The Effect of Direct-Fed Lactobacillus Species on Milk Production and Methane Emissions of Dairy Cows
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Cows, Diets, and Management
2.2. Feed and Milk
2.3. Methane Emissions
2.4. Ruminal Fermentation
2.5. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hristov, A.N.; Oh, J.; Giallongo, F.; Frederick, T.W.; Harper, M.T.; Weeks, H.L.; Branco, A.F.; Moate, P.J.; Deighton, M.H.; Williams, S.R.O.; et al. An inhibitor persistently decreased enteric methane emission from dairy cows with no negative effect on milk production. Proc. Natl. Acad. Sci. USA 2015, 112, 10663–10668. [Google Scholar] [CrossRef] [PubMed]
- Jeyanathan, J.; Martin, C.; Morgavi, D.P. The use of direct-fed microbials for mitigation of ruminant methane emissions: A review. Animal 2014, 8, 250–261. [Google Scholar] [CrossRef] [PubMed]
- McAllister, T.A.; Beauchemin, K.A.; Alazzeh, A.Y.; Baah, J.; Teather, R.M.; Stanford, K. Review: The use of direct fed microbials to mitigate pathogens and enhance production in cattle. Can. J. Anim. Sci. 2011, 91, 193–211. [Google Scholar] [CrossRef]
- Smith, Z.K.; Karges, K.; Aguilar, A. Evaluation of an active live yeast (Levucell Saccharomyces cerevisiae, CNCM l-1077) on receiving and backgrounding period growth performance and efficiency of dietary net energy utilization in low health risk beef steers1. Transl. Anim. Sci. 2020, 4, txaa127. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, M.K.; Karim, S.A. Effect of individual and mixed live yeast culture feeding on growth performance, nutrient utilization and microbial crude protein synthesis in lambs. Anim. Feed Sci. Technol. 2010, 155, 163–171. [Google Scholar] [CrossRef]
- Ovinge, L.A.; Sarturi, J.O.; Galyean, M.L.; Ballou, M.A.; Trojan, S.J.; Campanili, P.R.B.; Alrumaih, A.A.; Pellarin, L.A. Effects of a live yeast in natural-program finishing feedlot diets on growth performance, digestibility, carcass characteristics, and feeding behavior. J. Anim. Sci. 2018, 96, 684–693. [Google Scholar] [CrossRef]
- Brashears, M.M.; Galyean, M.L.; Loneragan, G.H.; Mann, J.E.; Killinger-Mann, K. Prevalence of Escherichia coli O157:H7 and performance by beef feedlot cattle given Lactobacillus direct-fed microbials. J. Food Prot. 2003, 66, 748–754. [Google Scholar] [CrossRef]
- Xu, H.; Huang, W.; Hou, Q.; Kwok, L.-y.; Sun, Z.; Ma, H.; Zhao, F.; Lee, Y.-K.; Zhang, H. The effects of probiotics administration on the milk production, milk components and fecal bacteria microbiota of dairy cows. Sci. Bull. 2017, 62, 767–774. [Google Scholar] [CrossRef]
- de Ondarza, M.B.; Seymour, W.M. Case study: Effect of Propionibacteria Supplementation on Yield of Milk and Milk Components of Dairy Cows. Prof. Anim. Sci. 2008, 24, 254–259. [Google Scholar] [CrossRef]
- Weiss, W.P.; Wyatt, D.J.; McKelvey, T.R. Effect of feeding propionibacteria on milk production by early lactation dairy cows. J. Dairy Sci. 2008, 91, 646–652. [Google Scholar] [CrossRef]
- Van Soest, P.J. Nutritional Ecology of the Ruminant; Cornell University Press: Ithaca, NY, USA, 1982; p. 373. [Google Scholar]
