Drivers of Palatability for Cats and Dogs—What It Means for Pet Food Development
Abstract
:Simple Summary
Abstract
1. Introduction
2. Nutrient Requirements of Cats and Dogs
2.1. Domestication and Feeding Behaviours
2.2. Protein
2.3. Vitamins and Minerals
2.4. Fat
3. Diet Selection (Macronutrient Selection)
4. Types of Pet Food
4.1. Dry Food
4.2. Wet Food
4.3. Semi-Moist Food
4.4. Nutritional Comparison of Different Types of Pet Food
4.5. Emergence of Vegetarian and Vegan Pet Food
5. Ingredients in Pet Food
5.1. Meat
5.2. Meat By-Products
5.3. Textured Vegetable Protein (TVP)
5.4. Carbohydrate Sources
6. Palatability and Preference
6.1. Palatability Testing
6.2. One-Bowl Test
6.3. Two-Bowl Test
- the initial choice and/or the first food product tasted
- the amount of food consumed
- the ratio of food consumed
- the percentage of food intake
- the preference ratio (quantity of food A consumed over the total amount of food distributed − food A + food B)
6.4. Behaviour as a Measure of Palatability
6.5. Factors to Consider for Palatability Testing
6.6. Palatants/Palatability Enhancers
7. Palatability Drivers
7.1. Biological Aspects
7.2. Taste Receptors
7.3. Structural Changes to Meat Due to Age of Animal at Slaughter
7.4. Palatability of Meat and Meat By-Products
7.5. Specific Nutrients
7.6. Physical Properties of Food
7.6.1. Processing
7.6.2. Shape and Texture
7.6.3. Serving Temperature
8. Trends in the Pet Food Industry
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Euromonitor International. 2022 Pet Care: Euromonitor from Trade Sources/National Statistics. Available online: https://www-portal-euromonitor-com.ezproxy.massey.ac.nz/portal/statisticsevolution/index (accessed on 8 February 2023).
- Tobie, C.; Péron, F.; Larose, C. Assessing food preferences in dogs and cats: A review of the current methods. Animals 2015, 5, 126–137. [Google Scholar] [CrossRef] [PubMed]
- Legrand-Defretin, V. Differences between cats and dogs: A nutritional view. Proc Nutr. Soc. 1994, 53, 15–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Companion Animals New Zealand. Companion Animals in New Zealand 2016; Companion Animals New Zealand: Auckland, New Zealand, 2020. [Google Scholar]
- Alexander, P.; Berri, A.; Moran, D.; Reay, D.; Rounsevell, M.D.A. The global environmental paw print of pet food. Glob. Env. Chang. 2020, 65, 102153. [Google Scholar] [CrossRef]
- Aldrich, G.C.; Koppel, K. Pet food palatability evaluation: A review of standard assay techniques and interpretation of results with a primary focus on limitations. Animals 2015, 5, 43–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zaghini, G.; Biagi, G. Nutritional Peculiarities and Diet Palatability in the Cat. Vet. Res. Commun. 2005, 29 (Suppl. 2), 39–44. [Google Scholar] [CrossRef]
- Dodd, S.A.; Cave, N.J.; Adolphe, J.L.; Shoveller, A.K.; Verbrugghe, A. Plant-based (vegan) diets for pets: A survey of pet owner attitudes and feeding practices. PLoS ONE 2019, 14, e0210806. [Google Scholar] [CrossRef]
- Schleicher, M.; Cash, S.B.; Freeman, L.M. Determinants of pet food purchasing decisions. Can. Vet. J. 2019, 60, 644. [Google Scholar]
- Knight, A.; Satchell, L. Vegan versus meat-based pet foods: Owner-reported palatability behaviours and implications for canine and feline welfare. PLoS ONE 2021, 16, e0253292. [Google Scholar]
- Udell, M.A.; Wynne, C.D. A review of domestic dogs’ (Canis familiaris) human-like behaviors: Or why behavior analysts should stop worrying and love their dogs. J. Exp. Anal. Behav. 2008, 89, 247–261. [Google Scholar] [CrossRef] [Green Version]
- Driscoll, C.A.; Macdonald, D.W.; O’Brien, S.J. From wild animals to domestic pets, an evolutionary view of domestication. Proc. Natl. Acad. Sci. USA 2009, 106 (Suppl. 1), 9971–9978. [Google Scholar] [CrossRef] [Green Version]
