. Hum. Fertil. 2015, 18, 184–193. [Google Scholar] [CrossRef] [PubMed]
- Reis, L.O.; Dias, F.G.F. Male fertility, obesity, and bariatric surgery. Reprod. Sci. 2012, 19, 778–785. [Google Scholar] [CrossRef]
- Leistner, C.; Menke, A. Hypothalamic–pituitary–adrenal axis and stress. Handb. Clin. Neurol. 2020, 175, 55–64. [Google Scholar] [PubMed]
- Sherwin, C.; Richards, G.; Nicol, C. Comparison of the welfare of layer hens in 4 housing systems in the UK. Br. Poult. Sci. 2010, 51, 488–499. [Google Scholar] [CrossRef]
- Lay, D.C., Jr.; Fulton, R.M.; Hester, P.Y.; Karcher, D.M.; Kjaer, J.B.; Mench, J.A.; Mullens, B.A.; Newberry, R.C.; Nicol, C.J.; O’Sullivan, N.P.; et al. Hen welfare in different housing systems. Poult. Sci. 2011, 90, 278–294. [Google Scholar] [CrossRef] [PubMed]
- Mossberg, I. The welfare of growing bulls in different housing systems. A review. J. Anim. Feed Sci. 1994, 3, 247–261. [Google Scholar] [CrossRef] [Green Version]
- Fregonesi, J.A.; Leaver, J.D. Influence of space allowance and milk yield level on behaviour, performance and health of dairy cows housed in strawyard and cubicle systems. Livest. Prod. Sci. 2002, 78, 245–257. [Google Scholar] [CrossRef]
- Haufe, H.C.; Gygax, L.; Wechsler, B.; Stauffacher, M.; Friedli, K. Influence of floor surface and access to pasture on claw health in dairy cows kept in cubicle housing systems. Prev. Vet. Med. 2012, 105, 85–92. [Google Scholar] [CrossRef] [PubMed]
- UK, S.E. Code of Recommendations for the Welfare of Livestock: Cattle; Defra Publications: London, UK, 2003; p. 39. [Google Scholar]
- Schenk, J.L. Review: Principles of maximizing bull semen production at genetic centers. Animal 2018, 12, s142–s147. [Google Scholar] [CrossRef] [Green Version]
- Kastelic, J.; Rizzoto, G.; Thundathil, J. Review: Testicular vascular cone development and its association with scrotal thermoregulation, semen quality and sperm production in bulls. Animal 2018, 12, s133–s141. [Google Scholar] [CrossRef] [PubMed]
- Brito, L.F.; Barth, A.D.; Wilde, R.E.; Kastelic, J.P. Testicular vascular cone development and its association with scrotal temperature, semen quality, and sperm production in beef bulls. Anim. Reprod. Sci. 2012, 134, 135–140. [Google Scholar] [CrossRef]
- Parkinson, T. Seasonal variations in semen quality of bulls: Correlations with environmental temperature. Vet. Rec. 1987, 120, 479–482. [Google Scholar] [CrossRef]
- Morrell, J.M. Heat stress and bull fertility. Theriogenology 2020, 153, 62–67. [Google Scholar] [CrossRef]
- Berian, S. Effect of Heat Stress on Physiological and Hemato-biochemical Profile of Cross Bred Dairy Cattle. J. Anim. Res. 2019, 9, 95–101. [Google Scholar] [CrossRef]
- Setchell, B. The effects of heat on the testes of mammals. Anim. Reprod. (AR) 2018, 3, 81–91. [Google Scholar]
- Conforti, A.; Mascia, M.; Cioffi, G.; De Angelis, C.; Coppola, G.; De Rosa, P.; Pivonello, R.; Alviggi, C.; De Placido, G. Air pollution and female fertility: A systematic review of literature. Reprod. Biol. Endocrinol. 2018, 16, 117. [Google Scholar] [CrossRef] [PubMed]
