Molecular Cytogenetics in Domestic Bovids: A Review
Abstract
:Simple Summary
Abstract
1. Introduction
2. The Fluorescence In Situ Hybridization (FISH) Technique
2.1. FISH and Chromosome Abnormalities
2.2. FISH in Physical Mapping
2.3. Comparative FISH Mapping
2.4. Fiber-FISH
2.5. CGH Arrays
3. Combined Informatic and Genomic Information
3.1. Visualization of Genomes
3.2. Use of Genomic Assemblies
3.3. Tools for Genomic Data Analyses
3.4. Whole-Genome Sequencing
4. PCR-Based Methods and Molecular Cytogenetics
5. Current Developments and Knowledge Gaps
6. Conclusions
- In the pre-genomic era, FISH technology represented the almost exclusive technology available for the localization of genes in genomes.
- Prior to the availability of low-cost genomic sequencing, molecular cytogenetics was the only approach for identifying similarities between karyotypes of different species.
- The technologies of molecular cytogenetics represent the best approach for the characterization of chromosomal abnormalities.
- Despite scientific progress in similar disciplines, molecular cytogenetics will always find its place and represent an inescapable investigation methodology.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
aCGH | array Comparative Genomic Hybridization |
BAC | Bacterial Artificial Chromosome |
BBU | Bubalus bubalis Chromosome, 2 n = 50 |
BES | Bac Ends Sequences |
BIN | Bos indicus Chromosomes, 2 n = 60 |
BTA | Bos taurus Chromosome, 2 n = 60 |
CA | Chromosome Abnormalities (chromosome breaks) |
CBA | C-banding by Acrine Orange Staining |
CHI | Capra hircus Chromosomes, 2 n = 60 |
Fiber-FISH | Extended Chromatin Fiber-FISH |
FISH | Fluorescence In Situ Hybridization |
GBG | G-banding by Early BrdU-Incorporation and Giemsa Staining |
HSA | Human sapiens Chromosome, 2 n = 46 |
IVP | In Vitro Production |
MHC | Major Histocompatibility Complex |
MI | Mitotic Index |
MN | Micronuclei |
OAR | Ovis aries Chromosomes, 2 n = 54 |
PCR | Polymerase Chain Reaction |
PNA | Peptide Nucleic Acids |
QBH | Q-banding by Early BrdU-Incorporation and Hoescht Staining |
RBA | R-banding by Late BrdU-Incorporation and Acridine Orange Staining |
RBG | R-banding by Late BrdU-Incorporation and Giemsa Staining |
RH | Radiation Hybrids |
SCA | Synaptonemal Complex Analysis |
SCE | Sister Chromatid Exchange |
SKY-FISH | Spectral Karyotyping |
SNP | Single Nucleotide Polymorphism |
YAC | Yeast Artificial Chromosome |
References
- Kanagawa, H.; Kawata, K.; Ishikawa, T.; Odajima, T.; Inoue, T. Chromosome studies on heterosexual twins in cattle. 3. Sex chromosome chimerism (XX/XY) in bone marrow specimens. Jpn. J. Vet. Res. 1966, 14, 123–126. [Google Scholar]
- Mcfeely, R.; Hare, W.; Biggers, J.; Diggers, J. Chromosome Studies in 14 Cases of Intersex in Domestic Mammals. Cytogenet. Genome Res. 1967, 6, 242–253. [Google Scholar] [CrossRef]
- Mcfeely, R.A. Chromosome abnormalities in early embryos of the pig. J. Reprod. Fertil. 1967, 13, 579–581. [Google Scholar] [CrossRef]
- Gustavsson, I.; Rockborn, G. Chromosome abnormality in three cases of lymphatic leukemia in cattle. Nature 1964, 203, 990. [Google Scholar] [CrossRef]
- Gustavsson, I. Distribution of the 1/29 translocation in the A.I. Bull population of Swedish Red and White cattle. Hereditas 1971, 69, 101–106. [Google Scholar] [CrossRef] [PubMed]
- Gustavsson, I. Cytogenetics, distribution and phenotypic effects of a translocation in swedish cattle. Hereditas 1979, 63, 68–169. [Google Scholar] [CrossRef]
- Dyrendahl, I.; Gustavsson, I. Sexual functions, semen characteristics and fertility of bulls carrying the 1/29 chromosome translocation. Hereditas 1979, 90, 281–289. [Google Scholar] [CrossRef]
- Wurster, D.H.; Benirschke, K. Chromosome studies in the superfamily Bovoidea. Chromosoma 1968, 25, 152–171. [Google Scholar] [CrossRef] [PubMed]
- Iannuzzi, L.; King, W.A.; Di Berardino, D. Chromosome evolution in domestic bovids as revealed by chromosome banding and FISH-mapping techniques. Cytogenet. Genome Res. 2009, 126, 49–62. [Google Scholar] [CrossRef]
- Ducos, A.; Revay, T.; Kovacs, A.; Hidas, A.; Pinton, A.; Bonnet-Garnier, A.; Molteni, L.; Slota, E.; Switonski, M.; Arruga, M.V.; et al. Cytogenetic screening of livestock populations in Europe: An overview. Cytogenet. Genome Res. 2008, 120, 26–41. [Google Scholar] [CrossRef] [PubMed]
- Iannuzzi, A.; Parma, P.; Iannuzzi, L. Chromosome Abnormalities and Fertility in Domestic Bovids: A Review. Animals 2021, 11, 802. [Google Scholar] [CrossRef] [PubMed]
- Donaldson, B.; Villagomez, D.; King, W.A. Classical, Molecular, and Genomic Cytogenetics of the Pig, a Clinical Perspective. Animals 2021, 11, 1257. [Google Scholar] [CrossRef] [PubMed]
- Bugno-Poniewierska, M.; Raudsepp, T. Horse Clinical Cytogenetics: Recurrent Themes and Novel Findings. Animals 2021, 11, 831. [Google Scholar] [CrossRef]
- Szczerbal, I.; Switonski, M. Clinical Cytogenetics of the Dog: A Review. Animals 2021, 11, 947. [Google Scholar] [CrossRef]
- Hayes, H.; Petit, E.; Dutrillaux, B. Comparison of RBG-banded karyotypes of cattle, sheep, and goats. Cytogenet. Cell Genet. 1991, 57, 51–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gallagher, D.S.; Womack, J.E. Chromosome conservation in the Bovidae. J. Hered. 1992, 83, 287–298. [Google Scholar] [CrossRef]
- Iannuzzi, L.; Di Meo, G.P. Chromosomal evolution in bovids: A comparison of cattle, sheep and goat G- and R-banded chromosomes and cytogenetic divergences among cattle, goat and river buffalo sex chromosomes. Chromosome Res. 1995, 3, 291–299. [Google Scholar] [CrossRef]
- Perucatti, A.; Genualdo, V.; Pauciullo, A.; Iorio, C.; Incarnato, D.; Rossetti, C.; Vizzarri, F.; Palazzo, M.; Casamassima, D.; Iannuzzi, L.; et al. Cytogenetic tests reveal no toxicity in lymphocytes of rabbit (Oryctolagus cuniculus, 2n=44) feed in presence of verbascoside and/or lycopene. Food. Chem. Toxicol. 2018, 114, 311–315. [Google Scholar] [CrossRef]
- Iannuzzi, A.; Perucatti, A.; Genualdo, V.; Pauciullo, A.; Melis, R.; Porqueddu, C.; Marchetti, M.; Usai, M.; Iannuzzi, L. Sister chromatid exchange test in river buffalo lymphocytes treated in vitro with furocoumarin extracts. Mutagenesis 2016, 31, 547–551. [Google Scholar] [CrossRef]
- Pinkel, D.; Gray, J.W.; Trask, B.; Van Den Engh, G.; Fuscoe, J.; Van Dekken, H. Cytogenetic analysis by in situ hybridization with fluorescently labeled nucleic acid probes. Cold Spring Harb. Symp. Quant. Biol. 1986, 51, 151–157. [Google Scholar] [CrossRef]
- Trask, B.; Pinkel, D. Fluorescence in situ hybridization with DNA probes. Methods Cell Biol. 1990, 33, 383–400. [Google Scholar] [CrossRef] [PubMed]
- Gallagher, D.S.; Basrur, P.K.; Womack, J.E. Identification of an autosome to X chromosome translocation in the domestic cow. J. Hered. 1992, 83, 451–453. [Google Scholar] [CrossRef] [PubMed]
- Miyake, Y.I.; Kawakura, K.; Murakami, R.K.; Kaneda, Y. Minute fragment observed in a bovine pedigree with Robertsonian translocation. J. Hered. 1994, 85, 488–490. [Google Scholar] [CrossRef] [PubMed]
- Schmitz, A.; Oustry, A.; Chaput, B.; Bahri-Darwich, I.; Yerle, M.; Millan, D.; Frelat, G.; Cribiu, E.P. The bovine bivariate flow karyotype and peak identification by chromosome painting with PCR-generated probes. Mamm. Genome 1995, 6, 415–420. [Google Scholar] [CrossRef] [PubMed]
- Kawakura, K.; Miyake, Y.; Murakami, R.K.; Kondoh, S.; Hirata, T.I.; Kaneda, Y. Abnormal structure of the Y chromosome detected in bovine gonadal hypoplasia (XY female) by FISH. Cytogenet. Cell Genet. 1997, 76, 36–38. [Google Scholar] [CrossRef]
- Gallagher, D.S.; Lewis, B.C.; De Donato, M.; Davis, S.K.; Taylor, J.F.; Edwards, J.F. Autosomal trisomy 20 (61,XX,+20) in a malformed bovine foetus. Vet. Pathol. 1999, 36, 448–451. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, K.; Yamamoto, Y.; Amano, T.; Yamagata, T.; Dang, V.B.; Matsuda, Y.; Namikawa, T. A Robertsonian translocation, rob(2;28), found in Vietnamese cattle. Hereditas 2000, 133, 19–23. [Google Scholar] [CrossRef]
- Di Meo, G.P.; Molteni, L.; Perucatti, A.; De Giovanni, A.; Incarnato, D.; Succi, G.; Schibler, L.; Cribiu, E.P.; Iannuzzi, L. Chromosomal characterization of three centric fusion translocations in cattle using G-, R- and C-banding and FISH technique. Caryologia 2000, 53, 213–218. [Google Scholar] [CrossRef]
- Hyttel, P.; Viuff, D.; Laurincik, J.; Schmidt, M.; Thomsen, P.D.; Avery, B.; Callesen, H.; Rath, D.; Niemann, H.; Rosenkranz, C.; et al. Risks of in-vitro production of cattle and swine embryos: Aberrations in chromosome numbers, ribosomal RNA gene activation and perinatal physiology. Hum. Reprod. 2000, 5, 87–97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Viuff, D.; Greve, T.; Avery, B.; Hyttel, P.; Brockhoff, P.B.; Thomsen, P.D. Chromosome aberrations in in vitro-produced bovine embryos at days 2-5 post-insemination. Biol. Reprod. 2000, 63, 1143–1148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iannuzzi, L.; Molteni, L.; Di Meo, G.P.; Perucatti, A.; Lorenzi, L.; Incarnato, D.; De Giovanni, A.; Succi, G.; Gustavsson, I. A new balanced autosomal reciprocal translocation in cattle revealed by banding techniques and human-painting probes. Cytogenet. Cell Genet. 2000, 94, 225–228. [Google Scholar] [CrossRef] [PubMed]
- Iannuzzi, L.; Di Meo, G.P.; Perucatti, A.; Eggen, A.; Incarnato, D.; Sarubbi, F.; Cribiu, E. A pericentric inversion in the cattle Y chromosome. Cytogenet. Cell Genet. 2001, 94, 202–205. [Google Scholar] [CrossRef] [PubMed]
- Iannuzzi, L.; Di Meo, G.P.; Leifsson, P.S.; Eggen, A.; Christensen, K. A case of trisomy 28 in cattle revealed by both banding and FISH-mapping techniques. Hereditas 2001, 134, 147–151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Basrur, P.K.; Reyes, E.R.; Farazmand, A.; King, W.A.; Popescu, P.C. X-autosome translocation and low fertility in a family of crossbred cattle. Anim. Reprod. Sci. 2001, 67, 1–16. [Google Scholar] [CrossRef]
- Iannuzzi, L.; Molteni, L.; Di Meo, G.P.; De Giovanni, A.; Perucatti, A.; Succi, G.; Incarnato, D.; Eggen, A.; Cribiu, E.P. A case of azoospermia in a bull carrying a Y-autosome reciprocal translocation. Cytogenet. Cell Genet. 2001, 95, 225–227. [Google Scholar] [CrossRef]
- Viuff, D.; Palsgaard, A.; Rickords, L.; Lawson, L.G.; Greve, T.; Schmidt, M.; Avery, B.; Hyttel, P.; Thomsen, P.D. Bovine embryos contain a higher proportion of polyploid cells in the trophectoderm than in the embryonic disc. Mol. Reprod. Dev. 2002, 62, 483–488. [Google Scholar] [CrossRef]
- Chaves, R.; Adega, F.; Heslop-Harrison, J.S.; Guedes-Pinto, H.; Wienberg, J. Complex satellite DNA reshuffling in the polymorphic t(1;29) Robertsonian translocation and evolutionarily derived chromosomes in cattle. Chromosome Res. 2003, 11, 641–648. [Google Scholar] [CrossRef]
- Pinton, A.; Ducos, A.; Yerle, M. Chromosomal rearrangements in cattle and pigs revealed by chromosome microdissection and chromosome painting. Genet. Sel. Evol. 2003, 35, 685–696. [Google Scholar] [CrossRef] [Green Version]
- Słota, E.; Kozubska-Sobocińska, A.; Kościelny, M.; Danielak-Czech, B.; Rejduch, B. Detection of the XXY trisomy in a bull by using sex chromosome painting probes. J. Appl. Genet. 2003, 44, 379–382. [Google Scholar]
- Bureau, W.S.; Bordignon, V.; Léveillée, C.; Smith, L.C.; King, W.A. Assessment of chromosomal abnormalities in bovine nuclear transfer embryos and in their donor cells. Cloning Stem Cells 2003, 5, 123–132. [Google Scholar] [CrossRef]
- Mastromonaco, G.F.; Coppola, G.; Crawshaw, G.; Di Berardino, D.; King, W.A. Identification of the homologue of the bovine Rob(1;29) in a captive gaur (Bos gaurus). Chromosome Res. 2004, 12, 725–731. [Google Scholar] [CrossRef] [Green Version]
- Di Meo, G.P.; Perucatti, A.; Chaves, R.; Adega, F.; De Lorenzi, L.; Molteni, L.; De Giovanni, A.; Incarnato, D.; Guedes-Pinto, H.; Eggen, A.; et al. Cattle rob(1;29) originating from complex chromosome rearrangements as revealed by both banding and FISH-mapping techniques. Chromosome Res. 2006, 14, 649–655. [Google Scholar] [CrossRef]
- Bonnet-Garnier, A.; Pinton, A.; Berland, H.M.; Khireddine, B.; Eggen, A.; Yerle, M.; Darré, R.; Ducos, A. Sperm nuclei analysis of 1/29 Robertsonian translocation carrier bulls using fluorescence in situ hybridization. Cytogenet. Genome Res. 2006, 12, 241–247. [Google Scholar] [CrossRef]
- De Lorenzi, L.; De Giovanni, A.; Molteni, L.; Denis, C.; Eggen, A.; Parma, P. Characterization of a balanced reciprocal translocation, rcp(9;11)(q27;q11) in cattle. Cytogenet. Genome Res. 2007, 19, 231–234. [Google Scholar] [CrossRef]
