Effects of Processing Methods and Inclusion Levels of Dried Garlic on In Vitro Fermentation and Methane Production in a Corn Silage-Based Substrate
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Considerations
2.2. Location and Animal Adaptation
2.3. Experimental Treatments
2.4. Rumen Fluid Collection and In Vitro Incubations
2.5. Laboratory Analysis
2.6. Statistical Analysis
3. Results
3.1. Initial Condition and Drying Method of Garlic on In Vitro Fermentation and Gas Production
3.2. Increasing Garlic Proportion on In Vitro Fermentation and Gas Production
4. Discussion
4.1. Initial Condition and Driying Method of Garlic on In Vitro Fermentation and Gas Production
4.2. Increasing Garlic Proportion on In Vitro Fermentation and Gas Production
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ramankutty, N.; Mehrabi, Z.; Waha, K.; Jarvis, L.; Kremen, C.; Herrero, M.; Rieseberg, L.H. Trends in global agricultural land use: Implications for environmental health and food security. Annu. Rev. Plant Biol. 2018, 69, 789–815. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gerber, P.J.; Steinfeld, H.; Henderson, B.; Mottet, A.; Opio, C.; Dijkman, J.; Falcucci, A.; Tempio, G. Tackling Climate Change Throuhj Livestock—A Global Assessment of Emissions and Mitigation Opportunities; Food and Agriculture Organization of the United Nations: Rome, Italy, 2013. [Google Scholar]
- Gerssen-Gondelach, S.J.; Lauwerijssen, R.B.G.; Havlík, P.; Herrero, M.; Valin, H.; Faaij, A.P.C.; Wicke, B. Intensification pathways for beef and dairy cattle production systems: Impacts on GHG emissions, land occupation and land use change. Agric Ecosyst. Environ. 2017, 240, 135–147. [Google Scholar] [CrossRef]
- Knapp, J.R.; Laur, G.L.; Vadas, P.A.; Weiss, W.P.; Tricarico, J.M. Invited review: Enteric methane in dairy cattle production: Quantifying the opportunities and impact of reducing emissions. J. Dairy Sci. 2014, 97, 3231–3261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mottet, A.; de Haan, C.; Falcucci, A.; Tempio, G.; Opio, C.; Gerber, P. Livestock: On our plates or eating at our table? A new analysis of the feed/food debate. Glob. Food Sec. 2017, 14, 1–8. [Google Scholar] [CrossRef]
- Kallel, F.; Chaabouni, S.E. Perspective of garlic processing wastes as low-cost substrates for production of high-added value products: A review. Environ. Prog. Sustain. Energy 2017, 36, 1765–1777. [Google Scholar] [CrossRef]
- Dou, Z.; Toth, J.D.; Westendorf, M.L. Food waste for livestock feeding: Feasibility, safety, and sustainability implications. Glob. Food Sec. 2018, 17, 154–161. [Google Scholar] [CrossRef]
- Busquet, M.; Calsamiglia, S.; Ferret, A.; Carro, M.D.; Kamel, C. Effect of garlic oil and four of its compounds on rumen microbial fermentation. J. Dairy. Sci. 2005, 88, 4393–4404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patra, A.K.; Saxena, J. A new perspective on the use of plant secondary metabolites to inhibit methanogenesis in the rumen. Phytochemistry 2010, 71, 1198–1222. [Google Scholar] [CrossRef] [PubMed]
- Benchaar, C.; Greathead, H. Essential oils and opportunities to mitigate enteric methane emissions from ruminants. Anim. Feed. Sci. Technol. 2011, 166–167, 338–355. [Google Scholar] [CrossRef]
