Development of an In Vivo Extended-Spectrum Cephalosporin-Resistant Escherichia coli Model in Post-Weaned Pigs and Its Use in Assessment of Dietary Interventions
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals, Housing and Experimental Design
2.2. ESC-Resistant E. coli Inoculation
2.3. Faecal Sampling and Processing
2.4. RASP Quantification
2.5. Statistical Analysis
3. Results
3.1. ESC-Resistant E. coli Quantification
3.2. Abundance of ESC-Resistant E. coli Relative to Total E. coli
3.3. Pig Performance
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- O’Neill, J. Review on Antimicrobial Resistance, Tackling Drug-Resistant Infections Globally: Final Report and Recommendations; Wellcome Trust: London, UK, 2016. [Google Scholar]
- WHO. Critically Important Antimicrobials for Human Medicine, 6th ed.; World Health Organization: Geneva, Switzerland, 2019. [Google Scholar]
- Abraham, S.; Jordan, D.; Wong, H.S.; Johnson, J.R.; Toleman, M.A.; Wakeham, D.L.; Gordon, D.M.; Turnidge, J.D.; Mollinger, J.L.; Gibson, J.S.; et al. First detection of extended-spectrum cephalosporin- and fluoroquinolone-resistant Escherichia coli in Australian food-producing animals. J. Glob. Antimicrob. Resist. 2015, 3, 273–277. [Google Scholar] [CrossRef] [PubMed]
- Mukerji, S.; O’Dea, M.; Barton, M.; Kirkwood, R.; Lee, T.; Abraham, S. Development and transmission of antimicrobial resistance among Gram-negative bacteria in animals and their public health impact. Essays Biochem. 2017, 61, 23–35. [Google Scholar] [CrossRef]
- Ewers, C.; Bethe, A.; Semmler, T.; Guenther, S.; Wieler, L.H. Extended-spectrum β-lactamase-producing and AmpC-producing Escherichia coli from livestock and companion animals, and their putative impact on public health: A global perspective. Clin. Microbiol. Infect. 2012, 18, 646–655. [Google Scholar] [CrossRef] [Green Version]
- Dahmen, S.; Haenni, M.; Madec, J.-Y. IncI1/ST3 plasmids contribute to the dissemination of the blaCTX-M-1 gene in Escherichia coli from several animal species in France. J. Antimicrob. Chemother. 2012, 67, 3011–3012. [Google Scholar] [CrossRef] [Green Version]
- Bradford, P.A.; Petersen, P.J.; Fingerman, I.M.; White, D.G. Characterization of expanded-spectrum cephalosporin resistance in E. coli isolates associated with bovine calf diarrhoeal disease. J. Antimicrob. Chemother. 1999, 44, 607–610. [Google Scholar] [CrossRef]
- Hayer, S.S.; Casanova-Higes, A.; Paladino, E.; Elnekave, E.; Nault, A.; Johnson, T.; Bender, J.; Perez, A.; Alvarez, J. Global Distribution of Extended Spectrum Cephalosporin and Carbapenem Resistance and Associated Resistance Markers in Escherichia coli of Swine Origin-A Systematic Review and Meta-Analysis. Front. Microbiol. 2022, 13, 853810. [Google Scholar] [CrossRef]