- Sohn, S.H.; Cho, E.J.; Son, W.J.; Lee, C.Y. Diagnosis of bovine freemartinism by fluorescence in situ hybridization on interphase nuclei using a bovine Y chromosome-specific DNA probe. Theriogenology 2007, 68, 1003–1011. [Google Scholar] [CrossRef]
- Molteni, L.; Perucatti, A.; Iannuzzi, A.; Di Meo, G.P.; De Lorenzi, L.; De Giovanni, A.; Incarnato, D.; Succi, G.; Cribiu, E.; Eggen, A.; et al. A new case of reciprocal translocation in a young bull: Rcp(11;21)(q28;q12). Cytogenet. Genome Res. 2007, 116, 80–84. [Google Scholar] [CrossRef] [Green Version]
- Vozdova, M.; Kubickova, S.; Cernohorska, H.; Rubes, J. Detection of translocation rob(1;29) in bull sperm using a specific DNA probe. Cytogenet. Genome Res. 2008, 120, 102–105. [Google Scholar] [CrossRef]
- Switonski, M.; Andersson, M.; Nowacka-Woszuk, J.; Szczerbal, I.; Sosnowski, J.; Kopp, C.; Cernohorska, H.; Rubes, J. Identification of a new reciprocal translocation in an AI bull by synaptonemal complex analysis, followed by chromosome painting. Cytogenet. Genome Res. 2008, 121, 245–248. [Google Scholar] [CrossRef] [PubMed]
- Nicodemo, D.; Pauciullo, A.; Castello, A.; Roldan, E.; Gomendio, M.; Cosenza, G.; Peretti, V.; Perucatti, A.; Di Meo, G.P.; Ramunno, L.; et al. X-Y sperm aneuploidy in 2 cattle (Bos taurus) breeds as determined by dual color fluorescent in situ hybridization (FISH). Cytogenet. Genome Res. 2009, 126, 217–225. [Google Scholar] [CrossRef] [PubMed]
- De Lorenzi, L.; Kopecna, O.; Gimelli, S.; Cernohorska, H.; Zannotti, M.; Béna, F.; Molteni, L.; Rubes, J.; Parma, P. Reciprocal translocation t(4;7)(q14;q28) in cattle: Molecular characterization. Cytogenet. Genome Res. 2010, 129, 298–304. [Google Scholar] [CrossRef] [PubMed]
- Nicodemo, D.; Pauciullo, A.; Cosenza, G.; Peretti, V.; Perucatti, A.; Di Meo, G.P.; Ramunno, L.; Iannuzzi, L.; Rubes, J.; Di Berardino, D. Frequency of aneuploidy in in vitro-matured MII oocytes and corresponding first polar bodies in two dairy cattle (Bos taurus) breeds as determined by dual-color fluorescent in situ hybridization. Theriogenology 2010, 73, 523–529. [Google Scholar] [CrossRef] [PubMed]
- Rybar, R.; Kopecka, V.; Prinosilova, P.; Kubickova, S.; Veznik, Z.; Rubes, J. Fertile bull sperm aneuploidy and chromatin integrity in relationship to fertility. Int. J. Androl. 2010, 33, 613–622. [Google Scholar] [CrossRef] [PubMed]
- Switonski, M.; Szczerbal, I.; Krumrych, W.; Nowacka-Woszuk, J. A case of Y-autosome reciprocal translocation in a Holstein-Friesian bull. Cytogenet. Genome Res. 2011, 132, 22–25. [Google Scholar] [CrossRef]
- Perucatti, A.; Genualdo, V.; Iannuzzi, A.; De Lorenzi, L.; Matassino, D.; Parma, P.; Di Berardino, D.; Iannuzzi, L.; Di Meo, G.P. A new and unusual reciprocal translocation in cattle: Rcp(11;25)(q11;q14-21). Cytogenet. Genome Res. 2011, 134, 96–100. [Google Scholar] [CrossRef] [PubMed]
- Pauciullo, A.; Cosenza, G.; Peretti, V.; Iannuzzi, A.; Di Meo, G.P.; Ramunno, L.; Iannuzzi, L.; Rubes, J.; Di Berardino, D. Incidence of X-Y aneuploidy in sperm of two indigenous cattle breeds by using dual color fluorescent in situ hybridization (FISH). Theriogenology 2011, 76, 328–333. [Google Scholar] [CrossRef]
- De Lorenzi, L.; Genualdo, V.; Gimelli, S.; Rossi, E.; Perucatti, A.; Iannuzzi, A.; Zannotti, M.; Malagutti, L.; Molteni, L.; Iannuzzi, L.; et al. Genomic analysis of cattle rob(1;29). Chromosome Res. 2012, 20, 815–823. [Google Scholar] [CrossRef]
- De Lorenzi, L.; Rossi, E.; Genualdo, V.; Gimelli, S.; Lasagna, E.; Perucatti, A.; Iannuzzi, A.; Parma, P. Molecular characterization of Xp chromosome deletion in a fertile cow. Sex Dev. 2012, 6, 298–302. [Google Scholar] [CrossRef]
- Pauciullo, A.; Nicodemo, D.; Peretti, V.; Marino, G.; Iannuzzi, A.; Cosenza, G.; Di Meo, G.P.; Ramunno, L.; Iannuzzi, L.; Rubes, J.; et al. X-Y aneuploidy rate in sperm of two “minor” breeds of cattle (Bos taurus) by using dual color fluorescent in situ hybridization (FISH). Theriogenology 2012, 78, 688–695. [Google Scholar] [CrossRef] [PubMed]
- Pauciullo, A.; Nicodemo, D.; Cosenza, G.; Peretti, V.; Iannuzzi, A.; Di Meo, G.P.; Ramunno, L.; Iannuzzi, L.; Rubes, J.; Di Berardino, D. Similar rates of chromosomal aberrant secondary oocytes in two indigenous cattle (Bos taurus) breeds as determined by dual-color FISH. Theriogenology 2012, 77, 675–683. [Google Scholar] [CrossRef] [PubMed]
- Pers-Kamczyc, E.; Pawlak, P.; Rubes, J.; Lechniak, D. Early cleaved bovine embryos show reduced incidence of chromosomal aberrations and higher developmental potential on day 4.5 post-insemination. Reprod. Domest. Anim. 2012, 47, 899–906. [Google Scholar] [CrossRef]
- Šiviková, K.; Dianovský, J.; Holečková, B.; Galdíková, M.; Kolesárová, V. Assessment of cytogenetic damage in bovine peripheral lymphocytes exposed to in vitro tebuconazole-based fungicide. Chemosphere 2013, 92, 555–562. [Google Scholar] [CrossRef]
- De Lorenzi, L.; Rossi, E.; Gimelli, S.; Parma, P. De novo reciprocal translocation t(5;6)(q13;q34) in cattle: Cytogenetic and molecular characterization. Cytogenet. Genome Res. 2014, 142, 95–100. [Google Scholar] [CrossRef]
- Biltueva, L.; Kulemzina, A.; Vorobieva, N.; Perelman, P.; Kochneva, M.; Zhidenova, A.; Graphodatsky, A. A new case of an inherited reciprocal translocation in cattle: Rcp(13;26) (q24;q11). Cytogenet. Genome Res. 2014, 144, 208–211. [Google Scholar] [CrossRef] [PubMed]
- Iannuzzi, A.; Genualdo, V.; Perucatti, A.; Pauciullo, A.; Varricchio, G.; Incarnato, D.; Matassino, D.; Iannuzzi, L. Fatal outcome in a newborn calf associated with partial trisomy 25q and partial monosomy 11q, 60,XX,der(11)t(11;25)(q11;q14∼21). Cytogenet. Genome Res. 2015, 146, 222–229. [Google Scholar] [CrossRef] [PubMed]
- Galdíková, M.; Šiviková, K.; Holečková, B.; Dianovský, J.; Drážovská, M.; Schwarzbacherová, V. The effect of thiacloprid formulation on DNA/chromosome damage and changes in GST activity in bovine peripheral lymphocytes. J. Environ. Sci. Health B 2015, 50, 698–707. [Google Scholar] [CrossRef]
- De Lorenzi, L.; Iannuzzi, A.; Rossi, E.; Bonacina, S.; Parma, P. Centromere repositioning in cattle (Bos taurus) chromosome 17. Cytogenet. Genome Res. 2017, 151, 191–197. [Google Scholar] [CrossRef]
- Berry, D.P.; Wolfe, A.; O’Donovan, J.; Byrne, N.; Sayers, R.G.; Dodds, K.G.; McEwan, J.C.; O’Connor, R.E.; McClure, M.; Purfield, D.C. Characterization of an X-chromosomal non-mosaic monosomy (59, X0) dairy heifer detected using routinely available single nucleotide polymorphism genotype data. J. Anim. Sci. 2017, 95, 1042–1049. [Google Scholar] [CrossRef]
- Barasc, H.; Mouney-Bonnet, N.; Peigney, C.; Calgaro, A.; Revel, C.; Mary, N.; Ducos, A.; Pinton, A. Analysis of meiotic segregation pattern and interchromosomal effects in a bull heterozygous for a 3/16 robertsonian translocation. Cytogenet. Genome Res. 2018, 156, 197–203. [Google Scholar] [CrossRef]
- Häfliger, I.M.; Agerholm, J.S.; Drögemüller, C. Constitutional trisomy 20 in an aborted Holstein fetus with pulmonary hypoplasia and anasarca syndrome. Anim. Genet. 2020, 51, 988–989. [Google Scholar] [CrossRef]
- Häfliger, I.M.; Seefried, F.; Drögemüller, C. Trisomy 29 in a stillborn swiss original braunvieh calf. Anim. Genet. 2020, 51, 483–484. [Google Scholar] [CrossRef] [PubMed]
- Jennings, R.L.; Griffin, D.K.; O’Connor, R.E. A new approach for accurate detection of chromosome rearrangements that affect fertility in cattle. Animals 2020, 10, 114. [Google Scholar] [CrossRef] [Green Version]
- Iannuzzi, A.; Braun, M.; Genualdo, V.; Perucatti, A.; Reinartz, S.; Proios, I.; Heppelmann, M.; Rehage, J.; Hülskötter, K.; Beineke, A.; et al. Clinical, cytogenetic and molecular genetic characterization of a tandem fusion translocation in a male Holstein cattle with congenital hypospadias and a ventricular septal defect. PLoS ONE 2020, 15, e0227117. [Google Scholar] [CrossRef] [Green Version]
- Iannuzzi, L.; Di Meo, G.P.; Perucatti, A.; Zicarelli, L. Sex chromosome monosomy (2n=49,X) in a river buffalo (Bubalus bubalis). Vet. Rec. 2000, 147, 690–691. [Google Scholar]
- Di Meo, G.P.; Perucatti, A.; Genualdo, V.; Iannuzzi, A.; Sarubbi, F.; Caputi-Jambrenghi, A.; Incarnato, D.; Peretti, V.; Vonghia, G.; Iannuzzi, L. A rare case of centric fission and fusion in a river buffalo (Bubalus bubalis, 2n = 50) cow with reduced fertility. Cytogenet. Genome Res. 2011, 132, 26–30. [Google Scholar] [CrossRef]
- Albarella, S.; Ciotola, F.; Coletta, A.; Genualdo, V.; Iannuzzi, L.; Peretti, V. A new translocation t(1p;18) in an Italian Mediterranean river buffalo (Bubalus bubalis, 2n = 50) bull: Cytogenetic, fertility and inheritance studies. Cytogenet. Genome Res. 2013, 139, 17–21. [Google Scholar] [CrossRef]
- Pauciullo, A.; Perucatti, A.; Iannuzzi, A.; Incarnato, D.; Genualdo, V.; Di Berardino, D.; Iannuzzi, L. Development of a sequential multicolor-FISH approach with 13 chromosome-specific painting probes for the rapid identification of river buffalo (Bubalus bubalis, 2n = 50) chromosomes. J. Appl. Genet. 2014, 55, 397–401. [Google Scholar] [CrossRef] [Green Version]
- Di Dio, C.; Longobardi, V.; Zullo, G.; Parma, P.; Pauciullo, A.; Perucatti, A.; Higgins, J.; Iannuzzi, A. Analysis of meiotic segregation by triple-color fish on both total and motile sperm fractions in a t(1p;18) river buffalo bull. PLoS ONE 2020, 15, e0232592. [Google Scholar] [CrossRef] [PubMed]
- Pauciullo, A.; Versace, C.; Perucatti, A.; Gaspa, G.; Li, L.Y.; Yang, C.Y.; Zheng, H.Y.; Liu, Q.; Shang, J.H. Oocyte aneuploidy rates in river and swamp buffalo types (Bubalus bubalis) determined by Multi-color Fluorescence In Situ Hybridization (M-FISH). Sci. Rep. 2022, 12, 8440. [Google Scholar] [CrossRef] [PubMed]
- Burkin, D.J.; O’Brien, P.C.; Broad, T.E.; Hill, D.F.; Jones, C.A.; Wienberg, J.; Ferguson-Smith, M.A. Isolation of chromosome-specific paints from high-resolution flow karyotypes of the sheep (Ovis aries). Chromosome Res. 1997, 5, 102–108. [Google Scholar] [CrossRef] [PubMed]
- Chaves, R.; Adega, F.; Wienberg, J.; Guedes-Pinto, H.; Heslop-Harrison, J.S. Molecular cytogenetic analysis and centromeric satellite organization of a novel 8;11 translocation in sheep: A possible intermediate in biarmed chromosome evolution. Mamm. Genome 2003, 14, 706–710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coppola, G.; Alexander, B.; Di Berardino, D.; St John, E.; Basrur, P.K.; King, W.A. Use of cross-species in-situ hybridization (ZOO-FISH) to assess chromosome abnormalities in day-6 in-vivo- or in-vitro-produced sheep embryos. Chromosome Res. 2007, 15, 399–408. [Google Scholar] [CrossRef] [Green Version]
- Lühken, G.; Fleck, K.; Pauciullo, A.; Huisinga, M.; Erhardt, G. Familiar hypopigmentation syndrome in sheep associated with homozygous deletion of the entire endothelin type-B receptor gene. PLoS ONE 2012, 7, e53020. [Google Scholar] [CrossRef] [Green Version]
- Iannuzzi, A.; Perucatti, A.; Genualdo, V.; De Lorenzi, L.; Di Berardino, D.; Parma, P.; Iannuzzi, L. Cytogenetic elaboration of a novel reciprocal translocation in sheep. Cytogenet. Genome Res. 2013, 139, 97–101. [Google Scholar] [CrossRef] [PubMed]
- Iannuzzi, A.; Perucatti, A.; Genualdo, V.; Pauciullo, A.; Incarnato, D.; Musilova, P.; Rubes, J.; Iannuzzi, C. The utility of chromosome microdissection in clinical cytogenetics: A new reciprocal translocation in sheep. Cytogenet. Genome Res. 2014, 142, 174–178. [Google Scholar] [CrossRef] [PubMed]
- Pauciullo, A.; Perucatti, A.; Cosenza, G.; Iannuzzi, A.; Incarnato, D.; Genualdo, V.; Di Berardino, D.; Iannuzzi, L. Sequential cross-species chromosome painting among river buffalo, cattle, sheep and goat: A useful tool for chromosome abnormalities diagnosis within the family Bovidae. PLoS ONE 2014, 9, e110297. [Google Scholar] [CrossRef] [Green Version]
- Christensen, K.; Juul, L. A case of trisomy 22 in a live hereford calf. Acta Vet. Scand. 1999, 40, 85–88. [Google Scholar] [CrossRef] [PubMed]
- De Giovanni, A.; Molteni, L.; Succi, G.; Galliani, C.; Bocher, J.; Popescu, C.P. A new type of Robertsonian translocation in cattle. In Proceedings of the 8th European Colloquium on Cytogenetics of Domestic Animals, Bristol, UK, 19–22 July 1988; pp. 53–59. [Google Scholar]
- De Giovanni, A.; Succi, G.; Molteni, L.; Castiglioni, M. A new autosomal translocation in “Alpine grey cattle”. Ann. Genet. Sel. Anim. 1979, 11, 115–120. [Google Scholar] [CrossRef]
- Switoński, M.; Stranzinger, G. Studies of synaptonemal complexes in farm mammals- a review. J. Hered. 1998, 89, 473–480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hart, E.J.; Pinton, A.; Powell, A.; Wall, R.; King, W.A. Meiotic recombination in normal and clone bulls and their offspring. Cytogenet. Genome Res. 2008, 120, 97–101. [Google Scholar] [CrossRef]