- Frutos, V.; Gonzalez-Comadran, M.; Sola, I.; Jacquemin, B.; Carreras, R.; Checa Vizcaino, M.A. Impact of air pollution on fertility: A systematic review. Gynecol. Endocrinol. 2015, 31, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Carre, J.; Gatimel, N.; Moreau, J.; Parinaud, J.; Leandri, R. Does air pollution play a role in infertility? A systematic review. Environ. Health 2017, 16, 82. [Google Scholar] [CrossRef] [Green Version]
- World Organisation For Animal Health. Introduction to the recommendations for animal welfare. In Terrestrial Animal Health Code; World Organisation for Animal Health: Paris, France, 2019. [Google Scholar]
- Calamari, L.; Petrera, F.; Stefanini, L.; Abeni, F. Effects of different feeding time and frequency on metabolic conditions and milk production in heat-stressed dairy cows. Int. J. Biometeorol. 2013, 57, 785–796. [Google Scholar] [CrossRef]
- Hileman, S.M.; Lehman, M.N.; Coolen, L.M.; Goodman, R.L. The choreography of puberty: Evidence from sheep and other agriculturally important species. Curr. Opin. Endocr. Metab. Res. 2020, 14, 104–111. [Google Scholar] [CrossRef]
- Renaville, R.; Van Eenaeme, C.; Breier, B.; Vleurick, L.; Bertozzi, C.; Gengler, N.; Hornick, J.-L.; Parmentier, I.; Istasse, L.; Haezebroeck, V.; et al. Feed restriction in young bulls alters the onset of puberty in relationship with plasma insulin-like growth factor-I (IGF-I) and IGF-binding proteins. Domest. Anim. Endocrinol. 2000, 18, 165–176. [Google Scholar] [CrossRef] [PubMed]
- Renaville, R.; Massart, S.; Sneyers, M.; Falaki, M.; Gengler, N.; Burny, A.; Portetelle, D. Dissociation of increases in plasma insulin-like growth factor I and testosterone during the onset of puberty in bulls. J. Reprod. Fertil. 1996, 106, 79–86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Renaville, R.; Devolder, A.; Massart, S.; Sneyers, M.; Burny, A.; Portetelle, D. Changes in the hypophysial—Gonadal axis during the onset of puberty in young bulls. Reproduction 1993, 99, 443–449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ivell, R.; Heng, K.; Anand-Ivell, R. Insulin-like factor 3 and the HPG axis in the male. Front. Endocrinol. 2014, 5, 6. [Google Scholar] [CrossRef] [Green Version]
- Nef, S.; Parada, L.F. Cryptorchidism in mice mutant for Insl3. Nat. Genet. 1999, 22, 295–299. [Google Scholar] [CrossRef] [PubMed]
- Kawamura, K.; Kumagai, J.; Sudo, S.; Chun, S.-Y.; Pisarska, M.; Morita, H.; Toppari, J.; Fu, P.; Wade, J.D.; Bathgate, R.A.D.; et al. Paracrine regulation of mammalian oocyte maturation and male germ cell survival. Proc. Natl. Acad. Sci. USA 2004, 101, 7323–7328. [Google Scholar] [CrossRef] [Green Version]
- Rahmawati, D.A.; Aminuddin, A.; Hamid, F.; Prihantono, P.; Bahar, B.; Hadju, V. Malnutrition in children associated with low insulin-like growth factor binding protein-3 (IGFBP-3) levels. Gac. Sanit. 2021, 35, S275–S277. [Google Scholar] [CrossRef] [PubMed]
- Johansen, M.L.; Anand-Ivell, R.; Mouritsen, A.; Hagen, C.P.; Mieritz, M.G.; Søeborg, T.; Johannsen, T.H.; Main, K.M.; Andersson, A.-M.; Ivell, R.; et al. Serum levels of insulin-like factor 3, anti-Müllerian hormone, inhibin B, and testosterone during pubertal transition in healthy boys: A longitudinal pilot study. Reproduction 2014, 147, 529–535. [Google Scholar] [CrossRef] [Green Version]
