In Vitro Viral Recovery Yields under Different Re-Suspension Buffers in Iron Flocculation to Concentrate Viral Hemorrhagic Septicemia Virus Genotype IVa in Seawater
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. VHSV Culture and Titration
2.1.1. Virus Culture
2.1.2. Plaque Assay
2.1.3. Quantitative Real-Time PCR
2.2. Concentration of VHSV in Seawater by Iron Flocculation
2.2.1. Iron Flocculation Process
2.2.2. Comparison of Viral Genome Copies and Infective Viral Particle Recovery
2.3. Assessment of Infectivity Recovery for Viral Concentrates Eluted with Different Buffers
3. Results
3.1. Determination of the LOD95% Value for qRT-PCR
3.2. Genomic and Infective Recovery Yields Using Iron Flocculation from VHSV-Spiked Seawater
3.3. Assessment of Viral Infectivity Recovery at Different Re-Suspension Buffers
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kaganer, A.W.; Nagel, L.D.; Youker-Smith, T.E.; Bunting, E.M.; Hare, M.P. Environmental DNA-derived pathogen gene sequences can expand surveillance when pathogen titers are decoupled in eDNA and hosts. Environ. DNA 2021, 3, 1192–1207. [Google Scholar] [CrossRef]
- Kawato, Y.; Mekata, T.; Inada, M.; Ito, T. Application of environmental DNA for monitoring Red Sea bream Iridovirus at a fish farm. Microbiol. Spectr. 2021, 9, e00796-21. [Google Scholar] [CrossRef]
- Lewis, G.D.; Metcalf, T.G. Polyethylene glycol precipitation for recovery of pathogenic viruses, including hepatitis A virus and human rotavirus, from oyster, water, and sediment samples. Appl. Environ. Microbiol. 1988, 54, 1983–1988. [Google Scholar] [CrossRef] [Green Version]
- Grant, A.A.; Jakob, E.; Richard, J.; Garver, K.A. Concentration of infectious aquatic rhabdoviruses from freshwater and seawater using ultrafiltration. J. Aquat. Anim. Health 2011, 23, 218–223. [Google Scholar] [CrossRef] [PubMed]
- Wommack, K.E.; Sime-Ngando, T.; Winget, D.M.; Jamindar, S.; Helton, R.R. Filtration-based methods for the collection of viral concentrates from large water samples. In Manual of Aquatic Viral Ecology (MAVE); Advancing the Science for Limnology and Oceanography (ASLO): Waco, TX, USA, 2010; pp. 110–117. [Google Scholar]
- Katayama, H.; Shimasaki, A.; Ohgaki, S. Development of a virus concentration method and its application to detection of enterovirus and Norwalk virus from coastal seawater. Appl. Environ. Microbiol. 2002, 68, 1033–1039. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, B.; Clifford, D.A.; Chellam, S. Comparison of electrocoagulation and chemical coagulation pretreatment for enhanced virus removal using microfiltration membranes. Water Res. 2005, 39, 3098–3108. [Google Scholar] [CrossRef]
- Fiksdal, L.; Leiknes, T. The effect of coagulation with MF/UF membrane filtration for the removal of virus in drinking water. J. Membr. Sci. 2006, 279, 364–371. [Google Scholar] [CrossRef]
- Lee, S.; Ihara, M.; Yamashita, N.; Tanaka, H. Improvement of virus removal by pilot-scale coagulation-ultrafiltration process for wastewater reclamation: Effect of optimization of pH in secondary effluent. Water Res. 2017, 114, 23–30. [Google Scholar] [CrossRef]