- Sebestova, H.; Vozdova, M.; Kubickova, S.; Cernohorska, H.; Kotrba, R.; Rubes, J. Effect of species-specific differences in chromosome morphology on chromatin compaction and the frequency and distribution of RAD51 and MLH1 foci in two bovid species: Cattle (Bos taurus) and the common eland (Taurotragus oryx). Chromosoma 2016, 125, 137–149. [Google Scholar] [CrossRef]
- Villagómez, D.A.; Pinton, A. Chromosomal abnormalities, meiotic behaviour and fertility in domestic animals. Cytogenet. Genome Res. 2008, 120, 69–80. [Google Scholar] [CrossRef]
- Riggs, P.K.; Rønne, M. Fragile sites in domestic animal chromosomes: Molecular insights and challenges. Cytogenet. Genome Res. 2009, 126, 97–109. [Google Scholar] [CrossRef] [PubMed]
- Ford, C.E.; Pollock, D.L.; Gustavsson, I. Proceedings of the First International Conference for the Standardisation of Banded Karyotypes of Domestic Animals. University of Reading, Reading, England. 2nd–6th August 1976. Hereditas 1980, 92, 145–162. [Google Scholar] [CrossRef] [PubMed]
- Di Berardino, D.; Hayes, H.; Fries, R.; Long, S. ISCNDA1989: International System for Cytogenetic Nomenclature of Domestic Animals. Cytogenet. Cell Genet. 1990, 53, 65–79. [Google Scholar] [CrossRef]
- Popescu, C.P.; Long, S.; Riggs, P.; Womack, J.; Schmutz, S.; Fries, R.; Gallagher, D.S. Standardization of cattle karyotype nomenclature: Report of the committee for the standardization of the cattle karyotype. Cytogenet. Cell Genet. 1996, 74, 259–261. [Google Scholar] [CrossRef] [PubMed]
- Hayes, H.; Di Meo, G.P.; Gautier, M.; Laurent, P.; Eggen, A.; Iannuzzi, L. Localization by FISH of the 31 Texas nomenclature type I markers to both Q- and R-banded bovine chromosomes. Cytogenet. Cell Genet. 2000, 90, 315–320. [Google Scholar] [CrossRef]
- Cribiu, E.P.; Di Berardino, D.; Di Meo, G.P.; Gallagher, D.S.; Hayes, H.; Iannuzzi, L.; Popescu, C.P.; Rubes, J.; Schmutz, S.; Stranzinger, G.; et al. International System for Chromosome Nomenclature of Domestic Bovids (ISCNDB 2000). Cytogenet. Cell Genet. 2001, 92, 283–299. [Google Scholar] [CrossRef]
- Iannuzzi, L.; Di Meo, G.P.; Hayes, H.; Perucatti, A.; Incarnato, D.; Gautier, M.; Eggen, A. FISH-mapping of 31 type I loci (Texas markers) to river buffalo chromosomes. Chromosome Res. 2001, 9, 339–342. [Google Scholar] [CrossRef]
- Di Meo, G.P.; Perucatti, A.; Gautier, M.; Hayes, H.; Incarnato, D.; Eggen, A.; Iannuzzi, L. Chromosome localization of the 31 type I Texas bovine markers in sheep and goat chromosomes by comparative FISH-mapping and R-banding. Anim. Genet. 2003, 34, 294–296. [Google Scholar] [CrossRef] [Green Version]
- Watson, J.D.; Crick, F.H. Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature 1953, 171, 737–738. [Google Scholar] [CrossRef]
- Pardue, M.L.; Gall, J.G. Molecular hybridization of radioactive DNA to the DNA of cytological preparations. Proc. Natl. Acad. Sci. USA 1969, 64, 600–604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fries, R.; Hediger, R.; Stranzinger, G. Tentative chromosomal localization of the bovine major histocompatibility complex by in situ hybridization. Anim. Genet. 1986, 17, 287–294. [Google Scholar] [CrossRef]
- Yerle, M.; Gellin, J.; Echard, G.; Lefevre, F.; Gillois, M. Chromosomal localization of leukocyte interferon gene in the pig (Sus scrofa domestica L.) by in situ hybridization. Cytogenet. Cell Genet. 1986, 42, 129–132. [Google Scholar] [CrossRef] [PubMed]
- Rudkin, G.T.; Stollar, B.D. High resolution detection of DNA-RNA hybrids in situ by indirect immunofluorescence. Nature 1977, 265, 472–473. [Google Scholar] [CrossRef]
- Ryan, A.M.; Gallagher, D.S.; Womack, J.E. Syntenic mapping and chromosomal localization of bovine alpha and beta interferon genes. Mamm. Genome 1992, 3, 575–578. [Google Scholar] [CrossRef]
- Iannuzzi, L.; Gallagher, D.S.; Ryan, A.M.; Di Meo, G.P.; Womack, J.E. Chromosomal localization of omega and trophoblast interferon genes in cattle and river buffalo by sequential R-banding and fluorescent in situ hybridization. Cytogenet. Cell Genet. 1993, 62, 224–227. [Google Scholar] [CrossRef]
- Iannuzzi, L.; Di Meo, G.P.; Gallagher, D.S.; Ryan, A.M.; Ferrara, L.; Womack, J.E. Chromosomal localization of omega and trophoblast interferon genes in goat and sheep by fluorescent in situ hybridization. J. Hered. 1993, 84, 301–304. [Google Scholar] [CrossRef] [PubMed]
- Iannuzzi, L.; Di Meo, G.P.; Perucatti, A.; Schibler, L.; Incarnato, D.; Gallagher, D.; Eggen, A.; Ferretti, L.; Cribiu, E.P.; Womack, J. The river buffalo (Bubalus bubalis, 2n = 50) cytogenetic map: Assignment of 64 loci by fluorescence in situ hybridization and R-banding. Cytogenet. Genome Res. 2003, 102, 65–75. [Google Scholar] [CrossRef]
- Iannuzzi, L.; Gallagher, D.S.; Di Meo, G.P.; Ryan, A.M.; Perucatti, A.; Ferrara, L.; Irwin, D.M.; Womack, J.E. Chromosomal localization of the lysozyme gene cluster in river buffalo (Bubalus bubalis L.). Chromosome Res. 1993, 1, 253–255. [Google Scholar] [CrossRef]
- Friedl, R.; Rottmann, O.J. Assignment of the bovine uridine monophosphate synthase gene to the bovine chromosome region 1q34-36 by FISH. Mamm. Genome 1994, 5, 38–40. [Google Scholar] [CrossRef]
- Iannuzzi, L.; Di Meo, G.P.; Ryan, A.M.; Gallagher, D.S.; Ferrara, L.; Womack, J.E. Localization of uridine monophosphate synthase (UMPS) gene to river buffalo chromosomes by FISH. Chromosome Res. 1994, 2, 255–256. [Google Scholar] [CrossRef]
- Solinas-Toldo, S.; Mezzelani, A.; Hawkins, G.A.; Bishop, M.D.; Olsaker, I.; Mackinlay, A.; Ferretti, L.; Fries, R. Combined Q-banding and fluorescence in situ hybridization for the identification of bovine chromosomes 1 to 7. Cytogenet. Cell Genet. 1995, 69, 1–6. [Google Scholar] [CrossRef]
- Hawkins, G.A.; Toldo, S.S.; Bishop, M.D.; Kappes, S.M.; Fries, R.; Beattie, C.W. Physical and linkage mapping of the bovine genome with cosmids. Mamm Genome 1995, 6, 249–254. [Google Scholar] [CrossRef]
- Mezzelani, A.; Zhang, Y.; Redaelli, L.; Castiglioni, B.; Leone, P.; Williams, J.L.; Toldo, S.S.; Wigger, G.; Fries, R.; Ferretti, L. Chromosomal localization and molecular characterization of 53 cosmid-derived bovine microsatellites. Mamm. Genome 1995, 6, 629–635. [Google Scholar] [CrossRef] [PubMed]
- Iannuzzi, L.; Gallagher, D.S.; Di Meo, G.P.; Diamond, G.; Bevins, C.L.; Womack, J.E. High-resolution FISH mapping of beta-defensin genes to river buffalo and sheep chromosomes suggests a chromosome discrepancy in ffttle standard karyotypes. Cytogenet. Cell Genet. 1996, 75, 10–13. [Google Scholar] [CrossRef] [PubMed]
- Iannuzzi, L.; Gallagher, D.S.; Womack, J.E.; Meo, G.P.; Shelling, C.P.; Groenen, M.A. FISH mapping of the alpha-S2 casein gene on river buffalo and cattle chromosomes identifies a nomenclature discrepancy in the bovine karyotype. Chromosome Res. 1996, 4, 159–162. [Google Scholar] [CrossRef] [PubMed]
- Yoo, J.; Stone, R.T.; Kappes, S.M.; Toldo, S.S.; Fries, R.; Beattie, C.W. Genomic organization and chromosomal mapping of the bovine Fas/APO-1 gene. DNA Cell Biol. 1996, 15, 377–385. [Google Scholar] [CrossRef]
- Goldammer, T.; Brunner, R.M.; Schmidt, P.; Schwerin, M. Mapping of the interferon gamma gene (IFNG) to chromosomes 3 in sheep and 5 in goat by FISH. Mamm. Genome 1996, 7, 470–471. [Google Scholar] [CrossRef]
- Yoo, J.; Stone, R.T.; Solinas-Toldo, S.; Fries, R.; Beattie, C.W. Cloning and chromosomal mapping of bovine interleukin-2 receptor gamma gene. DNA Cell Biol. 1996, 15, 453–459. [Google Scholar] [CrossRef] [PubMed]
- Folch, J.M.; Coll, A.; Hayes, H.C.; Sànchez, A. Characterization of a caprine beta-lactoglobulin pseudogene, identification and chromosomal localization by in situ hybridization in goat, sheep and cow. Gene 1996, 177, 87–91. [Google Scholar] [CrossRef]
- Martín-Burriel, I.; Goldammer, T.; Elduque, C.; Lundin, M.; Barendse, W.; Zaragoza, P.; Olsaker, I. Physical and linkage mapping of the bovine bone morphogenetic protein 1 on the evolutionary break region of BTA 8. Cytogenet. Cell Genet. 1997, 79, 179–183. [Google Scholar] [CrossRef]
- Vogel, T.; Borgmann, S.; Dechend, F.; Hecht, W.; Schmidtke, J. Conserved Y-chromosomal location of TSPY in Bovidae. Chromosome Res. 1997, 5, 182–185. [Google Scholar] [CrossRef]
- Iannuzzi, L.; Skow, L.; Di Meo, G.P.; Gallagher, D.S.; Womack, J.E. Comparative FISH-mapping of villin (VIL) gene in river buffalo, sheep and goat chromosomes. Chromosome Res. 1997, 5, 199–202. [Google Scholar] [CrossRef] [PubMed]
- Gallagher, D.S.; Yang, Y.P.; Burzlaff, J.D.; Womack, J.E.; Stelly, D.M.; Davis, S.K.; Taylor, J.F. Physical assignment of six type I anchor loci to bovine chromosome 19 by fluorescence in situ hybridization. Anim. Genet. 1998, 29, 130–134. [Google Scholar] [CrossRef]
- Iannuzzi, L.; Palomba, R.; Di Meo, G.P.; Perucatti, A.; Ferrara, L. Comparative FISH-mapping of the prion protein gene (PRNP) on cattle, river buffalo, sheep and goat chromosomes. Cytogenet. Cell Genet. 1998, 81, 202–204. [Google Scholar] [CrossRef] [PubMed]
- Gallagher, D.S.; Schläpfer, J.; Burzlaff, J.D.; Womack, J.E.; Stelly, D.M.; Davis, S.K.; Taylor, J.F. Cytogenetic alignment of the bovine chromosome 13 genome map by fluorescence in-situ hybridization of human chromosome 10 and 20 comparative markers. Chromosome Res. 1999, 7, 115–119. [Google Scholar] [CrossRef] [PubMed]
- Iannuzzi, L.; Gallagher, D.S.; Di Meo, G.P.; Yang, Y.; Womack, J.E.; Davis, S.K.; Taylor, J.F. Comparative FISH-mapping of six expressed gene loci to river buffalo and sheep. Cytogenet. Cell Genet. 1999, 84, 161–163. [Google Scholar] [CrossRef] [PubMed]
- Lòpez-Corrales, N.L.; Sonstegard, T.S.; Smith, T.P. Physical mapping of the bovine, caprine and ovine homologues of the paired box gene PAX8. Cytogenet. Cell Genet. 1999, 84, 179–181. [Google Scholar] [CrossRef] [Green Version]
- Minoshima, Y.; Taniguchi, Y.; Tanaka, K.; Yamada, T.; Sasaki, Y. Molecular cloning, expression analysis, promoter characterization, and chromosomal localization of the bovine PREF1 gene. Anim. Genet. 2001, 32, 333–339. [Google Scholar] [CrossRef]
- De Donato, M.; Gallagher, D.S.; Davis, S.K.; Stelly, D.M.; Taylor, J.F. The assignment of PRKCI to bovine chromosome 1q34-->q36 by FISH suggests a new assignment to human chromosome 3. Cytogenet. Cell Genet. 2001, 95, 79–81. [Google Scholar] [CrossRef]
- McShane, R.D.; Gallagher, D.S., Jr.; Newkirk, H.; Taylor, J.F.; Burzlaff, J.D.; Davis, S.K.; Skow, L.C. Physical localization and order of genes in the class I region of the bovine MHC. Anim. Genet. 2001, 32, 235–239. [Google Scholar] [CrossRef] [PubMed]
- Buitkamp, J.; Ewald, D.; Masabanda, J.; Bishop, M.D.; Fries, R. FISH and RH mapping of the bovine alpha (2)/delta calcium channel subunit gene (CACNA2D1). Anim. Genet. 2003, 34, 309–310. [Google Scholar] [CrossRef]
- Brenig, B.; Baumgartner, B.G.; Kriegesmann, B.; Habermann, F.; Fries, R.; Swalve, H.H. Molecular cloning, mapping, and functional analysis of the bovine sulfate transporter SLC26a2 gene. Gene 2003, 319, 161–166. [Google Scholar] [CrossRef] [PubMed]
- Iannuzzi, L.; Di Meo, G.P.; Perucatti, A.; Rullo, R.; Incarnato, D.; Longeri, M.; Bongioni, G.; Molteni, L.; Galli, A.; Zanotti, M.; et al. Comparative FISH-mapping of the survival of motor neuron gene (SMN) in domestic bovids. Cytogenet. Genome Res. 2003, 102, 39–41. [Google Scholar] [CrossRef]
- Iannuzzi, L.; Perucatti, A.; Di Meo, G.P.; Schibler, L.; Incarnato, D.; Cribiu, E.P. Chromosomal localization of sixty autosomal loci in sheep (Ovis aries, 2n = 54) by fluorescence in situ hybridization and R-banding. Cytogenet. Genome Res. 2003, 103, 135–138. [Google Scholar] [CrossRef]
- Mömke, S.; Kuiper, H.; Spötter, A.; Drögemüller, C.; Williams, J.L.; Distl, O. Assignment of the PRPH gene to bovine chromosome 5q1.4 by FISH and confirmation by RH mapping. Anim. Genet. 2004, 35, 477–478. [Google Scholar] [CrossRef] [PubMed]
- Kaupe, B.; Kollers, S.; Fries, R.; Erhardt, G. Mapping of CYP11B and a putative CYHR1 paralogous gene to bovine chromosome 14 by FISH. Anim. Genet. 2004, 35, 478–479. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.S.; de León, F.A. Assignment of SRY, ANT3, and CSF2RA to the bovine Y chromosome by FISH and RH mapping. Anim. Biotechnol. 2004, 15, 103–109. [Google Scholar] [CrossRef]
- Di Meo, G.P.; Gallagher, D.; Perucatti, A.; Wu, X.; Incarnato, D.; Mohammadi, G.; Taylor, J.F.; Iannuzzi, L. Mapping of 11 genes by FISH to BTA2, BBU2q, OAR2q and CHI2, and comparison with HSA2q. Anim. Genet. 2006, 37, 299–300. [Google Scholar] [CrossRef]
- Di Meo, G.P.; Perucatti, A.; Floriot, S.; Hayes, H.; Schibler, L.; Rullo, R.; Incarnato, D.; Ferretti, L.; Cockett, N.; Cribiu, E.; et al. An advanced sheep (Ovis aries, 2n = 54) cytogenetic map and assignment of 88 new autosomal loci by fluorescence in situ hybridization and R-banding. Anim. Genet. 2007, 38, 233–240. [Google Scholar] [CrossRef] [Green Version]