- Cobellis, G.; Trabalza-Marinucci, M.; Yu, Z. Critical evaluation of essential oils as rumen modifiers in ruminant nutrition: A review. Sci. Total. Environ. 2016, 545–546, 556–568. [Google Scholar] [CrossRef]
- Ramos-Morales, E.; Martínez-Fernández, G.; Abecia, L.; Martin-García, A.I.; Molina-Alcaide, E.; Yáñez-Ruiz, D.R. Garlic derived compounds modify ruminal fatty acid biohydrogenation and induce shifts in the butyrivibrio community in continuous-culture fermenters. Anim. Feed. Sci. Technol. 2013, 184, 38–48. [Google Scholar] [CrossRef]
- Busquet, M.; Calsamiglia, S.; Ferret, A.; Cardozo, P.W.; Kamel, C. Effects of cinnamaldehyde and garlic oil on rumen microbial fermentation in a dual flow continuous culture. J. Dairy Sci. 2005, 88, 2508–2516. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.H.; Biswas, A.A.; Islam, M.; Lee, S.S. Effects of garlic powder allicin mixture on the in vitro and in vivo rumen fermentation of Hanwoo steers. J. Agric. Life Sci. 2020, 54, 55–61. [Google Scholar] [CrossRef]
- Nguyen, B.T.; Hong, H.T.; O’Hare, T.J.; Wehr, J.B.; Menzies, N.W.; Harper, S.M. A rapid and simplified methodology for the extraction and quantification of allicin in garlic. J. Food Compos. Anal. 2021, 104, 104114. [Google Scholar] [CrossRef]
- Panthee, A.; Matsuno, A.; Al-Mamun, M.; Sano, H. Effect of feeding garlic leaves on rumen fermentation, methane emission, plasma glucose kinetics, and nitrogen utilization in sheep. J. Anim. Sci. Technol. 2017, 59, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hernandez, A.; Kholif, A.E.; Lugo-Coyote, R.; Elghandour, M.M.Y.; Cipriano, M.; Rodriguez, G.B.; Odongo, N.E.; Salem, A.Z.M. Effect of garlic oil, xylanase enzyme and yeast on biomethane and carbon dioxide production from 60-d old Holstein dairy calves fed a high concentrate diet. J. Clean Prod. 2017, 142, 2384–2392. [Google Scholar] [CrossRef]
- Mateos, I.; Ranilla, M.J.; Tejido, M.L.; Saro, C.; Kamel, C.; Carro, M.D. The influence of diet type (dairy versus intensive fattening) on the effectiveness of garlic oil and cinnamaldehyde to manipulate in vitro ruminal fermentation and methane production. Anim. Prod. Sci. 2013, 53, 299–307. [Google Scholar] [CrossRef] [Green Version]
- Amaro, F.X.; Kim, D.; Agarussi, M.C.; Silva, V.P.; Fernandes, T.; Arriola, K.G.; Jiang, Y.; Cervantes, A.P.; Adesogan, A.T.; Ferraretto, L.F.; et al. Effects of exogenous α-amylases, glucoamylases, and proteases on ruminal in vitro dry matter and starch digestibility, gas production, and volatile fatty acids of mature dent corn grain. Transl. Anim. Sci. 2021, 5, txaa222. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Moreno, M.; Binversie, E.; Fessenden, S.W.; Stern, M.D. Mitigation of in vitro hydrogen sulfide production using bismuth subsalicylate with and without monensin in beef feedlot diets. J. Anim. Sci. 2015, 93, 5346–5354. [Google Scholar] [CrossRef]
- Broderick, G.A.; Kang, J.H. Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media. J. Dairy. Sci. 1980, 63, 64–75. [Google Scholar] [CrossRef] [PubMed]