- Ferlin, A.; Garolla, A.; Rigon, F.; Caldogno, L.R.; Lenzi, A.; Foresta, C. Changes in serum insulin-like factor 3 during normal male puberty. J. Clin. Endocrinol. Metab. 2006, 91, 3426–3431. [Google Scholar] [CrossRef] [Green Version]
- Kawate, N.; Ohnari, A.; Pathirana, I.; Sakase, M.; Büllesbach, E.; Takahashi, M.; Inaba, T.; Tamada, H. Changes in plasma concentrations of insulin-like peptide 3 and testosterone from birth to pubertal age in beef bulls. Theriogenology 2011, 76, 1632–1638. [Google Scholar] [CrossRef]
- Rousing, T.; Bonde, M.; Sorensen, J. Indicators for the assessment of animal welfare in a dairy cattle herd with a cubicle housing system. Publ. Eur. Assoc. Anim. Prod. 2000, 102, 37–44. [Google Scholar]
- Cojkic, A.; Niazi, A.; Guo, Y.; Hallap, T.; Padrik, P.; Morrell, J.M. Identification of Bull Semen Microbiome by 16S Sequencing and Possible Relationships with Fertility. Microorganisms 2021, 9, 2431. [Google Scholar] [CrossRef]
- Chenoweth, P. Sexual behavior of the bull: A review. J. Dairy Sci. 1983, 66, 173–179. [Google Scholar] [CrossRef]
- Anderson, J. The Semen of Animals and Its Use for Artificial Insemination; Technical Communication; Imperial Bureau of Animal Breeding and Genetics: Edinburgh, Scotland, 1945; p. 151. [Google Scholar]
- Costa, J.H.C.; von Keyserlingk, M.A.G.; Weary, D.M. Invited review: Effects of group housing of dairy calves on behavior, cognition, performance, and health. J. Dairy Sci. 2016, 99, 2453–2467. [Google Scholar] [CrossRef] [Green Version]
- Ren, L.; Li, X.; Weng, Q.; Trisomboon, H.; Yamamoto, T.; Pan, L.; Watanabe, G.; Taya, K. Effects of acute restraint stress on sperm motility and secretion of pituitary, adrenocortical and gonadal hormones in adult male rats. J. Vet. Med. Sci. 2010, 72, 1501–1506. [Google Scholar] [CrossRef] [Green Version]
- Farooq, U.; Abbas, W.; Riaz, U.; Idris, M.; Hameed, S.; Lashari, M.H.; Khalid, M. An approach towards measurement of sexual behavior in Cholistani service bulls and its association with serum testosterone levels. Pure Appl. Biol. (PAB) 2020, 9, 369–375. [Google Scholar] [CrossRef]
- Lange, A.; Waiblinger, S.; van Hasselt, R.; Mundry, R.; Futschik, A.; Lürzel, S. Effects of restraint on heifers during gentle human-animal interactions. Appl. Anim. Behav. Sci. 2021, 243, 105445. [Google Scholar] [CrossRef]
- Almquist, J.; Hale, E. Anapproach to the measurement of sexualbehaviour and semen production of dairybulls. In Proceedings of the III International Congress on Animal Reproduction, Cambridge, UK, 25–30 June 1956; pp. 50–59. [Google Scholar]
- Hurri, E.; Johannisson, A.; Morrell, J. Semen from young bulls: How soon are the ejaculates acceptable for freezing? Anim. Reprod. Sci. 2020, 220, 106381. [Google Scholar] [CrossRef]
- EUR-Lex. Council Directive EU 2019/6. Available online: https://eur-lex.europa.eu/legal-content/EN/LSU/?uri=CELEX:32019R0006 (accessed on 30 January 2023).