- Di Meo, G.P.; Perucatti, A.; Floriot, S.; Hayes, H.; Schibler, L.; Incarnato, D.; Di Berardino, D.; Williams, J.; Cribiu, E.; Eggen, A.; et al. An extended river buffalo (Bubalus bubalis, 2n = 50) cytogenetic map: Assignment of 68 autosomal loci by FISH-mapping and R-banding and comparison with human chromosomes. Chromosome Res. 2008, 16, 827–837. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farhadi, A.; Genualdo, V.; Perucatti, A.; Hafezian, S.H.; Rahimi-Mianji, G.; De Lorenzi, L.; Parma, P.; Iannuzzi, L.; Iannuzzi, A. Comparative FISH mapping of BMPR1B, BMP15 and GDF9 fecundity genes on cattle, river buffalo, sheep and goat chromosomes. J. Genet. 2013, 92, 595–597. [Google Scholar] [CrossRef] [PubMed]
- Eggen, A.; Gautier, M.; Billaut, A.; Petit, E.; Hayes, H.; Laurent, P.; Urban, C.; Pfister-Genskow, M.; Eilertsen, K.; Bishop, M.D. Construction and characterization of a bovine BAC library with four genome-equivalent coverage. Genetics, selection, evolution. Genet. Sel. Evol. 2001, 33, 543–548. [Google Scholar] [CrossRef]
- Bovine Genome Sequencing and Analysis Consortium; Elsik, C.G.; Tellam, R.L.; Worley, K.C.; Gibbs, R.A.; Muzny, D.M.; Weinstock, G.M.; Adelson, D.L.; Eichler, E.E.; Elnitski, L.; et al. The genome sequence of taurine cattle: A window to ruminant biology and evolution. Science 2009, 324, 522–528. [Google Scholar] [CrossRef] [Green Version]
- Zimin, A.V.; Delcher, A.L.; Florea, L.; Kelley, D.R.; Schatz, M.C.; Puiu, D.; Hanrahan, F.; Pertea, G.; Van Tassell, C.P.; Sonstegard, T.S.; et al. A whole-genome assembly of the domestic cow, Bos taurus. Genome Biol. 2009, 10, R42. [Google Scholar] [CrossRef] [Green Version]
- Dong, Y.; Xie, M.; Jiang, Y.; Xiao, N.; Du, X.; Zhang, W.; Tosser-Klopp, G.; Wang, J.; Yang, S.; Liang, J.; et al. Sequencing and automated whole-genome optical mapping of the genome of a domestic goat (Capra hircus). Nat. Biotechnol. 2013, 31, 135–141. [Google Scholar] [CrossRef] [Green Version]
- International Sheep Genomics Consortium; Archibald, A.L.; Cockett, N.E.; Dalrymple, B.P.; Faraut, T.; Kijas, J.W.; Maddox, J.F.; McEwan, J.C.; Hutton Oddy, V.; Raadsma, H.W.; et al. The sheep genome reference sequence: A work in progress. Anim. Genet. 2010, 41, 449–453. [Google Scholar] [CrossRef] [PubMed]
- Mintoo, A.A.; Zhang, H.; Chen, C.; Moniruzzaman, M.; Deng, T.; Anam, M.; Emdadul Huque, Q.M.; Guang, X.; Wang, P.; Zhong, Z.; et al. Draft genome of the river water buffalo. Ecol. Evol. 2019, 9, 3378–3388. [Google Scholar] [CrossRef]
- De Lorenzi, L.; Molteni, L.; Parma, P. FISH mapping in cattle (Bos taurus L.) is not yet out of fashion. J. Appl. Genet. 2010, 51, 497–499. [Google Scholar] [CrossRef]
- Partipilo, G.; D’Addabbo, P.; Lacalandra, G.M.; Liu, G.E.; Rocchi, M. Refinement of Bos taurus sequence assembly based on BAC-FISH experiments. BMC Genom. 2011, 12, 639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Lorenzi, L.; Genualdo, V.; Perucatti, A.; Iannuzzi, A.; Iannuzzi, L.; Parma, P. Physical mapping of 20 unmapped fragments of the btau_4.0 genome assembly in cattle, sheep and river buffalo. Cytogenet. Genome Res. 2013, 140, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Toldo, S.S.; Fries, R.; Steffen, P.; Neibergs, H.L.; Barendse, W.; Womack, J.E.; Hetzel, D.J.; Stranzinger, G. Physically mapped, cosmid-derived microsatellite markers as anchor loci on bovine chromosomes. Mamm. Genome 1993, 4, 720–727. [Google Scholar] [CrossRef] [PubMed]
- Vaiman, D.; Mercier, D.; Eggen, A.; Bahri-Darwich, I.; Grohs, C.; Cribiu, E.P.; Dolf, G.; Oustry, A.; Guérin, G.; Levéziel, H. A genetic and physical map of bovine chromosome 11. Mamm. Genome 1994, 5, 553–556. [Google Scholar] [CrossRef] [PubMed]
- Drögemüller, C.; Bader, A.; Wöhlke, A.; Kuiper, H.; Leeb, T.; Distl, O. A high-resolution comparative RH map of the proximal part of bovine chromosome 1. Anim. Genet. 2002, 33, 271–279. [Google Scholar] [CrossRef]
- Smith, T.P.; Lopez-Corrales, N.; Grosz, M.D.; Beattie, C.W.; Kappes, S.M. Anchoring of bovine chromosomes 4, 6, 7, 10, and 14 linkage group telomeric ends via FISH analysis of lambda clones. Mamm. Genome 1997, 8, 333–336. [Google Scholar] [CrossRef]
- Scherthan, H.; Cremer, T.; Arnason, U.; Weier, H.U.; Lima-de-Faria, A.; Frönicke, L. Comparative chromosome painting discloses homologous segments in distantly related mammals. Nat. Genet. 1994, 6, 342–347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jauch, A.; Wienberg, J.; Stanyon, R.; Arnold, N.; Tofanelli, S.; Ishida, T.; Cremer, T. Reconstruction of genomic rearrangements in great apes and gibbons by chromosome painting. Proc. Natl. Acad. Sci. USA 1992, 89, 8611–8615. [Google Scholar] [CrossRef] [Green Version]
- Lengauer, C.; Wienberg, J.; Cremer, T.; Lüdecke, H.J.; Horstehmke, B. Comparative chromosome band mapping in primates by in situ suppression hybridization of band specific DNA microlibraries. Hum. Evol. 1991, 6, 67–71. [Google Scholar] [CrossRef] [Green Version]
- Wienberg, J.; Stanyon, R.; Jauch, A.; Cremer, T. Homologies in human and Macaca fuscata chromosomes revealed by in situ suppression hybridization with human chromosome specific DNA libraries. Chromosoma 1992, 101, 265–270. [Google Scholar] [CrossRef] [Green Version]
- Chowdhary, B.P.; Raudsepp, T.; Frönicke, L.; Scherthan, H. Emerging patterns of comparative genome organization in some mammalian species as revealed by Zoo-FISH. Genome Res. 1998, 8, 577–589. [Google Scholar] [CrossRef] [Green Version]
- Hayes, H.C.; Popescu, P.; Dutrillaux, B. Comparative gene mapping of lactoperoxidase, retinoblastoma, and alpha-lactalbumin genes in cattle, sheep, and goats. Mamm. Genome 1993, 4, 593–597. [Google Scholar] [CrossRef] [PubMed]
- Hayes, H.C.; Petit, E.J. Mapping of the beta-lactoglobulin gene and of an immunoglobulin M heavy chain-like sequence to homoeologous cattle, sheep, and goat chromosomes. Mamm. Genome 1993, 4, 207–210. [Google Scholar] [CrossRef]
- Hayes, H.; Petit, E.; Bouniol, C.; Popescu, P. Localization of the alpha-S2-casein gene (CASAS2) to the homoeologous cattle, sheep, and goat chromosomes 4 by in situ hybridization. Cytogenet. Cell Genet. 1993, 64, 281–285. [Google Scholar] [CrossRef]
- Iannuzzi, L.; Gallagher, D.S.; Womack, J.E.; Di Meo, G.P.; Skow, L.C.; Ferrara, L. Chromosomal localization of the major histocompatibility complex in cattle and river buffalo by fluorescent in situ hybridization. Hereditas 1993, 118, 187–190. [Google Scholar] [CrossRef]
- Brunner, R.M.; Goldammer, T.; Hiendleder, S.; Jäger, C.; Schwerin, M. Comparative mapping of the gene coding for inhibin-alpha (INHA) to chromosome 2 in sheep and cattle. Mamm. Genome 1995, 6, 309. [Google Scholar] [CrossRef]
- Goldammer, T.; Brunner, R.M.; Hiendleder, S.; Schwerin, M. Comparative mapping of sheep inhibin subunit beta b to chromosome 2 in sheep and cattle by fluorescence in situ hybridization. Anim. Genet. 1995, 26, 199–200. [Google Scholar] [CrossRef] [PubMed]
- Hayes, H.; Le Chalony, C.; Goubin, G.; Mercier, D.; Payen, E.; Bignon, C.; Kohno, K. Localization of ZNF164, ZNF146, GGTA1, SOX2, PRLR and EEF2 on homoeologous cattle, sheep and goat chromosomes by fluorescent in situ hybridization and comparison with the human gene map. Cytogenet. Cell Genet. 1996, 72, 342–346. [Google Scholar] [CrossRef]
- Goldammer, T.; Meyer, L.; Seyfert, H.M.; Brunner, R.M.; Schwerin, M. STAT5A encoding gene maps to chromosome 19 in cattle and goat and to chromosome 11 in sheep. Mamm. Genome 1997, 8, 705–706. [Google Scholar] [CrossRef] [PubMed]
- Goldammer, T.; Brunner, R.M.; Schwerin, M. Comparative analysis of Y chromosome structure in Bos taurus and B. indicus by FISH using region-specific, microdissected, and locus-specific DNA probes. Cytogenet. Cell Genet. 1997, 77, 238–241. [Google Scholar] [CrossRef]
- Faure, M.; Hayes, H.; Bledsoe, R.K.; Hutson, S.M.; Papet, I. Assignment of the gene of mitochondrial branched chain aminotransferase (BCAT2) to sheep chromosome band 14q24 and to cattle and goat chromosome bands 18q24 by in situ hybridization. Cytogenet. Cell Genet. 1998, 83, 96–97. [Google Scholar] [CrossRef]
- Robinson, T.J.; Harrison, W.R.; Ponce de León, F.A.; Davis, S.K.; Elder, F.F. A molecular cytogenetic analysis of X-chromosome repatterning in the Bovidae: Transpositions, inversions, and phylogenetic inference. Cytogenet. Cell Genet. 1998, 80, 179–184. [Google Scholar] [CrossRef] [PubMed]
- Piumi, F.; Schibler, L.; Vaiman, D.; Oustry, A.; Cribiu, E.P. Comparative cytogenetic mapping reveals chromosome rearrangements between the X chromosomes of two closely related mammalian species (cattle and goats). Cytogenet. Cell Genet. 1998, 81, 36–41. [Google Scholar] [CrossRef]
- Schibler, L.; Vaiman, D.; Oustry, A.; Giraud-Delville, C.; Cribiu, E.P. Comparative gene mapping: A fine-scale survey of chromosome rearrangements between ruminants and humans. Genome Res. 1998, 8, 901–915. [Google Scholar] [CrossRef] [Green Version]
- Schmitz, A.; Oustry, A.; Vaiman, D.; Chaput, B.; Frelat, G.; Cribiu, E.P. Comparative karyotype of pig and cattle using whole chromosome painting probes. Hereditas 1998, 128, 257–263. [Google Scholar] [CrossRef] [PubMed]
- Iannuzzi, L.; Di Meo, G.P.; Perucatti, A.; Bardaro, T. ZOO-FISH and R-banding reveal extensive conservation of human chromosome regions in euchromatic regions of river buffalo chromosomes. Cytogenet. Cell Genet. 1998, 82, 210–214. [Google Scholar] [CrossRef] [PubMed]
- Iannuzzi, L.; Di Meo, G.P.; Perucatti, A.; Incarnato, D. Comparison of the human with the sheep genomes by use of human chromosome-specific painting probes. Mammal. Genome 1999, 10, 719–723. [Google Scholar] [CrossRef]
- Iannuzzi, L.; Di Meo, G.P.; Perucatti, A.; Incarnato, D.; Lopez-Corrales, N.; Smith, J. Chromosomal localization of four HSA2 type I loci in river buffalo (Bubalus bubalis, 2n=50) chromosomes 2q and 12. Mammal. Genome 2000, 11, 241–242. [Google Scholar] [CrossRef]
- Hayes, H.; Bonfils, J.; Faure, M.; Papet, I. Assignment of BCAT1, the gene encoding cytosolic branched chain aminotransferase, to sheep chromosome band 3q33 and to cattle and goat chromosome bands 5q33 by in situ hybridization. Cytogenet. Cell Genet. 2000, 90, 84–85. [Google Scholar] [CrossRef] [PubMed]
- Iannuzzi, L.; Di Meo, G.P.; Perucatti, A.; Incarnato, D.; Schibler, L.; Cribiu, E.P. Comparative FISH-mapping of bovid X chromosomes reveals homologies and divergences between the subfamilies Bovinae and Caprinae. Cytogenet. Cell Genet. 2000, 89, 171–176. [Google Scholar] [CrossRef]
- Iannuzzi, L.; Di Meo, G.P.; Perucatti, A.; Schibler, L.; Incarnato, D.; Ferrara, L.; Bardaro, T.; Cribiu, E.P. Sixteen type I loci from six chromosomes were comparatively fluorescent in-situ mapped to river buffalo (Bubalus bubalis) and sheep (Ovis aries) chromosomes. Chromosome Res. 2000, 8, 447–450. [Google Scholar] [CrossRef] [PubMed]
- Di Meo, G.P.; Perucatti, A.; Schibler, L.; Incarnato, D.; Ferrara, L.; Cribiu, E.P.; Iannuzzi, L. Thirteen type I loci from HSA4q, HSA6p, HSA7q and HSA12q were comparatively FISH-mapped in four river buffalo and sheep chromosomes. Cytogenet. Cell Genet. 2000, 90, 102–105. [Google Scholar] [CrossRef]
- Iannuzzi, L.; Di Meo, G.P.; Perucatti, A.; Schibler, L.; Incarnato, D.; Cribiu, E.P. Comparative FISH-mapping in river buffalo and sheep chromosomes: Assignment of forty autosomal type I loci from sixteen human chromosomes. Cytogenet. Cell Genet. 2001, 94, 43–48. [Google Scholar] [CrossRef]
- Gautier, M.; Hayes, H.; Taourit, S.; Laurent, P.; Eggen, A. Assignment of eight additional genes from human chromosome 11 to bovine chromosomes 15 and 29: Refinement of the comparative map. Cytogenet. Cell Genet. 2001, 93, 60–64. [Google Scholar] [CrossRef]
- Di Meo, G.P.; Perucatti, A.; Incarnato, D.; Ferretti, L.; Di Berardino, D.; Caputi Jambrenghi, A.; Vonghia, G.; Iannuzzi, L. Comparative mapping of twenty-eight bovine loci in sheep (Ovis aries, 2n = 54) and river buffalo (Bubalus bubalis, 2n = 50) by FISH. Cytogenet. Genome Res. 2002, 98, 262–264. [Google Scholar] [CrossRef]
- Cosseddu, G.M.; Oustry-Vaiman, A.; Jego, B.; Moreno, C.; Taourit, S.; Cribiu, E.P.; Elsen, J.M.; Vaiman, D. Sheep/human comparative map in a chromosome region involved in scrapie incubation time shows multiple breakpoints between human chromosomes 14 and 15 and sheep chromosomes 7 and 18. Chromosome Res. 2002, 10, 369–378. [Google Scholar] [CrossRef] [PubMed]