- Nollet, L.; Mbanzamihigo, L.; Demeyer, D.; Verstraete, W. Effect of the addition of Peptostreptococcus productus ATCC 35244 on reductive acetogenesis in the ruminal ecosystem after inhibition of methanogenesis by cell-free supernatant of Lactobacillus plantarum 80. Anim. Feed Sci. Technol. 1998, 71, 49–66. [Google Scholar] [CrossRef]
- Chen, J.; Harstad, O.M.; McAllister, T.; Dörsch, P.; Holo, H. Propionic acid bacteria enhance ruminal feed degradation and reduce methane production in vitro. Acta Agric. Scand. Sect. A Anim. Sci. 2020, 69, 169–175. [Google Scholar] [CrossRef]
- Vyas, D.; McGeough, E.J.; Mohammed, R.; McGinn, S.M.; McAllister, T.A.; Beauchemin, K.A. Effects of Propionibacterium strains on ruminal fermentation, nutrient digestibility and methane emissions in beef cattle fed a corn grain finishing diet. Animal 2014, 8, 1807–1815. [Google Scholar] [CrossRef] [PubMed]
- Vyas, D.; McGeough, E.J.; McGinn, S.M.; McAllister, T.A.; Beauchemin, K.A. Effect of Propionibacterium spp. on ruminal fermentation, nutrient digestibility, and methane emissions in beef heifers fed a high-forage diet1. J. Anim. Sci. 2014, 92, 2192–2201. [Google Scholar] [CrossRef]
- Williams, S.R.O.; Hannah, M.C.; Jacobs, J.L.; Wales, W.J.; Moate, P.J. Volatile fatty acids in ruminal fluid can be used to predict methane yield of dairy cows. Animals 2019, 9, 1006. [Google Scholar] [CrossRef]
- Moate, P.J.; Pryce, J.E.; Marett, L.C.; Garner, J.B.; Deighton, M.H.; Ribaux, B.E.; Hannah, M.C.; Wales, W.J.; Williams, S.R.O. Measurement of Enteric Methane Emissions by the SF6 Technique Is Not Affected by Ambient Weather Conditions. Animals 2021, 11, 528. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of AOAC. International 17th Edition; The Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2000. [Google Scholar]
- Tyrrell, H.F.; Reid, J.T. Prediction of the Energy Value of Cow’s Milk. J. Dairy Sci. 1965, 48, 1215–1223. [Google Scholar] [CrossRef]
- Deighton, M.H.; Williams, S.R.O.; Hannah, M.C.; Eckard, R.J.; Boland, T.M.; Wales, W.J.; Moate, P.J. A modified sulphur hexafluoride tracer technique enables accurate determination of enteric methane emissions from ruminants. Anim. Feed Sci. Technol. 2014, 197, 47–63. [Google Scholar] [CrossRef]
- Williams, S.R.O.; Moate, P.J.; Hannah, M.C.; Ribaux, B.E.; Wales, W.J.; Eckard, R.J. Background matters with the SF6 tracer method for estimating enteric methane emissions from dairy cows: A critical review. Anim. Feed Sci. Technol. 2011, 170, 265–276. [Google Scholar] [CrossRef]
- Moate, P.J.; Williams, S.R.O.; Jacobs, J.L.; Hannah, M.C.; Beauchemin, K.A.; Eckard, R.J.; Wales, W.J. Wheat is more potent than corn or barley for dietary mitigation of enteric methane emissions from dairy cows. J. Dairy Sci. 2017, 100, 7139–7153. [Google Scholar] [CrossRef]
- Greenwood, J.S.; Auldist, M.J.; Marett, L.C.; Hannah, M.C.; Jacobs, J.L.; Wales, W.J. Ruminal pH and whole-tract digestibility in dairy cows consuming fresh cut herbage plus concentrates and conserved forage fed either separately or as a partial mixed ration. Anim. Prod. Sci. 2014, 54, 1056–1063. [Google Scholar] [CrossRef]