- Bosch, G.; Hagen-Plantiga, E.A.; Hendriks, W.H. Dietary nutrient profiles of wild wolves: Insights for optimal dog nutrition? Br. J. Nutr. 2015, 113, S40–S54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knight, A.; Leitsberger, M. Vegetarian versus Meat-Based Diets for Companion Animals. Animals 2016, 6, 57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bradshaw, J.W.S. The evolutionary basis for the feeding behavior of domestic dogs (Canis familiaris) and cats (Felis catus). J. Nutr. 2006, 136, 1927S–1931S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Plantinga, E.; Bosch, G.; Hendriks, W. Estimation of the dietary nutrient profile of free-roaming feral cats: Possible implications for nutrition of domestic cats. Br. J. Nutr. 2011, 106, S35–S48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Driscoll, C.A.; Clutton-Brock, J.; Kitchener, A.C.; O’Brien, S.J. The Taming of the cat. Genetic and archaeological findings hint that wildcats became housecats earlier, and in a different place, than previously thought. Sci. Am. 2009, 300, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Becques, A.; Larose, C.; Baron, C.; Niceron, C.; Féron, C.; Gouat, P. Behaviour in order to evaluate the palatability of pet food in domestic cats. Appl. Anim. Behav. Sci. 2014, 159, 55–61. [Google Scholar] [CrossRef]
- Eyre, R.; Trehiou, M.; Marshall, E.; Carvell-Miller, L.; Goyon, A.; McGrane, S. Aging cats prefer warm food. J. Vet. Behav. 2022, 47, 86–92. [Google Scholar] [CrossRef]
- Jobin, A.; Molinari, P.; Breitenmoser, U. Prey spectrum, prey preference and consumption rates of Eurasian lynx in the Swiss Jura Mountains. Acta Theriol. 2000, 45, 243–252. [Google Scholar] [CrossRef] [Green Version]
- Bradshaw, J.W.S.; Goodwin, D.; Legrand-Defrétin, V.; Nott, H.M.R. Food selection by the domestic cat, an obligate carnivore. Comp. Biochem. Physiol. 1996, 114, 205–209. [Google Scholar] [CrossRef]
- Peachey, S.E.; Harper, E.J. Aging does not influence feeding behavior in cats. J. Nutr. 2002, 132, 1735S–1739S. [Google Scholar] [CrossRef] [Green Version]
- Pickering, G.J. Optimizing the sensory characteristics and acceptance of canned cat food: Use of a human taste panel. J. Anim. Physiol. Anim. Nutr. 2009, 93, 52–60. [Google Scholar] [CrossRef] [PubMed]
- Bourgeois, H.; Elliott, D.; Marniquet, P.; Soulard, Y. Dietary behavior of dogs and cats. Bull. Acad. Vet. Fr. 2006, 159, 301–308. [Google Scholar] [CrossRef] [Green Version]
- Péron, F.; Tobie, C. Ensuring Reliable Palatability Measurement; Diana Pet Food: Elven, France, 2018. [Google Scholar]
- National Research Council. Nutrient Requirements of Dogs and Cats; The National Academies Press: Washington, DC, USA, 2006. [Google Scholar]
- AAFCO. American Association of Feed Control Officials 2022 Official Publication; AAFCO Publications: Champaign, IL, USA, 2022. [Google Scholar]
- MacDonald, M.L.; Rogers, Q.R.; Morris, J.G. Nutrition of the Domestic Cat, a Mammalian Carnivore. Annu. Rev. Nutr. 1984, 4, 521–562. [Google Scholar] [CrossRef] [PubMed]
- Knopf, K.; Sturman, J.A.; Armstrong, M.; Hayes, K.C. Taurine: An essential nutrient for the cat. J. Nutr. 1978, 108, 773–778. [Google Scholar] [CrossRef] [PubMed]
- Morris, J.G.; Rogers, Q.R. Arginine: An Essential Amino Acid for the Cat. J. Nutr. 1978, 108, 1944–1953. [Google Scholar] [CrossRef] [PubMed]
- Anderson, P.A.; Baker, D.H.; Corbin, J.E. Lysine and arginine requirements of the domestic cat. J. Nutr. 1979, 109, 1368–1372. [Google Scholar] [CrossRef] [PubMed]
- Hamper, B. Chapter 62—The Unique Metabolic Adaptations and Nutrient Requirements of the Cat. In August’s Consultations in Feline Internal Medicine; Little, S.E., Ed.; Elsevier: St. Louis MO, USA, 2016; Volume 7, pp. 600–606. [Google Scholar] [CrossRef]
- Hayes, K.C. Nutritional problems in cats: Taurine deficiency and vitamin A excess. Can. Vet. J. 1982, 23, 2. [Google Scholar] [PubMed]
- Schweigert, F.J.; Raila, J.; Wichert, B.; Kienzle, E. Cats absorb β-carotene, but it is not converted to vitamin A. J. Nutr. 2002, 132, 1610S–1612S. [Google Scholar] [CrossRef] [Green Version]