- Hayes, H.; Elduque, C.; Gautier, M.; Schibler, L.; Cribiu, E.; Eggen, A. Mapping of 195 genes in cattle and updated comparative map with man, mouse, rat and pig. Cytogenet. Genome Res. 2003, 102, 16–24. [Google Scholar] [CrossRef]
- Goldammer, T.; Amaral, M.E.; Brunner, R.M.; Owens, E.; Kata, S.R.; Schwerin, M.; Womack, J.E. Clarifications on breakpoints in HSAX and BTAX by comparative mapping of F9, HPRT, and XIST in cattle. Cytogenet. Genome Res. 2003, 101, 39–42. [Google Scholar] [CrossRef] [PubMed]
- Brunner, R.M.; Sanftleben, H.; Goldammer, T.; Kühn, C.; Weikard, R.; Kata, S.R.; Womack, J.E.; Schwerin, M. The telomeric region of BTA18 containing a potential QTL region for health in cattle exhibits high similarity to the HSA19q region in humans. Genomics 2003, 81, 270–278. [Google Scholar] [CrossRef]
- Ahrens, E.; Graphodatskaya, D.; Nguyen, B.X.; Stranzinger, G. Cytogenetic comparison of saola (Pseudoryx nghetinhensis) and cattle (Bos taurus) using G- and Q-banding and FISH. Cytogenet. Genome Res. 2005, 111, 147–151. [Google Scholar] [CrossRef] [PubMed]
- Di Meo, G.P.; Perucatti, A.; Uboldi, C.; Roperto, S.; Incarnato, D.; Roperto, F.; Williams, J.; Eggen, A.; Ferretti, L.; Iannuzzi, L. Comparative mapping of the fragile histidine triad (FHIT) gene in cattle, river buffalo, sheep and goat by FISH and assignment to BTA22 by RH-mapping: A comparison with HSA3. Anim. Genet 2005, 36, 363–364. [Google Scholar] [CrossRef] [Green Version]
- Di Meo, G.P.; Perucatti, A.; Floriot, S.; Incarnato, D.; Rullo, R.; Caputi Jambrenghi, A.; Ferretti, L.; Vonghia, G.; Cribiu, E.; Eggen, A.; et al. Chromosome evolution and improved cytogenetic maps of the Y chromosome in cattle, zebu, river buffalo, sheep and goat. Chromosome Res. 2005, 13, 349–355. [Google Scholar] [CrossRef] [PubMed]
- Perucatti, A.; Floriot, S.; Di Meo, G.P.; Soglia, D.; Rullo, R.; Maione, S.; Incarnato, D.; Eggen, A.; Sacchi, P.; Rasero, R.; et al. Comparative FISH mapping of mucin 1, transmembrane (MUC1) among cattle, river buffalo, sheep and goat chromosomes: Comparison between bovine chromosome 3 and human chromosome 1. Cytogenet. Genome Res. 2006, 112, 103–105. [Google Scholar] [CrossRef]
- Perucatti, A.; Di Meo, G.P.; Vallinoto, M.; Kierstein, G.; Schneider, M.P.; Incarnato, D.; Caputi Jambrenghi, A.; Mohammadi, G.; Vonghia, G.; Silva, A.; et al. FISH-mapping of LEP and SLC26A2 genes in sheep, goat and cattle R-banded chromosomes: Comparison between bovine, ovine and caprine chromosome 4 (BTA4/OAR4/CHI4) and human chromosome 7 (HSA7). Cytogenet. Genome Res. 2006, 115, 7–9. [Google Scholar] [CrossRef] [PubMed]
- Schibler, L.; Roig, A.; Mahe, M.-F.; Laurent, P.; Hayes, H.; Rodolphe, F.; Cribiu, E.P. High-resolution comparative mapping among man, cattle and mouse suggests a role for repeat sequences in mammalian genome evolution. BMC Genom. 2006, 7, 194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antonacci, R.; Vaccarelli, G.; Di Meo, G.P.; Piccinni, B.; Miccoli, M.C.; Cribiu, E.P.; Perucatti, A.; Iannuzzi, L.; Ciccarese, S. Molecular in situ hybridization analysis of sheep and goat BAC clones identifies the transcriptional orientation of T cell receptor gamma genes on chromosome 4 in bovids. Vet. Res. Comm. 2007, 31, 977–983. [Google Scholar] [CrossRef]
- Perucatti, A.; Di Meo, G.P.; Goldammer, T.; Incarnato, D.; Brunner, R.; Iannuzzi, L. Comparative FISH-mapping of twelve loci in river buffalo and sheep chromosomes: Comparison with HSA8p and HSA4q. Cytogenet. Genome. Res. 2007, 119, 242–244. [Google Scholar] [CrossRef]
- Goldammer, T.; Brunner, R.M.; Weikard, R.; Kuehn, C.; Wimmers, K. Generation of an improved cytogenetic and comparative map of Bos taurus chromosome BTA27. Chromosome Res. 2007, 15, 203–213. [Google Scholar] [CrossRef]
- Ropiquet, A.; Gerbault-Seureau, M.; Deuve, J.L.; Gilbert, C.; Pagacova, E.; Chai, N.; Rubes, J.; Hassanin, A. Chromosome evolution in the subtribe Bovina (Mammalia, Bovidae): The karyotype of the Cambodian banteng (Bos javanicus birmanicus) suggests that Robertsonian translocations are related to interspecific hybridization. Chromosome Res. 2008, 16, 1107–1118. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Aniskin, V.M.; Gerbault-Seureau, M.; Planton, H.; Renard, J.P.; Nguyen, B.X.; Hassanin, A.; Volobouev, V.T. Phylogenetic position of the saola (Pseudoryx nghetinhensis) inferred from cytogenetic analysis of eleven species of Bovidae. Cytogenet. Genome Res. 2008, 122, 41–54. [Google Scholar] [CrossRef]
- Bratuś, A.; Bugno, M.; Klukowska-Rötzler, J.; Sawińska, M.; Eggen, A.; Słota, E. Chromosomal homology between the human and the bovine DMRT1 genes. Folia Biol. 2009, 57, 29–32. [Google Scholar] [CrossRef]
- Bratuś, A.; Słota, E. Comparative cytogenetic and molecular studies of DM domain genes in pig and cattle. Cytogenet. Genome Res. 2009, 126, 180–185. [Google Scholar] [CrossRef] [PubMed]
- Perucatti, A.; Di Meo, G.P.; Goldammer, T.; Incarnato, D.; Nicolae, I.; Brunner, R.; Iannuzzi, L. FISH-mapping comparison between river buffalo chromosome 7 and sheep chromosome 6: Assignment of new loci and comparison with HSA4. Cytogenet. Genome Res. 2009, 124, 106–111. [Google Scholar] [CrossRef]
- Goldammer, T.; Brunner, R.M.; Rebl, A.; Wu, C.H.; Nomura, K.; Hadfield, T.; Maddox, J.F.; Cockett, N.E. Cytogenetic anchoring of radiation hybrid and virtual maps of sheep chromosome X and comparison of X chromosomes in sheep, cattle, and human. Chromosome Res. 2009, 17, 497–506. [Google Scholar] [CrossRef]
- Manera, S.; Bonfiglio, S.; Malusà, A.; Denis, C.; Boussaha, M.; Russo, V.; Roperto, F.; Perucatti, A.; Di Meo, G.P.; Eggen, A.; et al. Comparative mapping and genomic annotation of the bovine oncosuppressor gene WWOX. Cytogenet. Genome Res. 2009, 126, 186–193. [Google Scholar] [CrossRef] [PubMed]
- Goldammer, T.; Di Meo, G.P.; Lühken, G.; Drögemüller, C.; Wu, C.H.; Kijas, J.; Dalrymple, B.P.; Nicholas, F.W.; Maddox, J.F.; Iannuzzi, L.; et al. Molecular cytogenetics and gene mapping in sheep (Ovis aries, 2n = 54). Cytogenet. Genome Res. 2009, 126, 63–76. [Google Scholar] [CrossRef]
- Schibler, L.; Di Meo, G.P.; Cribiu, E.P.; Iannuzzi, L. Molecular cytogenetics and comparative mapping in goats (Capra hircus, 2n = 60). Cytogenet. Genome Res. 2009, 126, 77–85. [Google Scholar] [CrossRef]
- Genualdo, V.; Spalenza, V.; Perucatti, A.; Iannuzzi, A.; Di Meo, G.P.; Caputi-Jambrenghi, A.; Vonghia, G.; Rasero, R.; Nebbia, C.; Sacchi, P.; et al. Fluorescence in situ hybridization mapping of six loci containing genes involved in the dioxin metabolism of domestic bovids. J. Appl. Genet. 2011, 52, 229–232. [Google Scholar] [CrossRef]
- Di Meo, G.P.; Goldammer, T.; Perucatti, A.; Genualdo, V.; Iannuzzi, A.; Incarnato, D.; Rebl, A.; Di Berardino, D.; Iannuzzi, L. Extended cytogenetic maps of sheep chromosome 1 and their cattle and river buffalo homoeologues: Comparison with the OAR1 RH map and human chromosomes 2, 3, 21 and 1q. Cytogenet. Genome Res. 2011, 133, 16–24. [Google Scholar] [CrossRef]
- Cernohorska, H.; Kubickova, S.; Vahala, J.; Rubes, J. Molecular insights into X;BTA5 chromosome rearrangements in the tribe Antilopini (Bovidae). Cytogenet. Genome Res. 2012, 136, 188–198. [Google Scholar] [CrossRef]
- Kopecna, O.; Kubickova, S.; Cernohorska, H.; Cabelova, K.; Vahala, J.; Rubes, J. Isolation and comparison of tribe-specific centromeric repeats within Bovidae. J. Appl. Genet. 2012, 53, 193–202. [Google Scholar] [CrossRef] [PubMed]
- Perucatti, A.; Genualdo, V.; Iannuzzi, A.; Rebl, A.; Di Berardino, D.; Goldammer, T.; Iannuzzi, L. Advanced comparative cytogenetic analysis of X chromosomes in river buffalo, cattle, sheep, and human. Chromosome Res. 2012, 20, 413–425. [Google Scholar] [CrossRef] [PubMed]
- Kolesárová, V.; Šiviková, K.; Holečková, B.; Dianovský, J. A comparative FISH mapping of LCA5L gene in cattle, sheep, and goats. Anim. Biotechnol. 2015, 26, 37–39. [Google Scholar] [CrossRef] [PubMed]
- De Lorenzi, L.; Planas, J.; Rossi, E.; Malagutti, L.; Parma, P. New cryptic karyotypic differences between cattle (Bos taurus) and goat (Capra hircus). Chromosome Res. 2015, 23, 225–235. [Google Scholar] [CrossRef] [PubMed]
- De Lorenzi, L.; Pauciullo, A.; Iannuzzi, A.; Parma, P. Cytogenetic Characterization of a Small Evolutionary Rearrangement Involving Chromosomes BTA21 and OAR18. Cytogenet. Genome Res. 2020, 160, 193–198. [Google Scholar] [CrossRef]
- Perucatti, A.; Iannuzzi, A.; Armezzani, A.; Palmarini, M.; Iannuzzi, L. Comparative fluorescence in Situ hybridization (FISH) mapping of twenty-three endogenous Jaagsiekte sheep retrovirus (enJSRVs) in sheep (Ovis aries) and river buffalo (Bubalus bubalis) chromosomes. Animals 2022, 12, 2834. [Google Scholar] [CrossRef]
- Hayes, H. Chromosome painting with human chromosome-specific DNA libraries reveals the extent and distribution of conserved segments in bovine chromosomes. Cytogenet. Cell Genet. 1995, 71, 168–174. [Google Scholar] [CrossRef]
- Chowdhary, B.P.; Frönicke, L.; Gustavsson, I.; Scherthan, H. Comparative analysis of the cattle and human genomes: Detection of ZOO-FISH and gene mapping-based chromosomal homologies. Mamm. Genome 1996, 7, 297–302. [Google Scholar] [CrossRef]
- Solinas-Toldo, S.; Lengauer, C.; Fries, R. Comparative genome map of human and cattle. Genomics 1995, 27, 489–496. [Google Scholar] [CrossRef]
- Pauciullo, A.; Knorr, C.; Perucatti, A.; Iannuzzi, A.; Iannuzzi, L.; Erhardt, G. Characterization of a very rare case of living ewe-buck hybrid using classical and molecular cytogenetics. Sci. Rep. 2016, 6, 34781. [Google Scholar] [CrossRef] [Green Version]
- Iannuzzi, A.; Pereira, J.; Iannuzzi, C.; Fu, B.; Ferguson-Smith, M. Pooling strategy and chromosome painting characterize a living zebroid for the first time. PLoS ONE 2017, 12, e0180158. [Google Scholar] [CrossRef] [Green Version]
- Amaral, M.E.; Grant, J.R.; Riggs, P.K.; Stafuzza, N.B.; Filho, E.A.; Goldammer, T.; Weikard, R.; Brunner, R.M.; Kochan, K.J.; Greco, A.J.; et al. A first generation whole genome RH map of the river buffalo with comparison to domestic cattle. BMC Genom. 2008, 9, 631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faraut, T.; de Givry, S.; Hitte, C.; Lahbib-Mansais, Y.; Morisson, M.; Milan, D.; Schiex, T.; Servin, B.; Vignal, A.; Galibert, F.; et al. Contribution of radiation hybrids to genome mapping in domestic animals. Cytogenet. Genome Res. 2009, 126, 21–33. [Google Scholar] [CrossRef] [PubMed]
- Stafuzza, N.B.; Abbassi, H.; Grant, J.R.; Rodrigues-Filho, E.A.; Ianella, P.; Kadri, S.M.; Amarante, M.V.; Stohard, P.; Womack, J.E.; de León, F.A.; et al. Comparative RH maps of the river buffalo and bovine Y chromosomes. Cytogenet. Genome Res. 2009, 126, 132–138. [Google Scholar] [CrossRef] [PubMed]
- Durmaz, A.A.; Karaca, E.; Demkow, U.; Toruner, G.; Schoumans, J.; Cogulu, O. Evolution of Genetic Techniques: Past, Present, and Beyond. BioMed. Res. Intern. 2015, 2015, 461524. [Google Scholar] [CrossRef]
- Fidlerova, H.; Senger, G.; Kost, M.; Sanseau, P.; Sheer, D. Two simple procedures for releasing chromatin from routinely fixed cells for fluorescence in situ hybridization. Cytogenet. Cell Genet. 1994, 65, 203–205. [Google Scholar] [CrossRef]
- Brunner, R.M.; Goldammer, T.; Fürbass, R.; Vanselow, J.; Schwerin, M. Genomic organization of the bovine aromatase encoding gene and a homologous pseudogene as revealed by DNA fiber FISH. Cytogenet. Cell Genet. 1998, 82, 37–40. [Google Scholar] [CrossRef]
- Seyfert, H.M.; Pitra, C.; Meyer, L.; Brunner, R.M.; Wheeler, T.T.; Molenaar, A.; McCracken, J.Y.; Herrmann, J.; Thiesen, H.J.; Schwerin, M. Molecular characterization of STAT5A- and STAT5B-encoding genes reveals extended intragenic sequence homogeneity in cattle and mouse and different degrees of divergent evolution of various domains. J Mol. Evol. 2000, 50, 550–561. [Google Scholar] [CrossRef]
- Hamilton, C.K.; Favetta, L.A.; Di Meo, G.P.; Floriot, S.; Perucatti, A.; Peippo, J.; Kantanen, J.; Eggen, A.; Iannuzzi, L.; King, W.A. Copy number variation of testis-specific protein, Y-encoded (TSPY) in 14 different breeds of cattle (Bos taurus). Sex Dev. 2009, 3, 205–213. [Google Scholar] [CrossRef]
- Pauciullo, A.; Fleck, K.; Lühken, G.; Di Berardino, D.; Erhardt, G. Dual-color high-resolution fiber-FISH analysis on lethal white syndrome carriers in sheep. Cytogenet. Genome Res. 2013, 140, 46–54. [Google Scholar] [CrossRef]
- du Manoir, S.; Speicher, M.R.; Joos, S.; Schröck, E.; Popp, S.; Döhner, H.; Kovacs, G.; Robert-Nicoud, M.; Lichter, P.; Cremer, T. Detection of complete and partial chromosome gains and losses by comparative genomic in situ hybridization. Hum. Gene.t 1993, 90, 590–610. [Google Scholar] [CrossRef] [Green Version]