- García-González, R.; López, S.; Fernández, M.; Bodas, R.; González, J.S. Screening the activity of plants and spices for decreasing ruminal methane production in vitro. Anim. Feed. Sci. Technol. 2008, 147, 36–52. [Google Scholar] [CrossRef]
- Staerfl, S.M.; Kreuzer, M.; Soliva, C.R. In vitro screening of unconventional feeds and various natural supplements for their ruminal methane mitigation potential when included in a maize-silage based diet. J. Anim. Feed. Sci. 2010, 19, 651–664. [Google Scholar] [CrossRef]
- Ferme, D.; Banjac, M.; Calsamiglia, S.; Busqut, M.; Kamel, C.; Avgustin, G. The effect of plant extracts on microbial community structure in a rumen-simulating continuos-culture system as revealed by molecular profiling. Folia. Microbiol. 2004, 49, 151–155. [Google Scholar] [CrossRef]
- Lovett, D.K.; Bortolozzo, A.; Conaghan, P.; O’Kiely, P.; O’Mara, F.P. In vitro total and methane gas production as influenced by rate of nitrogen application, season of harvest and perennial ryegrass cultivar. Grass Forage. Sci. 2004, 59, 227–232. [Google Scholar] [CrossRef]
- Anassori, E.; Dalir-Naghadeh, B.; Pirmohammadi, R.; Taghizadeh, A.; Asri-Rezaei, S.; Maham, M.; Farahmand-Azar, S.; Farhoomand, P. Garlic: A potential alternative for monensin as a rumen modifier. Livest. Sci. 2011, 142, 276–287. [Google Scholar] [CrossRef]
- Kongmun, P.; Wanapat, M.; Pakdee, P.; Navanukraw, C. Effect of coconut oil and garlic powder on in vitro fermentation using gas production technique. Livest. Sci. 2010, 127, 38–44. [Google Scholar] [CrossRef]
- NASEM. Nutrient Requirements of Beef Cattle; Academic Press: Washington, DC, USA, 2016. [Google Scholar] [CrossRef]
- Sniffen, C.J.; O’Connor, J.D.; van Soest, P.J.; Fox, D.G.; Russell, J.B. A net carbohydrate and protein system for evaluating cattle diets: II. Carbohydrate and protein availability. J. Anim. Sci. 1992, 70, 3562–3577. [Google Scholar] [CrossRef] [Green Version]
- Dey, A.; Paul, S.S.; Lailer, P.C.; Dahiya, S.S. Reducing enteric methane production from buffalo (Bubalus bubalis) by garlic oil supplementation in in vitro rumen fermentation system. SN Appl. Sci. 2021, 3, 187. [Google Scholar] [CrossRef]
- Soliva, C.R.; Amelchanka, S.L.; Duval, S.M.; Kreuzer, M. Ruminal methane inhibition potential of various pure compounds in comparison with garlic oil as determined with a rumen simulation technique (Rusitec). Br. J. Nutr. 2011, 106, 114–122. [Google Scholar] [CrossRef] [Green Version]
Item | Corn Silage | Cotton-Gin Trash | Raw Garlic |
---|---|---|---|
Organic matter b | 972 | 897 | 950 |
Neutral detergent fiber | 274 | 617 | 62 |
Acid detergent fiber | 166 | 588 | 49 |
Crude protein | 80 | 160 | 183 |
Ether extract | 34 | 32 | 49 |
Ash | 28 | 103 | 50 |
Variable | Control | Freeze-Dry | Oven-Dry | Autoclaved | SEM 1 | p-Value 2 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Intact | Smash | Intact | Smash | Intact | Smash | Dry | IC | Inc | |||||||||
2.5 | 5 | 2.5 | 5 | 2.5 | 5 | 2.5 | 5 | 2.5 | 5 | 2.5 | 5 | ||||||
pH | 6.59 | 6.61 | 6.70 | 6.64 | 6.67 | 6.69 | 6.67 | 6.67 | 6.66 | 6.67 | 6.67 | 6.69 | 6.63 | 0.050 | 0.932 | 0.796 | 0.007 L |
Total VFA, mM | 59.29 | 64.00 | 59.09 | 61.96 | 63.52 | 60.63 | 62.42 | 63.17 | 63.30 | 63.02 | 61.73 | 60.61 | 63.77 | 5.970 | 0.993 | 0.588 | 0.053 L |