- Kantorosinski, S.; Morrison, W.B. A review of feline nutrition. Vet. Stud. 1987, 50, 95–106. [Google Scholar]
- Green, A.S.; Fascetti, A.J. Meeting the vitamin A requirement: The efficacy and importance of β-carotene in animal species. Sci. World J. 2016, 2016, 7393620. [Google Scholar] [CrossRef] [Green Version]
- Purchas, R.W.; Wilkinson, B. The Concentration of Selected Nutrients in New Zealand Beef and Lamb Cuts and Offal Items: A Report to Beef+ Lamb New Zealand Limited; Institute of Food, Nutrition and Human Health, Massey University: Palmerston North, New Zealand, 2013. [Google Scholar]
- Morris, J.G. Unique nutrient requirements of cats appear to be diet-induced evolutionary adaptations. Nutr. Res. Rev. 2002, 15, 153–168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ikeda, M.; Tsuji, H.; Nakamura, S.; Ichiyama, A.; Nishizuka, Y.; Hayaishi, O. Studies on the Biosynthesis of Nicotinamide Adenine Dinucleotide. J. Biol. Chem. 1965, 240, 1395–1401. [Google Scholar] [CrossRef] [PubMed]
- Morris, J.G.; Rogers, Q.R. Metabolic basis for some of the nutritional peculiarities of the cat. J. Small Anim. Pract. 1982, 23, 599–613. [Google Scholar] [CrossRef]
- Stockman, J.; Villaverde, C.; Corbee, R.J. Calcium, Phosphorus, and Vitamin D in Dogs and Cats: Beyond the Bones. Vet. Clin. N. Am. Small Anim. Pract. 2021, 51, 623–634. [Google Scholar] [CrossRef]
- Baker, D.H.; Czarnecki-Maulden, G.L. Comparative nutrition of cats and dogs. Annu. Rev. Nutr. 1991, 11, 239–263. [Google Scholar] [CrossRef] [PubMed]
- Dobenecker, B.; Webel, A.; Reese, S.; Kienzle, E. Effect of a high phosphorus diet on indicators of renal health in cats. J. Feline Med. Surg. 2018, 20, 339–343. [Google Scholar] [CrossRef] [PubMed]
- Böswald, L.F.; Kienzle, E.; Dobenecker, B. Observation about phosphorus and protein supply in cats and dogs prior to the diagnosis of chronic kidney disease. J. Anim. Physiol. Anim. Nutr. 2018, 102, 31–36. [Google Scholar] [CrossRef] [Green Version]
- Debraekeleer, J. Building blocks for good behaviour. Vet. Nurs. J. 2005, 20, 11–12. [Google Scholar] [CrossRef]
- Hemmings, C. The importance of good nutrition in growing puppies and kittens. Vet. Nurs. J. 2016, 7, 450–456. [Google Scholar] [CrossRef]
- Bauer, J.E. Responses of dogs to dietary omega-3 fatty acids. J. Am. Vet. Med. Assoc. 2007, 231, 1657–1661. [Google Scholar] [CrossRef]
- Hewson-Hughes, A.K.; Hewson-Hughes, V.L.; Miller, A.T.; Hall, S.R.; Simpson, S.J.; Raubenheimer, D. Geometric analysis of macronutrient selection in the adult domestic cat, Felis catus. J. Exp. Biol. 2011, 214, 1039–1051. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hewson-Hughes, A.K.; Hewson-Hughes, V.L.; Colyer, A.; Miller, A.T.; McGrane, S.J.; Hall, S.R.; Butterwick, R.F.; Simpson, S.J.; Raubenheimer, D. Geometric analysis of macronutrient selection in breeds of the domestic dog, Canis lupus familiaris. Behav. Ecol. 2013, 24, 293–304. [Google Scholar] [CrossRef] [PubMed]
- Salaun, F.; Blanchard, G.; Le Paih, L.; Roberti, F.; Niceron, C. Impact of macronutrient composition and palatability in wet diets on food selection in cats. J. Anim. Physiol. Anim. Nutr. 2016, 101, 320–328. [Google Scholar] [CrossRef] [PubMed]
- Hewson-Hughes, A.K.; Colyer, A.; Simpson, S.J.; Raubenheimer, D. Balancing macronutrient intake in a mammalian carnivore: Disentangling the influences of flavour and nutrition. R. Soc. Open Sci. 2016, 3, 160081. [Google Scholar] [CrossRef] [Green Version]
- Case, L.P.; Daristotle, L.; Hayek, M.G.; Raasch, M.F. Canine and Feline Nutrition-E-Book: A Resource for Companion Animal Professionals; Elsevier Health Sciences: St. Louis, MO, USA, 2010. [Google Scholar]
- FEDIAF—European Pet Food Industry Federation. Nutritional Guidelines for Complete and Complementary Pet Food for Cats and Dogs. 2016. Available online: www.fediaf.org/self-regulation/nutrition/ (accessed on 14 December 2022).