- Kallioniemi, A.; Kallioniemi, O.P.; Sudar, D.; Rutovitz, D.; Gray, J.W.; Waldman, F.; Pinkel, D. Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. N. Y. Sci. J. 1992, 258, 818–821. [Google Scholar] [CrossRef] [Green Version]
- Solinas-Toldo, S.; Lampel, S.; Stilgenbauer, S.; Nickolenko, J.; Benner, A.; Döhner, H.; Cremer, T.; Lichter, P. Matrix-based comparative genomic hybridization: Biochips to screen for genomic imbalances. Genes Chromosom. Cancer. 1997, 20, 399–407. [Google Scholar] [CrossRef]
- Brennan, C.; Zhang, Y.; Leo, C.; Feng, B.; Cauwels, C.; Aguirre, A.J.; Kim, M.; Protopopov, A.; Chin, L. High-resolution global profiling of genomic alterations with long oligonucleotide microarray. Cancer Res. 2004, 64, 4744–4748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carvalho, B.; Ouwerkerk, E.; Meijer, G.A.; Ylstra, B. High resolution microarray comparative genomic hybridisation analysis using spotted oligonucleotides. J. Clin. Pathol. 2004, 57, 644–646. [Google Scholar] [CrossRef] [Green Version]
- Pinkel, D.; Albertson, D.G. Array comparative genomic hybridization and its applications in cancer. Nat. Genet. 2005, 37, S11–S17. [Google Scholar] [CrossRef]
- Iafrate, A.J.; Feuk, L.; Rivera, M.N.; Listewnik, M.L.; Donahoe, P.K.; Qi, Y.; Scherer, S.W.; Lee, C. Detection of large-scale variation in the human genome. Nat. Genet. 2004, 36, 949–951. [Google Scholar] [CrossRef] [Green Version]
- Redon, R.; Ishikawa, S.; Fitch, K.R.; Feuk, L.; Perry, G.H.; Andrews, T.D.; Fiegler, H.; Shapero, M.H.; Carson, A.R.; Hurles, M.E.; et al. Global variation in copy number in the human genome. Nature 2006, 444, 444–454. [Google Scholar] [CrossRef] [Green Version]
- Sebat, J.; Lakshmi, B.; Troge, J.; Alexander, J.; Young, J.; Lundin, P.; Månér, S.; Massa, H.; Walker, M.; Chi, M.; et al. Large-scale copy number polymorphism in the human genome. N. Y. Sci. J. 2004, 305, 525–528. [Google Scholar] [CrossRef] [Green Version]
- Zarrei, M.; MacDonald, J.R.; Merico, D.; Scherer, S.W. A copy number variation map of the human genome. Nat. Rev. Genet. 2015, 16, 172–183. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.E.; Van Tassell, C.P.; Sonstegard, T.S.; Li, R.W.; Alexander, L.J.; Keele, J.W.; Matukumalli, L.K.; Smith, T.P.; Gasbarre, L.C. Detection of germline and somatic copy number variations in cattle. Dev. Biol. 2008, 132, 231–237. [Google Scholar] [CrossRef] [Green Version]
- Liu, G.E.; Hou, Y.L.; Zhu, B.; Cardone, M.F.; Jiang, L.; Cellamare, A.; Mitra, A.; Alexander, L.J.; Coutinho, L.L.; Dell’Aquila, M.E.; et al. Analysis of copy number variations among diverse cattle breeds. Genome Res. 2010, 20, 693–703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fadista, J.; Thomsen, B.; Holm, L.E.; Bendixen, C. Copy number variation in the bovine genome. BMC Genom. 2010, 11, 284. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Fang, L.; Liu, S.; Pan, M.G.; Seroussi, E.; Cole, J.B.; Ma, L.; Chen, H.; Liu, G.E. Array CGH-based detection of CNV regions and their potential association with reproduction and other economic traits in Holsteins. BMC Genom. 2019, 20, 181. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Jia, S.; Yang, M.; Xu, Y.; Li, C.; Sun, J.; Huang, Y.; Lan, X.; Lei, C.; Zhou, Y.; et al. Detection of copy number variations and their effects in Chinese bulls. BMC Genom. 2014, 15, 480. [Google Scholar] [CrossRef] [Green Version]
- Kijas, J.W.; Barendse, W.; Barris, W.; Harrison, B.; McCulloch, R.; McWilliam, S.; Whan, V. Analysis of copy number variants in the cattle genome. Gene 2011, 482, 73–77. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, G.M.; Goddard, M.E.; Black, M.A.; Brauning, R.; Auvray, B.; Dodds, K.G.; Kijas, J.W.; Cockett, N.; McEwan, J.C. Copy number variants in the sheep genome detected using multiple approaches. BMC Genom. 2016, 17, 441. [Google Scholar] [CrossRef] [Green Version]
- Fontanesi, L.; Beretti, F.; Martelli, P.L.; Colombo, M.; Dall’olio, S.; Occidente, M.; Portolano, B.; Casadio, R.; Matassino, D.; Russo, V. A first comparative map of copy number variations in the sheep genome. Genomics 2011, 97, 158–165. [Google Scholar] [CrossRef] [Green Version]
- Fontanesi, L.; Martelli, P.L.; Beretti, F.; Riggio, V.; Dall’Olio, S.; Colombo, M.; Casadio, R.; Russo, V.; Portolano, B. An initial comparative map of copy number variations in the goat (Capra hircus) genome. BMC Genom. 2010, 11, 639. [Google Scholar] [CrossRef] [Green Version]
- Canavez, F.C.; Luche, D.D.; Stothard, P.; Leite, K.R.; Sousa-Canavez, J.M.; Plastow, G.; Meidanis, J.; Souza, M.A.; Feijao, P.; Moore, S.S.; et al. Genome sequence and assembly of Bos indicus. J. Hered. 2012, 103, 342–348. [Google Scholar] [CrossRef] [Green Version]
- Afgan, E.; Baker, D.; Batut, B.; van den Beek, M.; Bouvier, D.; Cech, M.; Chilton, J.; Clements, D.; Coraor, N.; Grüning, B.A.; et al. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids Res. 2018, 46, W537–W544. [Google Scholar] [CrossRef] [Green Version]
- Rangwala, S.H.; Kuznetsov, A.; Ananiev, V.; Asztalos, A.; Borodin, E.; Evgeniev, V.; Joukov, V.; Lotov, V.; Pannu, R.; Rudnev, D.; et al. Accessing NCBI data using the NCBI Sequence Viewer and Genome Data Viewer (GDV). Genome Res. 2021, 31, 159–169. [Google Scholar] [CrossRef]
- Kent, W.J.; Sugnet, C.W.; Furey, T.S.; Roskin, K.M.; Pringle, T.H.; Zahler, A.M.; Haussler, D. The human genome browser at UCSC. Genome Res. 2002, 12, 996–1006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cunningham, F.; Allen, J.E.; Allen, J.; Alvarez-Jarreta, J.; Amode, M.R.; Armean, I.M.; Austine-Orimoloye, O.; Azov, A.G.; Barnes, I.; Bennett, R.; et al. Ensembl 2022. Nucleic Acids Res. 2022, 50, D988–D995. [Google Scholar] [CrossRef] [PubMed]
- Untergasser, A.; Cutcutache, I.; Koressaar, T.; Ye, J.; Faircloth, B.C.; Remm, M.; Rozen, S.G. Primer3--new capabilities and interfaces. Nucleic Acids Res. 2012, 40, e115. [Google Scholar] [CrossRef] [Green Version]
- McLaren, W.; Gil, L.; Hunt, S.E.; Riat, H.S.; Ritchie, G.R.; Thormann, A.; Flicek, P.; Cunningham, F. The Ensembl Variant Effect Predictor. Genome Biol. 2016, 17, 122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hulsegge, I.; Oldenbroek, K.; Bouwman, A.; Veerkamp, R.; Windig, J. Selection and Drift: A Comparison between Historic and Recent Dutch Friesian Cattle and Recent Holstein Friesian Using WGS Data. Animals 2022, 12, 329. [Google Scholar] [CrossRef] [PubMed]
- Xia, X.; Zhang, S.; Zhang, H.; Zhang, Z.; Chen, N.; Li, Z.; Sun, H.; Liu, X.; Lyu, S.; Wang, X.; et al. Assessing genomic diversity and signatures of selection in Jiaxian Red cattle using whole-genome sequencing data. BMC Genom. 2021, 22, 43. [Google Scholar] [CrossRef]
- Sun, L.; Qu, K.; Liu, Y.; Ma, X.; Chen, N.; Zhang, J.; Huang, B.; Lei, C. Assessing genomic diversity and selective pressures in Bashan cattle by whole-genome sequencing data. Anim Biotechnol. 2021, 11, 1–12. [Google Scholar] [CrossRef]
- Pollott, G.E.; Piercy, R.J.; Massey, C.; Salavati, M.; Cheng, Z.; Wathes, D.C. Locating a novel autosomal recessive genetic variant in the cattle glucokinase gene using only WGS data from three cases and six carriers. Front Genet. 2022, 13, 755693. [Google Scholar] [CrossRef]
- Gershoni, M.; Shirak, A.; Raz, R.; Seroussi, E. Comparing BeadChip and WGS Genotyping: Non-Technical Failed Calling Is Attributable to Additional Variation within the Probe Target Sequence. Genes 2022, 13, 485. [Google Scholar] [CrossRef]
- Mulim, H.A.; Brito, L.F.; Pinto, L.F.B.; Ferraz, J.B.S.; Grigoletto, L.; Silva, M.R.; Pedrosa, V.B. Characterization of runs of homozygosity, heterozygosity-enriched regions, and population structure in cattle populations selected for different breeding goals. BMC Genom.. 2022, 23, 209. [Google Scholar] [CrossRef] [PubMed]
- Meuwissen, T.; van den Berg, I.; Goddard, M. On the use of whole-genome sequence data for across-breed genomic prediction and fine-scale mapping of QTL. Genet. Sel. Evol. 2021, 53, 19. [Google Scholar] [CrossRef] [PubMed]
- Butty, A.M.; Chud, T.C.S.; Miglior, F.; Schenkel, F.S.; Kommadath, A.; Krivushin, K.; Grant, J.R.; Häfliger, I.M.; Drögemüller, C.; Cánovas, A.; et al. High confidence copy number variants identified in Holstein dairy cattle from whole genome sequence and genotype array data. Sci. Rep. 2020, 10, 8044. [Google Scholar] [CrossRef] [PubMed]
- Taylor, J.F.; Whitacre, L.K.; Hoff, J.L.; Tizioto, P.C.; Kim, J.; Decker, J.E.; Schnabel, R.D. Lessons for livestock genomics from genome and transcriptome sequencing in cattle and other mammals. Genet. Sel. Evol. 2016, 48, 59. [Google Scholar] [CrossRef]
- Stegemiller, M.R.; Redden, R.R.; Notter, D.R.; Taylor, T.; Taylor, J.B.; Cockett, N.E.; Heaton, M.P.; Kalbfleisch, T.S.; Murdoch, B.M. Using whole genome sequence to compare variant callers and breed differences of US sheep. Front. Genet. 2023, 13, 1060882. [Google Scholar] [CrossRef]
- Hirter, N.; Letko, A.; Häfliger, I.M.; Becker, D.; Greber, D.; Drögemüller, C. A genome-wide significant association on chromosome 15 for congenital entropion in Swiss White Alpine sheep. Anim. Genet. 2020, 51, 278–283. [Google Scholar] [CrossRef]
- Saleh, A.A.; Xue, L.; Zhao, Y. Screening Indels from the whole genome to identify the candidates and their association with economic traits in several goat breeds. Funct. Integr. Genom. 2023, 23, 58. [Google Scholar] [CrossRef]
- Signer-Hasler, H.; Henkel, J.; Bangerter, E.; Bulut, Z.; VarGoats Consortium; Drögemüller, C.; Leeb, T.; Flury, C. Runs of homozygosity in Swiss goats reveal genetic changes associated with domestication and modern selection. Genet. Sel. Evol. 2022, 54, 6. [Google Scholar] [CrossRef] [PubMed]
- Mullis, K.B. Target amplification for DNA analysis by the polymerase chain reaction. Ann. Biol. Clin. 1990, 48, 579–582. [Google Scholar]
- Zhu, H.; Zhang, H.; Xu, Y.; Laššáková, S.; Korabečná, M.; Neužil, P. PCR past, present and future. Biotechniques 2020, 69, 317–325. [Google Scholar] [CrossRef]
- Ennis, S.; Gallagher, T.F.A. PCR-based sex-determination assay in cattle based on the bovine amelogenin locus. Anim. Genet. 1994, 25, 425–427. [Google Scholar] [CrossRef] [PubMed]
- McNiel, E.A.; Madrill, N.J.; Treeful, A.E.; Buoen, L.C.; Weber, A.F. Comparison of cytogenetics and polymerase chain reaction based detection of the amelogenin gene polymorphism for the diagnosis of freemartinism in cattle. J. Vet. Diagn. Investig. 2006, 18, 469–472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, W.; Rawlings, N.; Zhao, J.; Wang, H. Amplification and application of the HMG box of bovine SRY gene for sex determination. Anim. Reprod. Sci. 2007, 100, 186–191. [Google Scholar] [CrossRef]
- Chandler, J.E.; Taylor, T.M.; Canal, A.L.; Cooper, R.K.; Moser, E.B.; McCormick, M.E.; Willard, S.T.; Rycroft, H.E.; Gilbert, G.R. Calving sex ratio as related to the predicted Y-chromosome-bearing spermatozoa ratio in bull ejaculates. Theriogenology 2007, 67, 563–571. [Google Scholar] [CrossRef]
- Ron, M.; Porat, B.; Band, M.R.; Weller, J.I. Chimaerism detection in bovine twins, triplets and quadruplets using sex chromosome-linked markers. Anim. Genet. 2011, 42, 208–211. [Google Scholar] [CrossRef]
- Szczerbal, I.; Kociucka, B.; Nowacka-Woszuk, J.; Lach, Z.; Jaskowski, J.M.; Switonski, M. A high incidence of leukocyte chimerism (60,XX/60,XY) in single born heifers culled due to underdevelopment of internal reproductive tracts. Czech. J. Anim. Sci. 2014, 59, 445–449. [Google Scholar] [CrossRef] [Green Version]
- Bresciani, C.; Parma, P.; De Lorenzi, L.; Di Ianni, F.; Bertocchi, M.; Bertani, V.; Cantoni, A.M.; Parmigiani, E. A clinical case of an SRY-positive intersex/hermaphrodite holstein cattle. Sex Dev. 2015, 9, 229–238. [Google Scholar] [CrossRef]
- De Lorenzi, L.; Arrighi, S.; Rossi, E.; Grignani, P.; Previderè, C.; Bonacina, S.; Cremonesi, F.; Parma, P. XY (SRY-positive) ovarian disorder of sex development in cattle. Sex Dev. 2018, 12, 196–203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiu, Q.; Shao, T.; He, Y.; Muhammad, A.U.; Cao, B.; Su, H. Applying real-time quantitative PCR to diagnosis of freemartin in Holstein cattle by quantifying SRY gene: A comparison experiment. PeerJ 2018, 6, e4616. [Google Scholar] [CrossRef]
- Szczerbal, I.; Nowacka-Woszuk, J.; Albarella, S.; Switonski, M. Technical note: Droplet digital PCR as a new molecular method for a simple and reliable diagnosis of freemartinism in cattle. J. Dairy. Sci. 2019, 102, 10100–10104. [Google Scholar] [CrossRef]
- Cray, N.; Wagner, M.; Hauer, J.; Roti Roti, E. Technical note: Droplet digital PCR precisely and accurately quantifies sex skew in bovine semen. J. Dairy Sci. 2020, 103, 6698–6705. [Google Scholar] [CrossRef]