- Randazzo, W.; Piqueras, J.; Evtoski, Z.; Sastre, G.; Sancho, R.; Gonzalez, C.; Sánchez, G. Interlaboratory comparative study to detect potentially infectious human enteric viruses in influent and effluent waters. Food Environ. Virol. 2019, 11, 350–363. [Google Scholar] [CrossRef]
- Leiknes, T. The effect of coupling coagulation and flocculation with membrane filtration in water treatment: A review. J. Environ. Sci. 2009, 21, 8–12. [Google Scholar] [CrossRef]
- John, S.G.; Mendez, C.B.; Deng, L.; Poulos, B.; Kauffman, A.K.M.; Kern, S.; Brum, J.; Polz, M.F.; Boyle, E.A.; Sullivan, M.B. A simple and efficient method for concentration of ocean viruses by chemical flocculation. Environ. Microbiol. Rep. 2011, 3, 195–202. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Ge, X.; Wang, D.; Tang, H. Distinct coagulation mechanism and model between alum and high Al13-PACl. Colloids Surf. A Physicochem. Eng. Asp. 2007, 305, 89–96. [Google Scholar] [CrossRef]
- Kim, M.J.; Baek, E.J.; Kim, J.O.; Hwang, J.Y.; Kwon, M.G.; Kim, K.I. Application of iron flocculation to concentrate white spot syndrome virus in seawater. J. Virol. Methods 2022, 306, 114554. [Google Scholar] [CrossRef]
- Langenfeld, K.; Chin, K.; Roy, A.; Wigginton, K.; Duhaime, M.B. Comparison of ultrafiltration and iron chloride flocculation in the preparation of aquatic viromes from contrasting sample types. PeerJ 2021, 9, e11111. [Google Scholar] [CrossRef] [PubMed]
- Zhou, G.; Wang, Q.; Li, J.; Li, Q.; Xu, H.; Ye, Q.; Wang, Y.; Shu, S.; Zhang, J. Removal of polystyrene and polyethylene microplastics using PAC and FeCl3 coagulation: Performance and mechanism. Sci. Total Environ. 2021, 752, 141837. [Google Scholar] [CrossRef] [PubMed]
- Zhai, Y.; Shen, F.; Wang, H.; Lu, L. Combination of iron flocculation and qPCR for quantitative evaluation of virus-shedding intensity of goldfish Carassius auratus infected with cyprinid herpesvirus 2 in the water and the effect of sodium chlorite powder in blocking waterborne horizontal viral transmission. Aquac. Fish. 2022, in press. [Google Scholar]
- Nishi, S.; Yamashita, H.; Kawato, Y.; Nakai, T. Cell culture isolation of piscine nodavirus (betanodavirus) in fish-rearing seawater. Appl. Environ. Microbiol. 2016, 82, 2537–2544. [Google Scholar] [CrossRef] [Green Version]
- Taengphu, S.; Kayansamruaj, P.; Kawato, Y.; Delamare-Deboutteville, J.; Mohan, C.V.; Dong, H.T.; Senapin, S. Concentration and quantification of Tilapia tilapinevirus from water using a simple iron flocculation coupled with probe-based RT-qPCR. PeerJ 2022, 10, e13157. [Google Scholar] [CrossRef] [PubMed]
- Mortensen, H.F.; Heuer, O.E.; Lorenzen, N.; Otte, L.; Olesen, N.J. Isolation of viral haemorrhagic septicaemia virus (VHSV) from wild marine fish species in the Baltic Sea, Kattegat, Skagerrak and the North Sea. Virus Res. 1999, 63, 95–106. [Google Scholar] [CrossRef] [PubMed]
- Kim, R.; Faisal, M. Emergence and resurgence of the viral hemorrhagic septicemia virus (Novirhabdovirus, Rhabdoviridae, Mononegavirales). J. Adv. Res. 2011, 2, 9–23. [Google Scholar] [CrossRef] [Green Version]