- Agar, S. Small Animal Nutrition; Butterworth-Heinemann Ltd.: Oxford, UK, 2001. [Google Scholar]
- Giri, S.K.; Prasad, S. Drying kinetics and rehydration characteristics of microwave-vacuum and convective hot-air dried mushrooms. J. Food Eng. 2007, 78, 512–521. [Google Scholar] [CrossRef]
- Sturm, B.; Vega AM, N.; Hofacker, W.C. Influence of process control strategies on drying kinetics, colour and shrinkage of air dried apples. Appl. Therm. Eng. 2014, 62, 455–460. [Google Scholar] [CrossRef]
- Xu, L.; Fang, X.; Wu, W.; Chen, H.; Mu, H.; Gao, H. Effects of high-temperature pre-drying on the quality of air-dried shiitake mushrooms (Lentinula edodes). Food Chem. 2019, 285, 406–413. [Google Scholar] [CrossRef]
- Michalczyk, M.; Macura, R.; Matuszak, I. The effect of air-drying, freeze-drying and storage on the quality and antioxidant activity of some selected berries. J. Food Process. Preserv. 2009, 33, 11–21. [Google Scholar] [CrossRef]
- Edney, A.T.B. Dog and Cat Nutrition: A Handbook for Students, Veterinarians, Breeders, and Owners; Pergamon Press: Oxford, UK, 1982. [Google Scholar]
- Hendriks, W.H.; Emmens MM, A.; Trass, B.; Pluske, J.R. Heat processing changes the protein quality of canned cat foods as measured with a rat bioassay. J. Anim. Sci. 1999, 77, 669–676. [Google Scholar] [CrossRef] [Green Version]
- van Rooijen, C.; Bosch, G.; van der Poel, A.F.; Wierenga, P.A.; Alexander, L.; Hendriks, W.H. The Maillard reaction and pet food processing: Effects on nutritive value and pet health. Nutr. Res. Rev. 2013, 26, 130–148. [Google Scholar] [CrossRef]
- Hagen-Plantinga, E.A.; Orlanes, D.F.; Bosch, G.; Hendriks, W.H.; van der Poel, A.F.B. Retorting conditions affect palatability and physical characteristics of canned cat food. J. Nutr. Sci. 2017, 6, e23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dainton, A.N.; Dogan, H.; Aldrich, C.G. The effects of select hydrocolloids on the processing of pate-style canned pet food. Foods 2021, 10, 2506. [Google Scholar] [CrossRef] [PubMed]
- Tamanna, N.; Mahmood, N. Food processing and maillard reaction products: Effect on human health and nutrition. Int. J. Food Sci. 2015, 2015, 526762. [Google Scholar] [CrossRef]
- Wakefield, L.A.; Shofer, F.S.; Michel, K.E. Evaluation of cats fed vegetarian diets and attitudes of their caregivers. J. Am. Vet. Med. Assoc. 2006, 229, 70–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Key, T.J.; Appleby, P.N.; Rosell, M.S. Health effects of vegetarian and vegan diets. Proc. Nutr. Soc. 2006, 65, 35–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leahy, E.; Lyons, S.; Tol, R.S. An Estimate of the Number of Vegetarians in the World; ESRI working paper, No. 340; The Economic and Social Research Institute (ESRI): Dublin, Ireland, 2010. [Google Scholar]
- Kanakubo, K.; Fascetti, A.J.; Larsen, J.A. Assessment of protein and amino acid concentrations and labeling adequacy of commercial vegetarian diets formulated for dogs and cats. J. Am. Vet. Med. Assoc. 2015, 247, 385–392. [Google Scholar] [CrossRef] [PubMed]
- Zafalon, R.V.A.; Risolia, L.W.; Vendramini, T.H.A.; Ayres Rodrigues, R.B.; Pedrinelli, V.; Teixeira, F.A.; Rentas, M.F.; Perini, M.P.; Alvarenga, I.C.; Brunetto, M.A. Nutritional inadequacies in commercial vegan foods for dogs and cats. PLoS ONE 2020, 15, e0227046. [Google Scholar] [CrossRef] [PubMed]
- Gray, C.M.; Sellon, R.K.; Freeman, L.M. Nutritional adequacy of two vegan diets for cats. J. Am. Vet. Med. 2004, 225, 1670–1675. [Google Scholar] [CrossRef]
- Knight, A.; Light, N. The nutritional soundness of meat-based and plant-based pet foods. Rev. Electron. Vet. 2021, 22, 1–21. Available online: http://veterinaria.org/index.php/REDVET/article/view/92 (accessed on 10 February 2023).