- Geishauser, T. An instrument for collection and transfer of ruminal fluid and for administration of water soluble drugs in adult cattle. Bov. Pract. 1993, 27, 38–42. [Google Scholar]
- Moate, P.J.; Williams, S.R.O.; Torok, V.; Hannah, M.C.; Ribaux, B.E.; Tavendale, M.; Eckard, R.J.; Jacobs, J.L.; Auldist, M.J.; Wales, W.J. Grape marc reduces methane emissions when fed to dairy cows. J. Dairy Sci. 2014, 97, 5073–5087. [Google Scholar] [CrossRef] [PubMed]
- Erwin, E.S.; Marco, G.J.; Emery, E.M. Volatile Fatty Acid Analyses of Blood and Rumen Fluid by Gas Chromatography. J. Dairy Sci. 1961, 44, 1768–1771. [Google Scholar] [CrossRef]
- Nelson, D.W. Determination of ammonium in KCl extracts of soils by the salicylate method. Commun. Soil Sci. Plant Anal. 1983, 14, 1051–1062. [Google Scholar] [CrossRef]
- Punia, B.S.; Leibholz, J.; Faichney, G.J. The role of rumen protozoa in the utilization of paspalum (Paspalum dilatatum) hay by cattle. Br. J. Nutr. 1987, 57, 395–406. [Google Scholar] [CrossRef]
- West, J.; Bernard, J.; Cross, G.; Trammell, D. Effect of live bacterial inoculants on performance of lactating dairy cows. J. Dairy Sci. 2005, 88, 59. [Google Scholar]
- Francisco, C.C.; Chamberlain, C.S.; Waldner, D.N.; Wettemann, R.P.; Spicer, L.J. Propionibacteria fed to dairy cows: Effects on energy balance, plasma metabolites and hormones, and reproduction. J. Dairy Sci. 2002, 85, 1738–1751. [Google Scholar] [CrossRef]
- Boyd, J.; West, J.W.; Bernard, J.K. Effects of the addition of direct-fed microbials and glycerol to the diet of lactating dairy cows on milk yield and apparent efficiency of yield. J. Dairy Sci. 2011, 94, 4616–4622. [Google Scholar] [CrossRef]
- Nocek, J.E.; Kautz, W.P. Direct-fed microbial supplementation on ruminal digestion, health, and performance of pre- and postpartum dairy cattle. J. Dairy Sci. 2006, 89, 260–266. [Google Scholar] [CrossRef]
- Raeth-Knight, M.L.; Linn, J.G.; Jung, H.G. Effect of Direct-Fed Microbials on Performance, Diet Digestibility, and Rumen Characteristics of Holstein Dairy Cows1. J. Dairy Sci. 2007, 90, 1802–1809. [Google Scholar] [CrossRef] [PubMed]
- Jeyanathan, J.; Martin, C.; Morgavi, D.P. Screening of bacterial direct-fed microbials for their antimethanogenic potential in vitro and assessment of their effect on ruminal fermentation and microbial profiles in sheep. J. Anim. Sci. 2016, 94, 739–750. [Google Scholar] [CrossRef] [PubMed]
- Astuti, W.D.; Wiryawan, K.G.; Wina, E.; Widyastuti, Y.; Suharti, S.; Ridwan, R. Effects of Selected Lactobacillus plantarum as Probiotic on In Vitro Ruminal Fermentation and Microbial Population. Pak. J. Nutr. 2018, 17, 131–139. [Google Scholar] [CrossRef]
- Philippeau, C.; Lettat, A.; Martin, C.; Silberberg, M.; Morgavi, D.P.; Ferlay, A.; Berger, C.; Nozière, P. Effects of bacterial direct-fed microbials on ruminal characteristics, methane emission, and milk fatty acid composition in cows fed high- or low-starch diets. J. Dairy Sci. 2017, 100, 2637–2650. [Google Scholar] [CrossRef] [PubMed]
- Ellis, J.L.; Hindrichsen, I.K.; Klop, G.; Kinley, R.D.; Milora, N.; Bannink, A.; Dijkstra, J. Effects of lactic acid bacteria silage inoculation on methane emission and productivity of Holstein Friesian dairy cattle. J. Dairy Sci. 2016, 99, 7159–7174. [Google Scholar] [CrossRef]