- Uzar, T.; Szczerbal, I.; Serwanska-Leja, K.; Nowacka-Woszuk, J.; Gogulski, M.; Bugaj, S.; Switonski, M.; Komosa, M. Congenital malformations in a Holstein-Fresian calf with a unique mosaic karyotype: A Case Report. Animals 2020, 10, 1615. [Google Scholar] [CrossRef]
- Szczerbal, I.; Komosa, M.; Nowacka-Woszuk, J.; Uzar, T.; Houszka, M.; Semrau, J.; Musial, M.; Barczykowski, M.; Lukomska, A.; Switonski, M. A disorder of sex development in a Holstein-Friesian heifer with a rare Mosaicism (60,XX/90,XXY): A genetic, anatomical, and histological study. Animals 2021, 11, 285. [Google Scholar] [CrossRef] [PubMed]
- Szczerbal, I.; Nowacka-Woszuk, J.; Stachowiak, M.; Lukomska, A.; Konieczny, K.; Tarnogrodzka, N.; Wozniak, J.; Switonski, M. XX/XY chimerism in internal genitalia of a virilized heifer. Animals 2022, 12, 2932. [Google Scholar] [CrossRef] [PubMed]
- Lansdorp, P. Telomere Length Regulation. Front. Oncol. 2022, 12, 943622. [Google Scholar] [CrossRef]
- Iannuzzi, A.; Albarella, S.; Parma, P.; Galdiero, G.; D’Anza, E.; Pistucci, R.; Peretti, V.; Ciotola, F. Characterization of telomere length in Agerolese cattle breed, correlating blood and milk samples. Anim. Genet. 2022, 53, 676–679. [Google Scholar] [CrossRef] [PubMed]
- Kordinas, V.; Ioannidis, A.; Chatzipanagiotou, S. The telomere/telomerase system in chronic inflammatory diseases. Cause or effect? Genes 2016, 7, 60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bateson, M. Cumulative stress in research animals: Telomere attrition as a biomarker in a welfare context? Bioessays 2016, 38, 201–212. [Google Scholar] [CrossRef] [Green Version]
- Ilska-Warner, J.J.; Psifidi, A.; Seeker, L.A.; Wilbourn, R.V.; Underwood, S.L.; Fairlie, J.; Whitelaw, B.; Nussey, D.H.; Coffey, M.P.; Banos, G. The Genetic Architecture of Bovine Telomere Length in Early Life and Association With Animal Fitness. Front. Genet. 2019, 10, 1048. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tilesi, F.; Domenico, E.G.D.; Pariset, L.; Bosco, L.; Willems, D.; Valentini, A.; Ascenzioni, F. Telomere length diversity in cattle breeds. Diversity 2010, 2, 1118–1129. [Google Scholar] [CrossRef] [Green Version]
- Lai, T.P.; Wright, W.E.; Shay, J.W. Comparison of telomere length measurement methods. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2018, 373, 20160451. [Google Scholar] [CrossRef] [Green Version]
- Ribas-Maynou, J.; Llavanera, M.; Mateo-Otero, Y.; Ruiz, N.; Muiño, R.; Bonet, S.; Yeste, M. Telomere length in bovine sperm is related to the production of reactive oxygen species, but not to reproductive performance. Theriogenology 2022, 189, 290–300. [Google Scholar] [CrossRef]
- Iannuzzi, A.; Della Valle, G.; Russo, M.; Longobardi, V.; Albero, G.; De Canditiis, C.; Kosior, M.A.; Pistucci, R.; Gasparrini, B. Evaluation of bovine sperm telomere length and association with semen quality. Theriogenology 2020, 158, 227–232. [Google Scholar] [CrossRef] [PubMed]
- Cawthon, R.M. Telomere length measurement by a novel monochrome multiplex quantitative PCR method. Nucleic Acids Res. 2009, 37, e21. [Google Scholar] [CrossRef] [Green Version]
- Bustin, S.A.; Benes, V.; Garson, J.A.; Hellemans, J.; Huggett, J.; Kubista, M.; Mueller, R.; Nolan, T.; Pfaffl, M.W.; Shipley, G.L.; et al. The MIQE guidelines: Minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 2009, 55, 611–622. [Google Scholar] [CrossRef] [Green Version]
- Lindrose, A.R.; McLester-Davis, L.W.Y.; Tristano, R.I.; Kataria, L.; Gadalla, S.M.; Eisenberg, D.T.A.; Verhulst, S.; Drury, S. Method comparison studies of telomere length measurement using qPCR approaches: A critical appraisal of the literature. PLoS ONE 2021, 16, e0245582. [Google Scholar] [CrossRef] [PubMed]
- Seeker, L.A.; Holland, R.; Underwood, S.; Fairlie, J.; Psifidi, A.; Ilska, J.J.; Bagnall, A.; Whitelaw, B.; Coffey, M.; Banos, G.; et al. Method specific calibration corrects for DNA extraction method effects on relative telomere length measurements by quantitative PCR. PLoS ONE 2016, 11, e0164046. [Google Scholar] [CrossRef] [Green Version]
- Tolios, A.; Teupser, D.; Holdt, L.M. Preanalytical Conditions and DNA Isolation Methods Affect Telomere Length Quantification in Whole Blood. PLoS ONE 2015, 10, e0143889. [Google Scholar] [CrossRef]
- Macville, M.; Veldman, T.; Padilla-Nash, H.; Wangsa, D.; O’Brien, P.; Schröck, E.; Ried, T. Spectral karyotyping, a 24-colour FISH technique for the identification of chromosomal rearrangements. Histochem. Cell Biol. 1997, 108, 299–305. [Google Scholar] [CrossRef] [PubMed]
- Rhoads, A.; Au, K.F. PacBio Sequencing and Its Applications. Genom. Prot. Bioinf. 2015, 13, 278–289. [Google Scholar] [CrossRef] [Green Version]
- Branton, D.; Deamer, D.W.; Marziali, A.; Bayley, H.; Benner, S.A.; Butler, T.; Di Ventra, M.; Garaj, S.; Hibbs, A.; Huang, X.; et al. The potential and challenges of nanopore sequencing. Nat. Biotechnol. 2008, 26, 1146–1153. [Google Scholar] [CrossRef] [PubMed]
Species | Chromosome Abnormality | Techniques Used | Main Results | References |
---|---|---|---|---|
Cattle | t(X-BTA23) in two normal cows | QBH, FISH | Better position of MHC-locus | [22] |
Minute fragment | Bovine SAT-DNA | Visualization of fragment | [23] | |
rob(4;10) | Bovine bivariate flow painting probes on R-banded karyotype | Discovery of a new rob | [24] | |
iso(Yp) | GTG, FISH with repeat sequences | Visualization of iso(Yp) | [25] | |
Trisomy 20 | QBH, FISH | Malformed calf with cranial defects | [26] | |
rob(2;28) | Q-, R-banding, telomeric probe | Monocentric translocation | [27] | |
rob(1;29), rob(6;8), rob(26;29) | GBG, RBG, CBA, FISH, HAS painting probe | correct identification of two of the three robs earlier published | [28] | |
Mixoploidy | Dual-color FISH with BTA6/BTA7 painting probes | 72% of IVP blastocysts were mixoploid, versus 25% in vivo | [29] | |
Mixoploidy/polyploidy | Dual-color FISH with BTA6 and 7 painting probes on in vitro embryo cells | Numerical chromosome aberrations were detected as early as day 2 post insemination (pi) | [30] | |
rcp(1;5)(q21;qter)(q11;q33) | CBA, GBG, RBG, FISH with HSA3 and HSA12 painting probes | Bull and dam carriers, the latter with poor fertility | [31] | |
invY(Yq11-q12.2) | CBG, RBA, FISH | 12 young males of which one (carrier) had female traits | [32] | |
Trisomy 28 | CBG, RBA, FISH | New chrom. identification of a previous studied case of abnormal calf | [33] | |
t(Xp+;23q-) | FISH with painting probe, SCA | Oligospermic bull | [34] | |
rcp(Y;9)(q12.3:q21.1). | CBA, RBG, FISH | Azoospermic bull | [35] | |
Polyploidy | Painting probe BTA6 and BTA7 by microdissection on in vitro embryos | Polyploidy was significantly higher in trophectoderm (TE) cells than in embryonic disc (ED) cells | [36] | |
rob(1;29) | FISH with SAT-I, III, IV | Different pattern of satellite DNA families in several chromosomes, model of rob(1; 29) origin | [37] | |
Mosaicism 2 n = 60/2 n = 60 t (2q−;5p+) | FISH with painting probes BTA2 and BTA5 | Translocation mosaicism in a bull | [38] | |
XXY-Trisomy | X-Y painting probes | Testicular hypoplasia | [39] | |
fragm/hypoploidy/hypoploidy-mixoploidy; hyperploidy/hyperploidy-mixoploidy | Karyotyping, FISH with X-Y painting probes in nuclear transfer embryos | Anomalies occurred in NT embryos varied according to the donor cell culture and paralleled the frequency of anomalies in donor cells | [40] | |
rob(1;29) | CBG, GTG, FISH with a rob(1;29) painting probe | Presence of rob(1;29) in Gaur (Bos gaurus) | [41] | |
rob(1;29) | CBA, RBA, FISH | Origin of rob(1;29) by complex chromosome rearrangements | [42] | |
rob(1;29) | Sperm-FISH | Low percentage of abnormal sperm in two carriers | [43] | |
rcp(9;11)(q27;q11) | RBG and FISH | De novo origin of the rcp | [44] | |
Mosaicism XX/XY cells | FISH with a male-specific BC1.2 DNA sequence in interphase cell nuclei | Diagnosis of freemartin | [45] | |
rcp(11;21)(q28-q12) | CBA, RBA, Ag-NORs, FISH | Normal bull but with absence of libido; reduced fertility (very low presence of spermatozoa in germinal elements) | [46] | |
rob(1;29) | microdissection, DOP-PCR, cloning and sequencing, sperm-FISH | Detection of sperm-carrying rob(1;29) | [47] | |
rcp(2;4)(q45;q34) | G-banding, SCA, and chromosome painting | Detection of a new rcp in bull | [48] | |
Aneuploidy | Dual-color FISH with Xcen/Y painting probes in sperm | Study the aneuploidy in different breeds | [49] | |
rcp(4;7) | RBG, FISH (painting probe), aCGH | Normal male and no genomic loss in the rcp | [50] | |
Aneuploidy | Dual-color FISH with Xcen and BTA5 painting probes | Study of aneuploidy in oocytes of two breeds | [51] | |
Aneuploidy | FISH with BTAX, BTAY, and BTA6 painting probes on sperm of several young bulls | Aneuploidy frequencies in young fertile bull spermatozoa were relatively low | [52] | |
rcp(Y;21)(p11;q11) | G-banding, FISH | Normal young bull but lower testosterone level at 12 months | [53] | |
rcp(11;25)(q11, q14∼21) | CBA, RBA, FISH, NOR | der11 with two C-bands for a break at the centromere of BTA25; cow with reduced fertility | [54] | |
Aberrant oocytes | Dual-color FISH of X-cent/BTA5 painting probes | Similar rate of aneuploidy in different cattle breeds | [55] | |
rob(1;29) | FISH, aCGH | New results of the origin of this rob by transposition, inversion; no gene-coding regions were disrupted during the rearrangements | [56] | |
Xp-del (inactive X) | CBA, RBA, FISH | del found in both dam and calf (normal cow) | [57] | |
X-Y aneuploidy | Dual-color FISH with Xcen-BTAY painting probes | Testing X-Y ratio and aneuploidy | [58] | |
Aneuploidy | Dual-color FISH with Xcen and five autosome painting probes | Similar rates of chromosomal aberrant secondary oocytes in two indigenous cattle breeds | [59] | |
Mixoploidy | FISH with BTAX and BTA6 painting probes | First zygotic cleavage (FZC) is a marker of embryo quality by demonstrating a significantly lower incidence of aberrations in early embryos | [60] | |
Aneuploidy/polyploidy | CA, SCE, MN, MI, FISH | Effect of the tebuconazole-based fungicide: monosomies and trisomies on BTA5 and 7 | [61] | |
rcp(5;6)(q13;q34) | RBG, FISH, aCGH | Normal young bull with balanced rcp | [62] | |
rcp(13;26)(q24;q11) | CBG, GTG, painting probes BTA13 and 26, telomeric probe | De novo rcp in both dam and calf | [63] | |
der(11)t(11;25)(q11;q14–21) | CBA, RBA, FISH | Abnormal female calf | [64] | |
Chromosome damages | SCE, MN, FISH with BTA1, 5, 7 painting probes | No significant chromosome fragility with use of thiacloprid | [65] | |
Abnormal BTA17 in a young bull | CBA, R-banding, FISH, PNA-telomeric probe, aCGH, SNP array | Centromere repositioning | [66] | |
X-monosomy | Karyotyping, FISH, SNP genotype data | Sterile for abnormal internal sex adducts | [67] | |
rob(3;16) | Sperm-FISH | Low rate of unbalanced gametes produced by adjacent segregation (5.87%) and interchromosomal effect (ICE) on BTA17 and BTA20 | [68] | |
Trisomy 20 | Q-banding, FISH | Malformed fetus, cranial defects | [69] | |
Trisomy 29 | FISH/genomic analysis | Malformed female calf showing dwarfism with severe facial anomalies | [70] | |
rob(1;29); rcp(12;23) | FISH, use of BAC clones mapping prox- and dist- regions of all cattle autosomes and X | Identification of chromosome abnormalities in all autosomes and BTAX | [71] | |
tan(18;27) | CBA, RBA, FISH | Male calf with congenital hypospadias and a ventricular septal defect | [72] | |
River buffalo | X-monosomy | CBA, RBA, FISH | Normal body conformation and external genitalia, ovaries not detectable, sterile | [73] |
rob(1p;23) | CBA, RBA, Ag-NORS, FISH | Complex chromosome abnormality with fission on BBU1 and centric fusion of BBU1p with BBU23 in both dam and female calf; reduced fertility in the dam | [74] | |
rob(1p;18) | CBA, RBA, FISH | Famous bull eliminated from reproduction for the presence of the same chrom. abnormality in part of progeny | [75] | |
Chromosome abnormalities | Zoo-FISH | Sequential approach with 13 chromosome river buffalo painting probes to detect river buffalo chromosome abnormalities | [76] | |
rob(1p;18) | Sperm-FISH in motile and total fraction sperm | Limited effects on the aneuploidy in gametes on the motile fraction sperm | [77] | |
River/Swamp buffalo | Aneuploidy | M-FISH | Study of aneuploidy in river and swamp buffalo oocytes | [78] |
Sheep | Chromosome abnormality | Production of all sheep chromosome painting probes from cell sorter technique | Easy identification of chromosome abnormalities | [79] |
rob(8;11) | G-bands, painting probes 8 and 11, SAT-I and SAT-II | SAT-I proximal on both arms with SAT-II covering the centromere | [80] | |