Acetate, mM | 23.97 | 26.39 | 25.69 | 25.32 | 25.89 | 24.58 | 25.41 | 26.05 | 25.71 | 25.75 | 24.78 | 25.45 | 25.53 | 2.621 | 0.821 | 0.724 | 0.004 L |
Propionate, mM | 21.66 | 23.62 | 22.07 | 22.20 | 24.09 | 21.40 | 24.26 | 23.54 | 24.58 | 23.81 | 21.06 | 22.49 | 23.40 | 2.051 | 0.754 | 0.804 | 0.037 L |
Butyrate, mM | 5.47 | 5.65 | 5.80 | 5.79 | 5.48 | 5.80 | 5.16 | 5.59 | 5.32 | 5.51 | 5.71 | 5.79 | 5.94 | 0.381 | 0.453 | 0.802 | 0.357 |
Acetate, mol/100 mol | 40.39 | 40.85 | 41.14 | 40.92 | 40.69 | 40.56 | 40.67 | 41.18 | 40.50 | 40.82 | 37.97 | 41.98 | 39.98 | 0.869 | 0.886 | 0.582 | 0.079 Q |
Propionate, mol/100 mol | 36.41 | 36.91 | 35.77 | 35.95 | 38.17 | 35.57 | 39.02 | 37.35 | 38.94 | 37.92 | 36.66 | 35.05 | 36.69 | 1.601 | 0.343 | 0.945 | 0.090L |
Butyrate, mol/100 mol | 9.33 | 8.95 | 9.45 | 9.41 | 8.65 | 9.59 | 8.33 | 8.91 | 8.54 | 8.81 | 9.32 | 9.55 | 9.44 | 0.506 | 0.312 | 0.957 | 0.153 |
Acetate:Propionate | 1.12 | 1.11 | 1.16 | 1.15 | 1.07 | 1.15 | 1.05 | 1.11 | 1.05 | 1.08 | 1.10 | 1.21 | 1.09 | 0.066 | 0.450 | 0.785 | 0.054 |
Ammonia-N, mM | 15.55 | 17.17 | 13.37 | 17.56 | 15.16 | 16.13 | 15.43 | 16.57 | 15.38 | 16.62 | 13.66 | 16.28 | 16.79 | 1.659 | 0.997 | 0.239 | 0.023 Q |
IVOMD 3, % | 56.01 | 57.87 | 55.45 | 58.48 | 59.38 | 55.83 | 57.84 | 59.77 | 59.83 | 58.53 | 58.56 | 58.45 | 59.74 | 3.123 | 0.923 | 0.071 | 0.013 L |
Gas production, mL/gOMd 4 | 100.19 | 99.59 | 98.24 | 98.31 | 97.14 | 94.10 | 93.20 | 97.65 | 104.56 | 99.26 | 90.74 | 92.49 | 99.07 | 7.195 | 0.638 | 0.364 | 0.231 |
Methane production, mM/gOMd 4 | 0.42 | 0.43 | 0.39 | 0.42 | 0.42 | 0.40 | 0.46 | 0.46 | 0.40 | 0.38 | 0.38 | 0.41 | 0.43 | 0.077 | 0.730 | 0.505 | 0.951 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vargas, J.; Tarnonsky, F.; Maderal, A.; Fernandez-Marenchino, I.; Podversich, F.; Cuervo, W.; Gomez-Lopez, C.; Schulmeister, T.; DiLorenzo, N. Effects of Processing Methods and Inclusion Levels of Dried Garlic on In Vitro Fermentation and Methane Production in a Corn Silage-Based Substrate. Animals 2023, 13, 1003. https://doi.org/10.3390/ani13061003
Vargas J, Tarnonsky F, Maderal A, Fernandez-Marenchino I, Podversich F, Cuervo W, Gomez-Lopez C, Schulmeister T, DiLorenzo N. Effects of Processing Methods and Inclusion Levels of Dried Garlic on In Vitro Fermentation and Methane Production in a Corn Silage-Based Substrate. Animals. 2023; 13(6):1003. https://doi.org/10.3390/ani13061003
Chicago/Turabian StyleVargas, Juan, Federico Tarnonsky, Araceli Maderal, Ignacio Fernandez-Marenchino, Federico Podversich, Wilmer Cuervo, Camila Gomez-Lopez, Tessa Schulmeister, and Nicolas DiLorenzo. 2023. "Effects of Processing Methods and Inclusion Levels of Dried Garlic on In Vitro Fermentation and Methane Production in a Corn Silage-Based Substrate" Animals 13, no. 6: 1003. https://doi.org/10.3390/ani13061003
APA StyleVargas, J., Tarnonsky, F., Maderal, A., Fernandez-Marenchino, I., Podversich, F., Cuervo, W., Gomez-Lopez, C., Schulmeister, T., & DiLorenzo, N. (2023). Effects of Processing Methods and Inclusion Levels of Dried Garlic on In Vitro Fermentation and Methane Production in a Corn Silage-Based Substrate. Animals, 13(6), 1003. https://doi.org/10.3390/ani13061003