- Doyle, N.; Mbandlwa, P.; Kelly, W.J.; Attwood, G.; Li, Y.; Ross, R.P.; Stanton, C.; Leahy, S. Use of Lactic Acid Bacteria to Reduce Methane Production in Ruminants, a Critical Review. Front. Microbiol. 2019, 10, 2207. [Google Scholar] [CrossRef] [PubMed]
- Charmley, E.; Williams, S.R.O.; Moate, P.J.; Hegarty, R.S.; Herd, R.M.; Oddy, V.H.; Reyenga, P.; Staunton, K.M.; Anderson, A.; Hannah, M.C. A universal equation to predict methane production of forage-fed cattle in Australia. Anim. Prod. Sci. 2016, 56, 169–180. [Google Scholar] [CrossRef]
- Sauvant, D.; Giger-Reverdin, S.; Serment, A.; Broudiscou, L. Influences des régimes et de leur fermentation dans le rumen sur la production de méthane par les ruminants. INRA Prod. Animaux 2011, 24, 433–446. [Google Scholar] [CrossRef]
- Olijhoek, D.W.; Løvendahl, P.; Lassen, J.; Hellwing, A.L.F.; Höglund, J.K.; Weisbjerg, M.R.; Noel, S.J.; McLean, F.; Højberg, O.; Lund, P. Methane production, rumen fermentation, and diet digestibility of Holstein and Jersey dairy cows being divergent in residual feed intake and fed at 2 forage-to-concentrate ratios. J. Dairy Sci. 2018, 101, 9926–9940. [Google Scholar] [CrossRef]
- Ban, Y.; Guan, L.L. Implication and challenges of direct-fed microbial supplementation to improve ruminant production and health. J. Anim. Sci. Biotechnol. 2021, 12, 109. [Google Scholar] [CrossRef]
- Narvhus, J.A.; Axelsson, L. Lactic acid bacteria. In Encyclopedia of Food Sciences and Nutrition, 2nd ed.; Caballero, B., Ed.; Academic Press: Oxford, UK, 2003; pp. 3465–3472. [Google Scholar]
- Souza, V.L.; Lopes, N.M.; Zacaroni, O.F.; Silveira, V.A.; Pereira, R.A.N.; Freitas, J.A.; Almeida, R.; Salvati, G.G.S.; Pereira, M.N. Lactation performance and diet digestibility of dairy cows in response to the supplementation of Bacillus subtilis spores. Livest. Sci. 2017, 200, 35–39. [Google Scholar] [CrossRef]
- Elam, N.A. Effect of Live Cultures of Lactobacillus acidophilus (Strains NP45 and NP51) and Propionibacterium freudenreichii on Performance, Carcass and Intestinal Characteristics, and Escherichia coli O157:H7 Shedding of Finishing Beef Steers; Texas Tech University: Lubbock, TX, USA, 2003. [Google Scholar]
- Huck, G.L.; Kreikemeier, K.K.; Ducharme, G.A. Effects of Feeding Two Microbial Additives in Sequence on Growth Performance and Carcass Characteristics of Finishing Heifers. Kans. Agric. Exp. Stn. Res. Rep. 2000, 32–34. [Google Scholar] [CrossRef]
- NHMRC. Australian Code for the Care and Use of Animals for Scientific Purposes, 8th ed.; National Health and Medical Research Council: Canberra, Australia, 2013. [Google Scholar]
Item | Grain Mix | Vetch Hay |
---|---|---|
Crude protein | 131 | 190 |
Acid detergent fiber | 47.9 | 389 |
Neutral detergent fiber | 107 | 438 |
Lignin | 10.2 | 55.8 |
Non-fiber carbohydrates | 642 | 203 |
Starch | 511 | 15.2 |
Ash | 80.7 | 151 |
Crude fat | 38.6 | 17.2 |
Metabolizable energy (MJ/kg DM) | 13.4 | 8.82 |
Parameter | CON 1 | DFM | SED 2 | p Value |
---|---|---|---|---|