- Goodwin, A.E.; Merry, G.E. Mortality and carrier status of bluegills exposed to viral hemorrhagic septicemia virus genotype IVb at different temperatures. J. Aquat. Anim. Health 2011, 23, 85–91. [Google Scholar] [CrossRef]
- Ito, T.; Olesen, N.J. Viral haemorrhagic septicaemia virus (VHSV) remains viable for several days but at low levels in the water flea Moina macrocopa. Dis. Aquat. Org. 2017, 127, 11–18. [Google Scholar] [CrossRef]
- Kim, S.M.; Lee, J.I.; Hong, M.J.; Park, H.S.; Park, S.I. Genetic relationship of the VHSV (viral hemorrhagic septicemia virus) isolated from cultured olive flounder, Paralichthys olivaceus in Korea. J. Fish Pathol. 2003, 16, 1–12. [Google Scholar]
- Kim, W.S.; Kim, S.R.; Kim, D.; Kim, J.O.; Park, M.A.; Kitamura, S.I.; Kim, H.Y.; Kim, D.H.; Han, H.J.; Jung, S.J.; et al. An outbreak of VHSV (viral hemorrhagic septicemia virus) infection in farmed olive flounder Paralichthys olivaceus in Korea. Aquaculture 2009, 296, 165–168. [Google Scholar] [CrossRef]
- Jee, B.Y.; Kim, K.I.; Lee, S.J.; Kim, K.H.; Jin, J.W.; Jeong, H.D. Detection of fish pathogenic viruses in seawater using negatively charged membranes. Korean J. Fish. Aquat. Sci. 2013, 46, 46–52. [Google Scholar]
- Baek, E.J.; Kim, M.J.; Kim, K.I. In vitro and in vivo evaluation of the antiviral activity of arctigenin, ribavirin, and ivermectin against viral hemorrhagic septicemia virus infection. Fish Shellfish Immunol. 2023, 132, 108456. [Google Scholar] [CrossRef]
- Garver, K.A.; Hawley, L.M.; McClure, C.A.; Schroeder, T.; Aldous, S.; Doig, F.; Snow, M.; Edes, S.; Baynes, C.; Richard, J. Development and validation of a reverse transcription quantitative PCR for universal detection of viral hemorrhagic septicemia virus. Dis. Aquat. Org. 2011, 95, 97–112. [Google Scholar] [CrossRef] [Green Version]
- Uhlig, S.; Frost, K.; Colson, B.; Simon, K.; Mäde, D.; Reiting, R.; Gowik, P.; Grohmann, L. Validation of qualitative PCR methods on the basis of mathematical–statistical modelling of the probability of detection. Accredit. Qual. Assur. 2015, 20, 75–83. [Google Scholar] [CrossRef]
- Yang, Y.; Huang, J.; Li, L.; Lin, L.; Zhai, Y.; Chen, X.; Liu, X.; Wu, Z.; Yuan, J. Up-regulation of nuclear factor E2–Related factor 2 upon SVCV infection. Fish Shellfish Immunol. 2014, 40, 245–252. [Google Scholar] [CrossRef]
- Zhang, W.; Chen, X.; Yu, F.; Li, F.; Li, W.; Yi, M.; Jia, K. α-Lipoic Acid Exerts Its Antiviral Effect against Viral Hemorrhagic Septicemia Virus (VHSV) by Promoting Upregulation of Antiviral Genes and Suppressing VHSV-Induced Oxidative Stress. Virol. Sin. 2021, 36, 1520–1531. [Google Scholar] [CrossRef]
- Rao, X.; Huang, X.; Zhou, Z.; Lin, X. An improvement of the 2ˆ (–delta delta CT) method for quantitative real-time polymerase chain reaction data analysis. Biostat. Bioinform. Biomath. 2013, 3, 71. [Google Scholar]
- Kawato, Y.; Ito, T.; Kamaishi, T.; Fujiwara, A.; Ototake, M.; Nakai, T.; Nakajima, K. Development of red sea bream iridovirus concentration method in seawater by iron flocculation. Aquaculture 2016, 450, 308–312. [Google Scholar] [CrossRef]
- World Organisation for Animal Health (WOAH). 2021. Available online: https://www.woah.org/fileadmin/Home/eng/Health_standards/aahm/current/2.3.10_VHS.pdf (accessed on 2 June 2022).