- Swanson, K.S.; Carter, R.A.; Yount, T.P.; Aretz, J.; Buff, P.R. Nutritional sustainability of pet foods. Adv. Nutr. 2013, 4, 141–150. [Google Scholar] [CrossRef] [Green Version]
- Carrión, P.A.; Thompson, L.J. Food Safety Management. A Practical Guide for the Food Industry; Motarjemi, J., Lelieveld, H., Eds.; Academic Press: Cambridge, MA, USA, 2014; pp. 379–396. [Google Scholar]
- Corbin, J.E. Inedible Meat, Poultry and Fish By-Products in Pet Foods. In Inedible Meat by-Products. Advances in Meat Research Series; Pearson, A.M., Dutson, T.R., Eds.; Springer: Dordrecht, The Netherlands, 1992; Volume 8. [Google Scholar] [CrossRef]
- Laflamme, D.; Izquierdo, O.; Eirmann, L.; Binder, S. Myths and Misperceptions About Ingredients Used in Commercial Pet Foods. Vet. Clin. N. Am. Small Anim. 2014, 44, 689–698. [Google Scholar] [CrossRef] [PubMed]
- Donadelli, R.A.; Jones, C.K.; Beyer, R.S. The amino acid composition and protein quality of various egg, poultry meal by-products, and vegetable proteins used in the production of dog and cat diets. Poult. Sci. 2019, 98, 1371–1378. [Google Scholar] [CrossRef] [PubMed]
- Thompson, A. Ingredients: Where pet food starts. Top. Companion Anim. Med. 2008, 23, 127–132. [Google Scholar] [CrossRef] [PubMed]
- Biel, W.; Czerniawska-Piątkowska, E.; Kowalczyk, A. Offal chemical composition from veal, beef, and lamb maintained in organic production systems. Animals 2019, 9, 489. [Google Scholar] [CrossRef] [Green Version]
- Murray, S.M.; Patil, A.R.; Fahey, G.C.; Merchen, N.R.; Hughes, D.M. Raw and rendered animal by-products as ingredients in dog diets. J. Anim. Sci. 1997, 75, 2497–2505. [Google Scholar] [CrossRef]
- Amir, H.M.S.; Mona, Z. Raw ingredients in cat food manufacturing: Palatability, digestibility and halal issues in Malaysia. JTRSS 2013, 1, 1–15. [Google Scholar]
- Harper, J.M.; Clark, J.P. Food extrusion. Crit. Rev. Food Sci. Nutr. 1979, 11, 155–215. [Google Scholar] [CrossRef]
- Davenport, D.J. Evaluation of pet foods. Vet. Q. 1994, 16 (Suppl. S1), 35–37. [Google Scholar] [CrossRef]
- Hill, D.; Pas, D. Alternative proteins in companion animal nutrition. In Proceedings of the Pet Food Association of Canada Fall Conference, Toronto, ON, Canada, 27 October 2004. [Google Scholar]
- Lusas, E.W.; Rhee, K.C. Soy protein processing and utilization. In Practical Handbook of Soybean Processing and Utilization; AOCS Press: Champaign, IL, USA, 1995; pp. 117–160. [Google Scholar]
- Peisker, M. Manufacturing of soy protein concentrate for animal nutrition. Cah. Options Mediterr. 2001, 54, 103–107. [Google Scholar]
- Hilton, J.W. Carbohydrates in cat diets: Digestion and utilization. Can. Vet. J. 1987, 28, 129. [Google Scholar]
- Buff, P.R.; Carter, R.A.; Bauer, J.E.; Kersey, J.H. Natural pet food: A review of natural diets and their impact on canine and feline physiology. J. Anim. Sci. 2014, 92, 3781–3791. [Google Scholar] [CrossRef]
- Verbrugghe, A.; Hesta, M. Cats and carbohydrates: The carnivore fantasy? Vet. Sci. 2017, 4, 55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stasiak, M. The Development of Food Preferences in Cats: The New Direction. Nutr. Neurosci. 2002, 5, 221–228. [Google Scholar] [CrossRef] [PubMed]
- Tarttelin, M.F. Gaining and maintaining market share in a competitive environment: Some views on long- and short-term pet food testing. Proc. Nutr. Soc. N. Z. 1997, 22, 192–201. [Google Scholar]
- Rutherford, S.R. Investigations into Feline (Felis catus) Palatability: A Thesis Presented in Partial Fulfilment of the Requirements for the Degree of Master of Science in Nutritional Science at Massey University. Doctoral Dissertation, Massey University, Palmerston North, New Zealand, 2004. [Google Scholar]
- Anderson, J.M. The Effect of Dietary Cadmium on Kidney Function in Cats. Doctoral Dissertation, Massey University, Palmerston North, New Zealand, 2017. [Google Scholar]
- Hanson, M.; Jojola, S.M.; Rawson, N.E.; Crowe, M.; Laska, M. Facial expressions and other behavioral responses to pleasant and unpleasant tastes in cats (Felis silvestris catus). Appl. Anim. Behav. Sci. 2016, 181, 129–136. [Google Scholar] [CrossRef] [Green Version]
- Van den Bos, R.; Meijer, M.K.; Spruijt, B.M. Taste reactivity patterns in domestic cats (Felis silvestris catus). Appl. Anim. Behav. Sci. 2000, 69, 149–168. [Google Scholar] [CrossRef] [PubMed]
- Rofe, P.C.; Anderson, R.S. Food preference in domestic pets. Proc. Nutr. Soc. 1970, 29, 330. [Google Scholar] [CrossRef] [Green Version]
- AFB International. Understanding the Drivers for Palatability: From Basic Science to Complex Product Systems. 2020. Available online: https://afbinternational.com/downloads/understanding-the-drivers-for-palatability/ (accessed on 11 August 2022).