- Albernaz-Gonçalves, R.; Olmos Antillón, G.; Hötzel, M.J. Linking animal welfare and antibiotic use in pig farming—A review. Animals 2022, 12, 216. [Google Scholar] [CrossRef] [PubMed]
- Canadian Council on Animal Care. CCAC Guidelines: Animal Welfare Assessment; CCAC: Ottawa, ON, Canada, 2021; Available online: https://www.ccac.ca/en/standards/guidelines/general-guidelines.html (accessed on 30 January 2023).
- Ministry for Primary Industries. Codes of animal welfare. In Animal Welfare Act; Ministry for Primary Industries: Wellington, New Zealand, 1999. [Google Scholar]
- Veissier, I.; Botreau, R.; Perny, P. Scoring animal welfare: Difficulties and Welfare Quality solutions. In An Overview of the Development of the Welfare Quality Assessment Systems; Keeling, L., Ed.; Cardiff University: Cardiff, UK, 2009; pp. 15–32. [Google Scholar]
- Smith, S.S. The influence of stress at puberty on mood and learning: Role of the α4βδ GABAA receptor. Neuroscience 2013, 249, 192–213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moran, D.; Wall, E. Livestock production and greenhouse gas emissions: Defining the problem and specifying solutions. Anim. Front. 2011, 1, 19–25. [Google Scholar] [CrossRef] [Green Version]
- The Welfare of Farmed Animals (England) Regulations. SCHEDULE 6 Additional Conditions That Apply to the Keeping of Calves Confined for Rearing and Fattening 2007. Available online: https://www.legislation.gov.uk/uksi/2007/2078/contents/made (accessed on 30 January 2023).
- Chenoweth, P.J. Bull libido/serving capacity. Vet. Clin. N. Am. Food Anim. Pract. 1997, 13, 331–344. [Google Scholar] [CrossRef] [PubMed]
Body Part | Clinical Parameter | Welfare Relevance | Bull Welfare Principle to Apply |
---|---|---|---|
General appearance | Body condition score | Poor body condition may cause long-term discomfort and an increase in disease susceptibility because of impaired immune competence; it indicates metabolic disorders, sub-optimal management, or chronic coping difficulties. | Good feeding Good health |
Skin | Skin parasites Skin infection pressure sores | Pruritic skin disorders result in long-term discomfort and increase the risk of secondary self-inflicted lesions. Skin injury and infection cause acute and chronic pain. Provides information about problems regarding housing system, management, or underlying diseases. | Good housing Good health |
Legs | Lameness Hoof care | Lameness indicates a painful leg condition and affects the freedom of movement and the performance of behavior. Overgrown or deformed hooves might indicate foot disorders causing pain and discomfort. The resulting changes in leg conformation might evolve into chronic articular damage. | Good housing Good health Appropriate behavior |
Systemic diseases | General condition Clinical diseases | Clinical diseases typically involve pain and discomfort. The welfare implications vary according to the intensity and duration of the disease condition and welfare. General condition is affected. | Good feeding Good housing Good health Appropriate behavior |
Mortality | Case history of culled animals | This information points out specific problem areas in the herd and provides details for tackling serious health problems. | Good feeding Good health |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cojkic, A.; Morrell, J.M. Animal Welfare Assessment Protocols for Bulls in Artificial Insemination Centers: Requirements, Principles, and Criteria. Animals 2023, 13, 942. https://doi.org/10.3390/ani13050942
Cojkic A, Morrell JM. Animal Welfare Assessment Protocols for Bulls in Artificial Insemination Centers: Requirements, Principles, and Criteria. Animals. 2023; 13(5):942. https://doi.org/10.3390/ani13050942
Chicago/Turabian StyleCojkic, Aleksandar, and Jane M. Morrell. 2023. "Animal Welfare Assessment Protocols for Bulls in Artificial Insemination Centers: Requirements, Principles, and Criteria" Animals 13, no. 5: 942. https://doi.org/10.3390/ani13050942
APA StyleCojkic, A., & Morrell, J. M. (2023). Animal Welfare Assessment Protocols for Bulls in Artificial Insemination Centers: Requirements, Principles, and Criteria. Animals, 13(5), 942. https://doi.org/10.3390/ani13050942