- Abraham, S.; Kirkwood, R.N.; Laird, T.; Saputra, S.; Mitchell, T.; Singh, M.; Linn, B.; Abraham, R.J.; Pang, S.; Gordon, D.M.; et al. Dissemination and persistence of extended-spectrum cephalosporin-resistance encoding IncI1-blaCTXM-1 plasmid among Escherichia coli in pigs. ISME J. 2018, 12, 2352–2362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Börjesson, S.; Bengtsson, B.; Jernberg, C.; Englund, S. Spread of extended-spectrum beta-lactamase producing Escherichia coli isolates in Swedish broilers mediated by an incI plasmid carrying blaCTX-M-1. Acta Vet. Scand. 2013, 55, 3. [Google Scholar] [CrossRef] [Green Version]
- Skaradzińska, A.; Śliwka, P.; Kuźmińska-Bajor, M.; Skaradziński, G.; Rząsa, A.; Friese, A.; Roschanski, N.; Murugaiyan, J.; Roesler, U.H. The Efficacy of Isolated Bacteriophages from Pig Farms against ESBL/AmpC-Producing Escherichia coli from Pig and Turkey Farms. Front. Microbiol. 2017, 8, 530. [Google Scholar] [CrossRef]
- Laird, T.; Abraham, R.; Sahibzada, S.; Abraham, S.; O’Dea, M. In Vitro Demonstration of Targeted Phage Therapy and Competitive Exclusion as a Novel Strategy for Decolonization of Extended-Spectrum-Cephalosporin-Resistant Escherichia coli. Appl. Environ. Microbiol. 2022, 88, e0227621. [Google Scholar] [CrossRef] [PubMed]
- Laird, T.J.; Abraham, S.; Jordan, D.; Pluske, J.R.; Hampson, D.J.; Trott, D.J.; O’Dea, M. Porcine enterotoxigenic Escherichia coli: Antimicrobial resistance and development of microbial-based alternative control strategies. Vet. Microbiol. 2021, 258, 109117. [Google Scholar] [CrossRef]
- Feye, K.M.; Anderson, K.L.; Scott, M.F.; McIntyre, D.R.; Carlson, S.A. Inhibition of the virulence, antibiotic resistance, and fecal shedding of multiple antibiotic-resistant Salmonella Typhimurium in broilers fed Original XPC. Poult. Sci. 2016, 95, 2902–2910. [Google Scholar] [CrossRef]
- Żółkiewicz, J.; Marzec, A.; Ruszczyński, M.; Feleszko, W. Postbiotics—A Step Beyond Pre- and Probiotics. Nutrients 2020, 12, 2189. [Google Scholar] [CrossRef] [PubMed]
- Kiarie, E.; Bhandari, S.; Scott, M.; Krause, D.O.; Nyachoti, C.M. Growth performance and gastrointestinal microbial ecology responses of piglets receiving Saccharomyces cerevisiae fermentation products after an oral challenge with Escherichia coli (K88). J. Anim. Sci. 2011, 89, 1062–1078. [Google Scholar] [CrossRef]
- Laird, T. Novel Approaches for Managing and Controlling Antimicrobial Resistance in Pigs. Ph.D. Thesis, Murdoch University, Perth, Australia, 2021. [Google Scholar]
- Truswell, A.; Abraham, R.; O’Dea, M.; Lee, Z.Z.; Lee, T.; Laird, T.; Blinco, J.; Kaplan, S.; Turnidge, J.; Trott, D.; et al. Robotic Antimicrobial Susceptibility Platform (RASP): A Next Generation Approach to One-Health Surveillance of Antimicrobial Resistance. J. Antimicrob. Chemother. 2021, 76, 1800–1807. [Google Scholar] [CrossRef]
- Laird, T.J.; Jordan, D.; Lee, Z.Z.; O’Dea, M.; Stegger, M.; Truswell, A.; Sahibzada, S.; Abraham, R.; Abraham, S. Diversity detected in commensals at host and farm level reveals implications for national antimicrobial resistance surveillance programmes. J. Antimicrob. Chemother. 2021, 77, 400–408. [Google Scholar] [CrossRef]