- Alegría-Morán, R.A.; Guzmán-Pino, S.A.; Egaña, J.I.; Sotomayor, V.; Figueroa, J. Food preferences in cats: Effect of dietary composition and intrinsic variables on diet selection. Animals 2019, 9, 372. [Google Scholar] [CrossRef] [Green Version]
- Nagodawithana, T.W.; Nelles, L.; Trivedi, N.B. Protein hydrolysates as hypoallergenic, flavors and palatants for companion animals. In Protein Hydrolysates in Biotechnology; Springer: Dordrecht, The Netherlands, 2008; pp. 191–207. [Google Scholar]
- Thombre, A.G. Oral delivery of medications to companion animals: Palatability considerations. Adv. Drug Deliv. Rev. 2004, 56, 1399–1413. [Google Scholar] [CrossRef]
- Haines, J.; Patel, M.; Knight, A.I.; Corley, D.; Gibson, G.; Schaaf, J.; Moulin, J.; Zuber, S. Thermal inactivation of feline calicivirus in pet food processing. Food Environ. Virol. 2015, 7, 374–380. [Google Scholar] [CrossRef]
- Pekel, A.Y.; Mülazımoğlu, S.B.; Acar, N. Taste preferences and diet palatability in cats. J. Appl. Anim. Res. 2020, 48, 281–292. [Google Scholar] [CrossRef]
- Hall, N.J.; Péron, F.; Combou, S.; Callejon, L.; Wynne, C.D.L. Food and food-odour preferences in dogs: A pilot study. Chem. Senses 2017, 42, 361–370. [Google Scholar] [CrossRef] [Green Version]
- Roberts, M.T.; Bermingham, E.N.; Cave, N.J.; Young, W.; McKenzie, C.M.; Thomas, D.G. Macronutrient intake of dogs, self-selecting diets varying in composition offered ad libitum. J. Anim. Physiol. Anim. Nutr. 2018, 102, 568–575. [Google Scholar] [CrossRef] [Green Version]
- Houpt, K.A.; Zicker, S. Dietary effects on canine and feline behaviour. Vet. Clin. N. Am. Small Anim. 2003, 33, 405–416. [Google Scholar] [CrossRef]
- Watson, T. Palatability: Feline Food Preferences. 2011. Available online: https://www.vettimes.co.uk/app/uploads/wp-post-to-pdf-enhanced-cache/1/palatability-feline-food-preferences.pdf (accessed on 27 October 2022).
- Church, S.C.; Allen, J.A.; Bradshaw, J.W.S. Frequency-dependent Food Selection by Domestic Cats: A Comparative Study. Ethology 1996, 102, 495–509. [Google Scholar] [CrossRef]
- Hullár, I.; Fekete, S.; Andrásofszky, E.; Szöcs, Z.; Berkényi, T. Factors influencing the food preference of cats. J. Anim. Physiol. Anim. Nutr. 2001, 85, 205–211. [Google Scholar] [CrossRef]
- Hepper, P.G.; Wells, D.L.; Millsopp, S.; Kraehenbuehl, K.; Lyn, S.A.; Mauroux, O. Prenatal and early sucking influences on dietary preference in newborn, weaning, and young adult cats. Chem. Senses 2012, 37, 755–766. [Google Scholar] [CrossRef]
- Bradshaw, J.W.S. Sensory and experiential factors in the design of foods for domestic dogs and cats. Proc. Nutr. Soc. 1991, 50, 99–106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boudreau, J.C. Chemical stimulus determinants of cat neural taste responses to meats. JAOCS 1977, 54, 464–466. [Google Scholar] [CrossRef] [PubMed]
- Boudreau, J.C.; Alev, N. Classification of chemoresponsive tongue units of the cat geniculate ganglion. Brain Res. 1973, 54, 157–175. [Google Scholar] [CrossRef]
- Li, X.; Li, W.; Wang, H.; Bayley, D.L.; Cao, J.; Reed, D.R.; Bachmanov, A.A.; Huang, L.; Legrand-Defretin, V.; Beauchamp, G.K.; et al. Cats Lack a Sweet Taste Receptor. J. Nutr. 2006, 136, 1932S–1934S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- White, T.D.; Boudreau, J.C. Taste preferences of the cat for neurophysiologically active compounds. Physiol. Psychol. 1975, 3, 405–410. [Google Scholar] [CrossRef] [Green Version]