- Batts, W.N.; Winton, J.R. Concentration of infectious hematopoietic necrosis virus from water samples by tangential flow filtration and polyethylene glycol precipitation. Can. J. Fish. Aquat. Sci. 1989, 46, 964–968. [Google Scholar] [CrossRef]
- Barr, K.L.; Messenger, A.M.; Anderson, B.D.; Friary, J.A.; Heil, G.L.; Reece, K.; Gray, G.C. Recovery of live virus after storage at ambient temperature using ViveST™. J. Clin. Virol. 2013, 56, 57–61. [Google Scholar] [CrossRef] [Green Version]
- Amtmann, A.; Ahmed, I.; Zahner-Rimmel, P.; Mletzko, A.; Jordan, L.K.; Oberle, M.; Wedekind, H.; Christian, J.; Bergmann, S.M.; Becker, A.M. Virucidal effects of various agents—Including protease—Against koi herpesvirsus and viral haemorrhagic septicaemia virus. J. Fish Dis. 2020, 43, 185–195. [Google Scholar] [CrossRef] [PubMed]
- Nappi, A.J.; Vass, E. Comparative studies of enhanced iron-mediated production of hydroxyl radical by glutathione, cysteine, ascorbic acid, and selected catechols. Biochim. Biophys. Acta BBA Gen. Subj. 1997, 1336, 295–302. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhu, T.; Zhao, J.; Xu, B. Interactive enhancements of ascorbic acid and iron in hydroxyl radical generation in quinone redox cycling. Environ. Sci. Technol. 2012, 46, 10302–10309. [Google Scholar] [CrossRef]
- Tang, D.; Morel, F.M. Distinguishing between cellular and Fe-oxide-associated trace elements in phytoplankton. Mar. Chem. 2006, 98, 18–30. [Google Scholar] [CrossRef]
- Tovar-Sanchez, A.; Sañudo-Wilhelmy, S.A.; Garcia-Vargas, M.; Weaver, R.S.; Popels, L.C.; Hutchins, D.A. A trace metal clean reagent to remove surface-bound iron from marine phytoplankton. Mar. Chem. 2003, 82, 91–99. [Google Scholar] [CrossRef]
Purpose | Primer | Primer Sequence (5′-3′) | Condition | Product Size (bp) | Reference | |
---|---|---|---|---|---|---|
Quantification | VHSV (N gene) | TaqMan real-time | F-ATGAGGCAGGTGTCGGAGG R-TGTAGTAGGACTCTCCCAGCATCC | 50 °C, 2 min; 95 °C, 10 min (95 °C, 15 s; 60 °C, 1 min) × 40 | 82 | Garver et al. [28] |
Probe | 5′-FAM-TACGCCATCATGATGAGT-BHQ1-3′ | |||||
Gene expression | EPC cell | β-actin | F-GCTATGTGGCTCTTGACTTCGA R-CCGTCAGGCAGCTCATAGCT | 94 °C, 10 min (94 °C, 20 s; 58 °C, 1 min) × 35 | 85 | Yang et al. [30] |
VHSV | Glycoprotein | F-AACTGTCTCCAAAGAAGTGTGT R-GCCATCAAGGAGATAATGTG | 95 °C, 30 s (95 °C, 15 s; 60 °C, 15 s; 72 °C, 15 s) × 40 | 94 | Zhang et al. [31] | |
Nucleoprotein | F-TTGGAGAACTGCAACACTTCAC R-CGGTCAGGATGAAGGCGTAG | 82 |