Feed intake (DMI, kg DM/d) | ||||
Forage | 18.4 | 17.8 | 0.58 | 0.303 |
Grain mix | 7.0 | 7.0 | 0.05 | 0.463 |
Total | 25.4 | 24.8 | 0.58 | 0.333 |
Crude protein | 4.47 | 4.54 | 0.118 | 0.582 |
aNDF | 8.94 | 9.08 | 0.271 | 0.602 |
Starch | 3.87 | 3.87 | 0.009 | 0.561 |
Fat | 0.59 | 0.60 | 0.011 | 0.515 |
Metabolizable energy (MJ/d) | 258 | 262 | 5.5 | 0.553 |
Milk yield (MY, kg/d) | 29.9 | 30.3 | 0.64 | 0.553 |
Energy-corrected milk (ECM) | 29.9 | 30.3 | 0.62 | 0.541 |
Fat | 1.2 | 1.3 | 0.03 | 0.715 |
Protein | 0.9 | 0.9 | 0.02 | 0.938 |
Lactose | 1.5 | 1.5 | 0.04 | 0.629 |
Milk composition (g/kg) | ||||
Fat | 41.9 | 41.4 | 0.73 | 0.511 |
Protein | 30.7 | 30.2 | 0.39 | 0.240 |
Lactose | 49.8 | 49.5 | 0.26 | 0.191 |
FCE (kg MY/kg DMI) | 1.16 | 1.18 | 0.031 | 0.567 |
FCE (kg ECM/kg DMI) | 1.15 | 1.18 | 0.033 | 0.295 |
Body weight gain (kg) | 25.8 | 31.2 | 3.84 | 0.164 |
Condition score change | +0.1 | +0.1 | 0.04 | 0.746 |
Parameter | CON 1 | DFM | SED 2 | p Value |
---|---|---|---|---|
Methane emission (g/d) | 799 | 765 | 30.8 | 0.270 |
Methane yield (g/kg of DMI) | 31.6 | 31.1 | 1.44 | 0.749 |
Methane intensity (g/kg of ECM) | 27.1 | 25.2 | 1.18 | 0.134 |
Parameter | CON 1 | DFM | SED 2 | p Value |
---|---|---|---|---|
pH | 6.6 | 6.6 | 0.06 | 0.972 |
NH3-N (mg/L) | 209 | 204 | 18.5 | 0.786 |
Total VFA (mg/L) | 6173 | 6154 | 452 | 0.966 |
Individual VFA (mol/100 mol) | ||||
Acetate | 60.7 | 61.2 | 0.32 | 0.136 |
Propionate | 16.7 | 16.4 | 0.30 | 0.424 |
n-Butyrate | 15.6 | 15.6 | 0.53 | 0.902 |
Iso-Butyrate | 1.38 | 1.30 | 0.036 | 0.035 |
n-Valerate | 3.10 | 3.13 | 0.169 | 0.876 |
Iso-Valerate | 1.87 | 1.75 | 0.077 | 0.141 |
Hexanoate | 0.62 | 0.60 | 0.024 | 0.341 |
Heptanoate | 0.07 | 0.07 | 0.006 | 0.558 |
A:P 3 | 3.65 | 3.73 | 0.067 | 0.228 |
(A + B)/P 4 | 4.68 | 4.77 | 0.111 | 0.437 |
Protozoa (cells/mL) | ||||
Entodinia | 153,326 | 138,505 | 23,559 | 0.535 |
Epidinia | 7974 | 6908 | 3509 | 0.764 |
Total | 155,275 | 157,888 | 25,546 | 0.919 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Williams, S.R.O.; Jacobs, J.L.; Chandra, S.; Soust, M.; Russo, V.M.; Douglas, M.L.; Hess, P.S.A. The Effect of Direct-Fed Lactobacillus Species on Milk Production and Methane Emissions of Dairy Cows. Animals 2023, 13, 1018. https://doi.org/10.3390/ani13061018
Williams SRO, Jacobs JL, Chandra S, Soust M, Russo VM, Douglas ML, Hess PSA. The Effect of Direct-Fed Lactobacillus Species on Milk Production and Methane Emissions of Dairy Cows. Animals. 2023; 13(6):1018. https://doi.org/10.3390/ani13061018
Chicago/Turabian StyleWilliams, S. Richard O., Joe L. Jacobs, Subhash Chandra, Martin Soust, Victoria M. Russo, Meaghan L. Douglas, and Pablo S. Alvarez Hess. 2023. "The Effect of Direct-Fed Lactobacillus Species on Milk Production and Methane Emissions of Dairy Cows" Animals 13, no. 6: 1018. https://doi.org/10.3390/ani13061018
APA StyleWilliams, S. R. O., Jacobs, J. L., Chandra, S., Soust, M., Russo, V. M., Douglas, M. L., & Hess, P. S. A. (2023). The Effect of Direct-Fed Lactobacillus Species on Milk Production and Methane Emissions of Dairy Cows. Animals, 13(6), 1018. https://doi.org/10.3390/ani13061018