- Boudreau, J.C.; Sivakumar, L.; Do, Y.T.; White, T.D.; Oravec, J.; Hoang, N.K. Neurophysiology of geniculate ganglion (Facial nerve) taste systems: Species comparisons. Chem. Senses 1985, 10, 89–127. [Google Scholar] [CrossRef]
- Beauchamp, G.K.; Maller, O.; Rogers, J.G. Flavor preferences in cats (Felis catus and Panthera sp.). J. Comp. Physiol. Psychol. 1977, 91, 1118. [Google Scholar] [CrossRef]
- Ohsu, T.; Amino, Y.; Nagasaki, H.; Yamanaka, T.; Takeshita, S.; Hatanaka, T.; Maruyama, Y.; Miyamura, N.; Eto, Y. Involvement of the calcium-sensing receptor in human taste perception. J. Biol. Chem. 2010, 285, 1016–1022. [Google Scholar] [CrossRef] [Green Version]
- Rhyu, M.R.; Song, A.Y.; Kim, E.Y.; Son, H.J.; Kim, Y.; Mummalaneni, S.; Qian, J.; Grider, J.R.; Lyall, V. Kokumi taste active peptides modulate salt and umami taste. Nutrients 2020, 12, 1198. [Google Scholar] [CrossRef]
- Laffitte, A.; Gibbs, M.; Hernangomez de Alvaro, C.; Addison, J.; Lonsdale, Z.N.; Giribaldi, M.G.; Rossignoli, A.; Vennegeerts, T.; Winnig, M.; Klebansky, B.; et al. Kokumi taste perception is functional in a model carnivore, the domestic cat (Felis catus). Sci. Rep. 2021, 11, 10527. [Google Scholar] [CrossRef]
- Maruyama, Y.; Yasuda, R.; Kuroda, M.; Eto, Y. Kokumi substances, enhancers of basic tastes, induce responses in calcium-sensing receptor expressing taste cells. PLoS ONE 2012, 7, e34489. [Google Scholar] [CrossRef] [Green Version]
- Tornberg, E. Biophysical aspects of meat tenderness. Meat Sci. 1996, 43, 175–191. [Google Scholar] [CrossRef]
- Warner, R.; Miller, R.; Ha, M.; Wheeler, T.L.; Dunshea, F.; Li, X.; Vaskoska, R.; Purslow, P. Meat tenderness: Underlying mechanisms, instrumental measurement, and sensory assessment. Meat Muscle Biol. 2021, 4, 1–25. [Google Scholar]
- Weston, A.R.; Rogers, R.W.; Althen, T.G. The role of collagen in meat tenderness. Prof. Anim. Sci. 2002, 18, 107–111. [Google Scholar] [CrossRef]
- Shorthose, W.R.; Harris, P.V. Effect of animal age on the tenderness of selected beef muscles. J. Food Sci. 1990, 55, 1–8. [Google Scholar] [CrossRef]
- Hill, F. The solubility of intramuscular collagen in meat animals of various ages. J. Food Sci. 1966, 31, 161–166. [Google Scholar] [CrossRef]
- Forbes, S.L.; Trafford, S.; Surie, M. Pet humanisation: What is it and does it influence purchasing behaviour. Dairy Vet. Sci. J. 2018, 5, 555659. [Google Scholar] [CrossRef]
- Lohse, C.L. Preferences of dogs for various meats. J. Am. Anim. Hosp. Assoc. 1974, 10, 187–192. [Google Scholar]
- Bhadra, A.; Bhattacharjee, D.; Paul, M.; Singh, A.; Gade, P.R.; Shrestha, P.; Bhadra, A. The meat of the matter: A rule of thumb for scavenging dogs? Ethol. Ecol. Evol. 2016, 28, 427–440. [Google Scholar] [CrossRef]
- Sarkar, R.; Sau, S.; Bhadra, A. Scavengers can be choosers: A study on food preference in free-ranging dogs. Appl. Anim. Behav. Sci. 2019, 216, 38–44. [Google Scholar] [CrossRef]
- Bhadra, A.; Bhadra, A. Preference for meat is not innate in dogs. J. Ethol. 2014, 32, 15–22. [Google Scholar] [CrossRef] [Green Version]
- Adamec, R.E. The interaction of hunger and preying in the domestic cat (Felis catus): An adaptive hierarchy? Behav. Biol. 1976, 18, 263–272. [Google Scholar] [CrossRef]
- Houpt, K.A.; Smith, S.L. Taste preferences and their relation to obesity in dogs and cats. Can. Vet. J. 1981, 22, 77. [Google Scholar]
- Boudreau, J.C.; Bradley, B.E.; Bierer, P.R.; Kruger, S.; Tsuchitani, C. Single unit recordings from the geniculate ganglion of the facial nerve of the cat. Exp. Brain Res. 1971, 13, 461–488. [Google Scholar] [CrossRef] [PubMed]