Re-Suspension Buffer | Spiked Viral cDNA Copy (Viral cDNA Copies/mL) | Recovered Viral cDNA Copy (Viral cDNA Copies/mL) | Genomic Recovery Yield (%) a |
---|---|---|---|
Oxalic acid | 1.0 × 105 | 4.3 × 107 ± 7.4 × 106 | 87.7 ± 14.8 |
1.0 × 104 | 3.4 × 106 ± 1.5 × 105 | 68.3 ± 30.0 | |
1.0 × 103 | 3.5 × 105 ± 5.8 × 104 | 70.6 ± 11.4 | |
1.0 × 102 | 2.9 × 104 ± 1.6 × 104 | 58.0 ± 32.0 | |
1.0 × 101 | N.D. b | - | |
Mean of recovery yield | 71.2 ± 12.3 | ||
Ascorbic acid | 1.0 × 105 | 4.7 × 107 ± 4.2 × 106 | 95.2 ± 8.4 |
1.0 × 104 | 3.8 × 106 ± 4.7 × 105 | 76.4 ± 9.4 | |
1.0 × 103 | 4.0 × 105 ± 8.1 × 104 | 79.5 ± 16.3 | |
1.0 × 102 | 3.7 × 104 ± 3.8 × 103 | 74.4 ± 7.6 | |
1.0 × 101 | N.D. b | - | |
Mean of recovery yield | 81.4 ± 9.5 |
Re-Suspension Buffer | Spiked PFU (PFU/mL) | Recovered PFU (PFU/mL) | PFU Recovery Yield (%) a |
---|---|---|---|
Oxalic acid | 1.0 × 105 | 3.2 × 107 ± 2.0 × 106 | 64.0 ± 4.0 |
1.0 × 104 | 1.8 × 106 ± 1.3 × 105 | 35.5 ± 2.5 | |
1.0 × 103 | 4.1 × 104 ± 6.1 × 103 | 8.1 ± 1.2 | |
1.0 × 102 | 2.7 × 103 ± 2.9 × 102 | 5.5 ± 0.6 | |
1.0 × 101 | 3.0 × 102 ± 1.1 × 102 | 6.0 ± 2.2 | |
Mean of recovery yield | 23.8 ± 22.7 | ||
Ascorbic acid | 1.0 × 105 | 3.6 × 106 ± 3.9 × 105 | 7.2 ± 0.8 |
1.0 × 104 | 2.6 × 105 ± 1.6 × 104 | 5.2 ± 0.3 | |
1.0 × 103 | 4.3 × 103 ± 1.0 × 103 | 0.9 ± 0.2 | |
1.0 × 102 | N.D. b | - | |
1.0 × 101 | N.D. b | - | |
Mean of recovery yield | 4.4 ± 2.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ryu, N.-G.; Baek, E.-J.; Kim, M.-J.; Kim, K.-I. In Vitro Viral Recovery Yields under Different Re-Suspension Buffers in Iron Flocculation to Concentrate Viral Hemorrhagic Septicemia Virus Genotype IVa in Seawater. Animals 2023, 13, 943. https://doi.org/10.3390/ani13050943
Ryu N-G, Baek E-J, Kim M-J, Kim K-I. In Vitro Viral Recovery Yields under Different Re-Suspension Buffers in Iron Flocculation to Concentrate Viral Hemorrhagic Septicemia Virus Genotype IVa in Seawater. Animals. 2023; 13(5):943. https://doi.org/10.3390/ani13050943
Chicago/Turabian StyleRyu, Na-Gyeong, Eun-Jin Baek, Min-Jae Kim, and Kwang-Il Kim. 2023. "In Vitro Viral Recovery Yields under Different Re-Suspension Buffers in Iron Flocculation to Concentrate Viral Hemorrhagic Septicemia Virus Genotype IVa in Seawater" Animals 13, no. 5: 943. https://doi.org/10.3390/ani13050943
APA StyleRyu, N. -G., Baek, E. -J., Kim, M. -J., & Kim, K. -I. (2023). In Vitro Viral Recovery Yields under Different Re-Suspension Buffers in Iron Flocculation to Concentrate Viral Hemorrhagic Septicemia Virus Genotype IVa in Seawater. Animals, 13(5), 943. https://doi.org/10.3390/ani13050943