- Angelakis, E. Weight gain by gut microbiota manipulation in productive animals. Microb. Pathog. 2017, 106, 162–170. [Google Scholar] [CrossRef]
- Bennett, P.M. Plasmid encoded antibiotic resistance: Acquisition and transfer of antibiotic resistance genes in bacteria. Br. J. Pharmacol. 2008, 153 (Suppl. S1), S347–S357. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Stephan, R.; Power, K.; Yan, Q.; Hächler, H.; Fanning, S. Nucleotide sequences of 16 transmissible plasmids identified in nine multidrug-resistant Escherichia coli isolates expressing an ESBL phenotype isolated from food-producing animals and healthy humans. J. Antimicrob. Chemother. 2014, 69, 2658–2668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stoesser, N.; Sheppard, A.E.; Moore, C.E.; Golubchik, T.; Parry, C.M.; Nget, P.; Saroeun, M.; Day, N.P.J.; Giess, A.; Johnson, J.R.; et al. Extensive Within-Host Diversity in Fecally Carried Extended-Spectrum-Beta-Lactamase-Producing Escherichia coli Isolates: Implications for Transmission Analyses. J. Clin. Microbiol. 2015, 53, 2122–2131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Wang, S.; Liu, H.; Zhang, D.; Wang, Y.; Ji, H. Effects of oligosaccharides on the growth and stress tolerance of Lactobacillus plantarum ZLP001 in vitro, and the potential synbiotic effects of L. plantarum ZLP001 and fructo-oligosaccharide in post-weaning piglets. J. Anim. Sci. 2019, 97, 4588–4597. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.S.; Awji, E.G.; Lee, S.J.; Tassew, D.D.; Park, Y.B.; Park, K.S.; Kim, M.K.; Kim, B.; Park, S.C. Effect of Lactobacillus plantarum CJLP243 on the growth performance and cytokine response of weaning pigs challenged with enterotoxigenic Escherichia coli. J. Anim. Sci. 2012, 90, 3709–3717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Humam, A.M.; Loh, T.C.; Foo, H.L.; Samsudin, A.A.; Mustapha, N.M.; Zulkifli, I.; Izuddin, W.I. Effects of Feeding Different Postbiotics Produced by Lactobacillus plantarum on Growth Performance, Carcass Yield, Intestinal Morphology, Gut Microbiota Composition, Immune Status, and Growth Gene Expression in Broilers under Heat Stress. Animals 2019, 9, 644. [Google Scholar] [CrossRef] [Green Version]
- Park, S.H.; Roto, S.; Pavlidis, H.; McIntyre, D.; Striplin, K.; Brammer, L.; Ricke, S.C. Effects of feeding Original XPC™ to broilers with a live coccidiosis vaccine under industrial conditions: Part 2. Cecal microbiota analysis. Poult. Sci. 2017, 96, 2400–2411. [Google Scholar] [CrossRef] [PubMed]
- Nordeste, R.; Tessema, A.; Sharma, S.; Kovač, Z.; Wang, C.; Morales, R.; Griffiths, M.W. Molecules produced by probiotics prevent enteric colibacillosis in pigs. BMC Vet. Res. 2017, 13, 335. [Google Scholar] [CrossRef] [Green Version]
- Bass, B.E.; Frank, J.W. Effect of Lactobacillus acidophilus fermentation product on nursery pig performance and economic return. J. Anim. Sci. 2017, 95, 97–98. [Google Scholar] [CrossRef]