Diploid-polyploid mosaicism | Zoo-FISH with bovine painting probes X/Y and 1;29 on nuclei of in vivo and in vitro embryos | In vitro embryos showed significant higher number of abnormal embryos than in vivo ones | [81] | |
del(10q22) | Use of ovine BAC clone in addition to genetic analyses | Micro-chromosomal deletion responsible for EDNRB gene lack | [82] | |
rcp(4q;12q)(q13;q25) | CBA, RBA, FISH with both specific markers and PNA-telomeric probe | Characterization of a new rcp in a young sheep | [83] | |
rcp(18;23)(q14;q26). | CBA, RBA, FISH with bovine painting probe | Reduced fertility | [84] | |
Chromosome abnormalities in bovids | Partial river buffalo chromosome painting probes from microdissection | Detection of chromosome abnormalities in bovids | [85] |
Gene/Genes/Marker | Species | Reference |
---|---|---|
Lysozyme gene cluster | BBU | [110] |
Uridine monophosphate synthase | BTA | [111] |
Uridine monophosphate synthase | BBU | [112] |
BTA1 to 7 | BTA | [113] |
Microsatellites | BTA | [114] |
Microsatellites | BTA | [115] |
Beta-defensin genes | BTA; OAR | [116] |
Alpha-S2 casein | BTA; BBU | [117] |
Fas/APO-1 | BTA | [118] |
Interferon gamma | OAR | [119] |
Interleukin-2 receptor gamma | BTA | [120] |
Beta-lactoglobulin pseudogene | BTA, OAR, CHI | [121] |
Bone morphogenetic protein 1 | BTA | [122] |
TSPY | BTA, OAR, CHI | [123] |
VIL | OAR, CHI, BBU | [124] |
Type I markers | BTA | [125] |
Prion protein gene | BTA, OAR, CHI, BBU | [126] |
IL2RA, VIM, THBD, PLC-II, CSNK2A1, TOP1 | BTA | [127] |
NF1, CRYB1, CHRNB1, TP53, P4HB, GH1 | OAR, BBU | [128] |
PAX8 | BTA, OAR, CHI | [129] |
Type I markers | BTA | [97] |
PREF1 | BTA | [130] |
PRKCI | BTA | [131] |
MHC | BTA | [132] |
Type I markers | OAR, CHI | [100] |
CACNA2D1 | BTA | [133] |
SLC26a2 | BTA | [134] |
SMN | BTA, OAR, CHI, BBU | [135] |
Type I markers | BBU | [109] |
Type I and II markers | OAR | [136] |
PRPH | BTA | [137] |
CYP11b/CYHR1 | BTA | [138] |
SRY, ANT3, CSF2RA | BTA | [139] |
Autosomal loci (11) | BTA, OAR, CHI, BBU | [140] |
Autosomal loci (88) | OAR | [141] |
Autosomal loci (68) | BBU | [142] |
BMPR1B, BMP15, GDF9 | BTA, OAR, CHI, BBU | [143] |
Author/s | Results |
---|---|
[107] | Mapping omega and trophoblast interferon genes in cattle and river buffalo |
[162] | Mapping of lactoperoxidase, retinoblastoma, and alpha-lactalbumin genes in cattle, sheep, and goats |
[108] | Mapping omega and trophoblast interferon genes in sheep and goats |
[163] | Mapping LGB and IGHML in cattle, sheep, and goats |
[164] | Mapping CASAS2 gene to the cattle, sheep, and goat chromosome 4 |
[165] | Mapping MHC-complex in cattle and river buffalo |
[166] | Mapping inhibin-alpha (INHA) to OAR2 and BTA2 |
[167] | Mapping inhibin subunit beta b to OAR2 and BTA2 |
[121] | Mapping beta-lactoglobulin pseudogene in sheep, goats, and cattle |
[168] | Mapping ZNF164, ZNF146, GGTA1, SOX2, PRLR, and EEF2 in bovids |
[117] | Mapping of the alpha-S2 casein gene on river buffalo and cattle |
[116] | Mapping of beta-defensin genes to river buffalo and sheep chromosomes suggest a chromosome discrepancy in cattle standard karyotypes |
[169] | Mapping STAT5A gene maps to BTA19, CHI19, and ORA11 |
[170] | Mapping in Y chromosomes of cattle and zebu by microdissected painting probes |
[124] | Mapping of villin (VIL) gene in river buffalo, sheep, and goats |
[126] | Mapping prion protein gene (PRNP) on cattle, river buffalo, sheep, and goats |
[171] | Mapping BCAT2 gene to cattle, sheep, and goats |
[172] | Comparative mapping in X chromosomes of bovids |
[173] | Comparative mapping between BTA-X and CHI-X |
[174] | Survey of chromosome rearrangements between ruminants and humans |
[175] | Comparative mapping between cattle and pig chromosomes using pig painting probes |
[176] | Extensive conservation of human chromosome regions in euchromatic regions of river buffalo chromosomes |
[128] | Mapping of six expressed gene loci (NF1, CRYB1, CHRNB1, TP53, P4HB, and GH1) to river buffalo and sheep chromosomes |
[177] | Comparison of human and sheep chromosomes using human chromosome painting probes |
[178] | Mapping four HSA2 type I loci in river buffalo chromosomes 2q and 12 |
[179] | Mapping BCAT1 in cattle, sheep, and goats |
[180] | Comparative mapping in bovid X chromosomes reveals homologies and divergences between the subfamilies Bovinae and Caprinae |
[181] | Mapping 16 type I loci in river buffalo and sheep |
[182] | Mapping 13 type I loci from HSA4q, HSA6p, HSA7q, and HSA12q on in river buffalo |
[183] | Mapping forty autosomal type I loci in river buffalo and sheep chromosomes and assignment from sixteen human chromosomes |
[184] | Mapping eight genes from HSA11 to bovine chromosomes 15 and 29 |
[98] | International chromosome nomenclature in domestic bovids based on Q-, G-, and R-banding and FISH with 31 specific Texas marker chromosomes |
[185] | Mapping 28 loci in river buffalo and sheep chromosomes |
[186] | Sheep/human comparative map in a chromosome region involved in scrapie incubation time shows multiple breakpoints between human chromosomes 14 and 15 and sheep chromosomes 7 and 18 |
[135] | Physical map of the survival of motor neuron gene (SMN) in domestic bovids |
[100] | Assignment of the 31 type I Texas bovine markers in sheep and goat chromosomes by comparative FISH mapping and R-banding |
[187] | Mapping 195 genes in cattle and updated comparative map with humans, mice, rats, and pigs |
[188] | Mapping of F9, HPRT, and XIST in BTAX and HSAX clarifies breakpoints between the two species |
[189] | 15 gene loci were mapped in the telomeric region of BTA18q and HSA19q |
[190] | Comparative G- and Q-banding of saola and cattle chromosomes as well as FISH mapping of 32 type I Texas markers |
[191] | Mapping of fragile histidine triad (FHIT) gene in bovids |
[192] | Chromosome evolution and improved cytogenetic maps of the Y chromosome in cattle, zebu, river buffalo, sheep, and goats |
[193] | Physical map of mucin 1, transmembrane (MUC1) among cattle, river buffalo, sheep, and goat chromosomes and comparison with HSA1 |
[194] | Mapping of LEP and SLC26A2 in bovidae chrom. 4 (BTA4/OAR4/CHI4) and HSA7 |
[140] | Mapping 11 genes to BTA2, BBU2q, OAR2q, and CHI2, and comparison with HSA2q |
[195] | Mapping among humans, cattle, and mice suggests a role for repeat sequences in mammalian genome evolution |
[196] | Mapping sheep and goat BAC clones identifies the transcriptional orientation of T cell receptor gamma genes on chromosome 4 in bovids |
[197] | Mapping of twelve loci in river buffalo and sheep chromosomes: comparison with HSA8p and HSA4q |
[198] | Mapping 25 new loci in BTA27 and comparison with both human and mouse chromosomes |
[141] | An advanced sheep cytogenetic map and assignment of 88 new autosomal loci |
[199] | Cross-species FISH with cattle whole-chromosome paints and satellite DNA I probes was used to identify the chromosomes involved in the translocations of some tribe Bovinae species |
[142] | Extended river buffalo cytogenetic map, assignment of 68 autosomal loci and comparison with human chromosomes |
[200] | FISH with 28S and telomeric probes in 17 bovid species. NORs are an important and frequently overlooked source of additional phylogenetic information within the Bovidae |
[201] | Mapping DMRT1 genes to BTA8 and HSA9 |
[202] | Comparative DM domain genes between cattle and pigs |
[203] | Assignments of new loci to BBU7 and OAR6 and comparison with HSA4 |
[204] | Mapping 22 ovine BAC clones in sheep, cattle, and human X chromosome |
[205] | Mapping and genomic annotation of bovine oncosuppressor gene in domestic bovids |
[206] | Cytogenetic map in sheep as anchor of genomic maps also using different genomic resources from other species |
[207] | Molecular cytogenetics in goats and comparative mapping with human maps |
[208] | Mapping of 6 loci containing genes involved in the dioxin metabolism of domestic bovids |
[209] | Extended cytogenetic maps of sheep chromosome 1 and their cattle and river buffalo homologues: comparison with the OAR1 RH-map and HSA2, 3, 21, and 1q |
[210] | Mapping between BTA5 and some Antilopinae species using Sat-I and SAT-II sequence and BTA-painting probes |
[211] | Comparison of centromeric repeats between cattle and other Bovidae species |
[212] | Advanced comparative map in X chromosome of Bovidae |
[143] | Physical map of BMPR1B, BMP15, and GDF9 fecundity genes on cattle, river buffalo, sheep, and goat chromosomes |
[152] | Physical mapping of 20 unmapped fragments in Btau 4.0 Genome Assembly in cattle, sheep, and river buffalo |
[213] | Physical map of LCA5L gene in cattle, sheep, and goats |
[214] | New cryptic difference between cattle and goat karyotypes |
[215] | Small evolutionary rearrangement between BTA21 and homologous OAR18 |
[216] | Assignment of 23 endogenous retrovirus to both sheep and homologous chromosomes regions of river buffalo |
Species | Author/s | Results |
---|---|---|
Cattle | [227] | Genomic organization of the bovine aromatase |
[228] | Molecular characterization of STAT5A- and STAT5B-encoding genes | |
[135] | Demonstration of survival of motor neuron gene (SMN) duplication in a calf affected by arthrogryposis | |
[229] | Demonstration of multiple TSPY copies on the Y chromosome | |
Sheep | [230] | DNA fiber barcodes indicated a chromosomal deletion |
Specie | Reference | Note |
---|---|---|
Cattle | [241] | 3 Holstein bulls |
Cattle | [242] | 90 animals: 11 Bos taurus breeds, 3 Bos indicus breeds, and 3 composite breeds for beef, dairy, or dual purpose |
Cattle | [243] | 20 animals: 14 Holsteins, 3 Simmental 2 Red Danish and 1 Hereford |
Cattle | [244] | 47 Holstein bulls |
Cattle | [245] | 24 animals from Chianese breeds |
Cattle | [246] | 3 Angus, 6 Brahman, and 1 composite animal |
Sheep | [247] | 36 animals |
Sheep | [248] | 12 animals |
Goat | [249] | 10 animals |
Specie 1 | Genome Assembly 2 | Origin | GDW 3 | UCSC 4 | ENS 5 |
---|---|---|---|---|---|
BTA | ARS-UCD1.3 | USDA ARS | yes | no | no |
ARS-UCD1.2 | USDA ARS | no | yes | no | |
Btau_5.0.1 | Cattle Gen. Seq. Int. Consortium | yes | no | no | |
Btau_4.6.1 | Cattle Gen. Seq. Int. Consortium | no | yes | no | |
Btau_4.0 | Cattle Gen. Seq. Int. Consortium | no | no | yes | |
UMD_3.1.1 | University of Maryland | yes | yes | no | |
UMD_3.1 | University of Maryland | no | no | yes | |
Baylor 4.0 | Baylor College of Medicine | no | yes | no | |
OAR | ARS-UI_Ramb_v2.0 | University of Idaho | yes | no | no |
Oar_rambouillet_v1.0 | Baylor College of Medicine | yes | no | yes | |
Oar_v4.0 | Int. Sheep Gen. Consortium | yes | yes | no | |
CAU_O.aries_1.0 | China Agricultural University | yes | no | no | |
CHI | ARS1.2 | USDA ARS | yes | no | no |
ARS1 | USDA ARS | no | no | yes | |
CHIR_1.0 | Int. Goat Gen. Consortium | yes | no | no | |
BBU | NDDB_SH_1 | Nat. Dairy Dev. Board, India | yes | no | no |
UOA_WB_1 | University of Adelaide | yes | no | no | |
BIN | Bos_indicus_1.0 | Genoa Biotecnologia SA | yes | no | no |
Species | Objective | Sample | PCR-Based Method | Reference |
---|---|---|---|---|
Cattle | Sex-determination | Embryos | PCR | [272] |
Cattle | Freemartinism diagnosis | Blood | PCR | [273] |
Cattle | Sex-determination | Embryos | PCR | [274] |
Cattle | Sex-determination | Spermatozoa | PCR | [275] |
Cattle | Chimerism diagnosis | Blood | qPCR | [276] |
Cattle | XX/XY chimerism diagnosis | Blood | PCR | [277] |
Cattle | SRY-positive hermaphrodite diagnosis | Blood | PCR | [278] |
Cattle | XY (SRY-positive) diagnosis | Blood | PCR | [279] |
Cattle | Freemartinism diagnosis | Blood | qPCR | [280] |
Cattle | Freemartinism diagnosis | Blood | dPCR | [281] |
Cattle | Sex-determination | Spermatozoa | dPCR | [282] |
Cattle | Mosaic karyotype (60,XX/60,XX,+mar) diagnosis | Skin tissue | PCR | [283] |
Cattle | Mosaicism (60,XX/90,XXY) diagnosis | Blood, skin, buccal epithelial cells, and hair follicles | dPCR | [284] |
Cattle | XX/XY chimerism diagnosis | Blood and hair follicles | dPCR | [285] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iannuzzi, A.; Iannuzzi, L.; Parma, P. Molecular Cytogenetics in Domestic Bovids: A Review. Animals 2023, 13, 944. https://doi.org/10.3390/ani13050944
Iannuzzi A, Iannuzzi L, Parma P. Molecular Cytogenetics in Domestic Bovids: A Review. Animals. 2023; 13(5):944. https://doi.org/10.3390/ani13050944
Chicago/Turabian StyleIannuzzi, Alessandra, Leopoldo Iannuzzi, and Pietro Parma. 2023. "Molecular Cytogenetics in Domestic Bovids: A Review" Animals 13, no. 5: 944. https://doi.org/10.3390/ani13050944
APA StyleIannuzzi, A., Iannuzzi, L., & Parma, P. (2023). Molecular Cytogenetics in Domestic Bovids: A Review. Animals, 13(5), 944. https://doi.org/10.3390/ani13050944