- Bergamaschi, M.; Tiezzi, F.; Howard, J.; Huang, Y.J.; Gray, K.A.; Schillebeeckx, C.; McNulty, N.P.; Maltecca, C. Gut microbiome composition differences among breeds impact feed efficiency in swine. Microbiome 2020, 8, 110. [Google Scholar] [CrossRef]
Treatment | SynGenX, ppm | Diamond V Original XPC, ppm |
---|---|---|
CON | 0 | 0 |
LFP | 2000 | 0 |
SFP | 0 | 2000 |
LAS | 2000 | 2000 |
Item | Treatment | ||||
---|---|---|---|---|---|
CON | LFP | SFP | LAS | p-Value | |
ADG, g | |||||
d −7 to 0 | 77 ± 14.3 | 85 ± 14.2 | 87 ± 16.9 | 75 ± 17.7 | 0.928 |
d 1–7 | 240 ± 16.6 | 205 ± 19.3 | 215 ± 24.9 | 222 ± 24.4 | 0.705 |
d 8–14 | 406 ± 27.3 | 393 ± 28.0 | 440 ± 19.0 | 396 ± 26.1 | 0.530 |
d 15–21 | 531 ± 19.4 ab | 493 ± 22.4 ab | 565 ± 22.5 a | 473 ± 25.6 b | 0.028 |
d 22–28 | 635 ± 22.9 | 639 ± 30.6 | 608 ± 36.0 | 593 ± 25.4 | 0.673 |
ADFI | |||||
d −7 to 0 | 107 ± 10.9 | 129 ± 11.8 | 132 ± 18.4 | 121 ± 22.0 | 0.717 |
d 1–7 | 288 ± 20.4 | 280 ± 14.6 | 280 ± 28.6 | 266 ± 27.9 | 0.926 |
d 8–14 | 513 ± 27.7 | 507 ± 39.8 | 531 ± 29.3 | 485 ± 41.3 | 0.831 |
d 15–21 | 714 ± 29.9 ab | 713 ± 46.1 ab | 835 ± 27.3 a | 662 ± 12.0 b | 0.013 |
d 22–28 | 870 ± 27.6 | 898 ± 69.1 | 863 ± 33.0 | 852 ± 16.4 | 0.875 |
FCR | |||||
d −7 to 0 | 1.7 ± 0.40 | 1.6 ± 0.19 | 1.6 ± 0.19 | 1.7 ± 0.08 | 0.996 |
d 1–7 | 1.2 ± 0.04 | 1.4 ± 0.05 | 1.3 ± 0.13 | 1.3 ± 0.10 | 0.596 |
d 8–14 | 1.3 ± 0.05 | 1.3 ± 0.04 | 1.2 ± 0.02 | 1.3 ± 0.04 | 0.263 |
d 15–21 | 1.3 ± 0.02 | 1.4 ± 0.03 | 1.5 ± 0.10 | 1.4 ± 0.08 | 0.495 |
d 22–28 | 1.4 ± 0.01 | 1.4 ± 0.05 | 1.3 ± 0.05 | 1.4 ± 0.04 | 0.315 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laird, T.; Jordan, D.; Pluske, J.; Mansfield, J.; Wilkinson, S.; Cadogan, D.; Abraham, S.; O’Dea, M. Development of an In Vivo Extended-Spectrum Cephalosporin-Resistant Escherichia coli Model in Post-Weaned Pigs and Its Use in Assessment of Dietary Interventions. Animals 2023, 13, 959. https://doi.org/10.3390/ani13060959
Laird T, Jordan D, Pluske J, Mansfield J, Wilkinson S, Cadogan D, Abraham S, O’Dea M. Development of an In Vivo Extended-Spectrum Cephalosporin-Resistant Escherichia coli Model in Post-Weaned Pigs and Its Use in Assessment of Dietary Interventions. Animals. 2023; 13(6):959. https://doi.org/10.3390/ani13060959
Chicago/Turabian StyleLaird, Tanya, David Jordan, John Pluske, Josie Mansfield, Stuart Wilkinson, David Cadogan, Sam Abraham, and Mark O’Dea. 2023. "Development of an In Vivo Extended-Spectrum Cephalosporin-Resistant Escherichia coli Model in Post-Weaned Pigs and Its Use in Assessment of Dietary Interventions" Animals 13, no. 6: 959. https://doi.org/10.3390/ani13060959
APA StyleLaird, T., Jordan, D., Pluske, J., Mansfield, J., Wilkinson, S., Cadogan, D., Abraham, S., & O’Dea, M. (2023). Development of an In Vivo Extended-Spectrum Cephalosporin-Resistant Escherichia coli Model in Post-Weaned Pigs and Its Use in Assessment of Dietary Interventions. Animals, 13(6), 959. https://doi.org/10.3390/ani13060959