- Watson, P.; Thomas, D.; Hoggard, A.; Parker, M.; Schreurs, N. Investigating the Palatability of Lamb and Beef Components Used in the Production of Pet Food for Cats. Animals 2020, 10, 558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clish, C.B. Metabolomics: An emerging but powerful tool for precision medicine. Cold Spring Harb. Mol. Case Stud. 2015, 1, a000588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muroya, S.; Ueda, S.; Komatsu, T.; Miyakawa, T.; Ertbjerg, P. MEATabolomics: Muscle and meat metabolomics in domestic animals. Metabolites 2020, 10, 188. [Google Scholar] [CrossRef] [PubMed]
- Hilton, J.W. Antioxidants: Function, types and necessity of inclusion in pet foods. Can. Vet. J. 1989, 30, 682–684. [Google Scholar]
- Gross, K.L.; Bollinger, R.; Thawnghmung, P.; Collings, G.F. Effect of Three Different Preservative Systems on the Stability of Extruded Dog Food Subjected to Ambient and High Temperature Storage. J. Nutr. 1994, 124, 2638S–2642S. [Google Scholar] [CrossRef]
- Chanadang, S.; Koppel, K.; Aldrich, G. The impact of rendered protein meal oxidation level on shelf-life, sensory characteristics, and acceptability in extruded pet food. Animals 2016, 6, 44. [Google Scholar] [CrossRef] [Green Version]
- Beaton, L. 2023 Pet Food Trends: Sustainability, Nutrition on Top; Petfood Industry; WATT Global Media: Rockford, IL, USA, 2023; pp. 16–21. [Google Scholar]
Requirement on DM Basis (%) | Adult Maintenance | |||
---|---|---|---|---|
Cat | Dog | |||
Minimum | Maximum | Minimum | Maximum | |
Crude Protein | 26 | - | 18 | - |
Essential amino acids | ||||
Taurine (canned/extruded) | 0.2/0.1 | - | No requirement | - |
Arginine | 1.04 | - | 0.51 | - |
Histidine | 0.31 | - | 0.19 | - |
Isoleucine | 0.52 | - | 0.38 | - |
Leucine | 1.24 | - | 0.68 | - |
Lysine | 0.83 | - | 0.63 | - |
Methionine | 0.20 | 1.5 | 0.33 | - |
Phenylalanine | 0.42 | - | 0.45 | - |
Threonine | 0.73 | - | 0.48 | - |
Tryptophan | 0.16 | 1.7 | 0.16 | - |
Valine | 0.62 | - | 0.49 | - |
Nutrient | Units DM Basis | Cat | Dog | ||
---|---|---|---|---|---|
Minimum | Maximum | Minimum | Maximum | ||
Minerals | |||||
Calcium | % | 0.6 | 0.5 | 2.5 | |
Phosphorus | % | 0.5 | 0.4 | 1.6 | |
Ca:P ratio | 1:1 | 1:2 | |||
Potassium | % | 0.6 | 0.6 | ||
Sodium | % | 0.2 | 0.08 | ||
Chloride | % | 0.3 | 0.12 | ||
Magnesium | % | 0.04 | 0.06 | ||
Iron | mg/kg | 80 | 40 | ||
Copper | mg/kg | 5 | 7.3 | ||
Manganese | mg/kg | 7.6 | 5.0 | ||
Zinc | mg/kg | 75 | 80 | ||
Iodine | mg/kg | 0.6 | 9.0 | 1.0 | 11 |
Selenium | mg/kg | 0.3 | 0.35 | 2 | |
Vitamins and others | |||||
Vitamin A | IU/kg | 3332 | 333,300 | 5000 | 250,000 |
Vitamin D | IU/kg | 280 | 30,080 | 500 | 3000 |
Vitamin E | IU/kg | 40 | 50 | ||
Vitamin K | mg/kg | 0.1 | - | ||
Thiamine | mg/kg | 5.6 | 2.25 | ||
Riboflavin | mg/kg | 4.0 | 5.2 | ||
Pantothenic acid | mg/kg | 5.75 | 12 | ||
Niacin | mg/kg | 60 | 13.6 | ||
Pyridoxine | mg/kg | 4.0 | 1.5 | ||
Folic acid | mg/kg | 0.8 | 0.216 | ||
Biotin | mg/kg | 0.07 | - | ||
Vitamin B12 | mg/kg | 0.020 | 0.028 | ||
Choline | mg/kg | 2400 | 1360 |
Dry | Semi-Moist | Wet | ||||
---|---|---|---|---|---|---|
As-Fed | Dry Matter | As-Fed | Dry Matter | As-Fed | Dry Matter | |
Moisture (%) | 6–10 | 0 | 15–30 | 0 | 75 | 0 |
Fat (%) | 7–20 | 8–22 | 7–10 | 8–14 | 5–8 | 20–32 |
Protein (%) | 16–30 | 18–32 | 17–20 | 20–28 | 7–13 | 28–50 |
Carbohydrate (%) | 41–70 | 46–74 | 40–60 | 58–72 | 4–13 | 18–57 |
ME (kcal.kg−1) | 2800–4050 | 3000–4500 | 2550–2880 | 3000–4000 | 875–1250 | 3500–5000 |
Water g/100 g | Protein g/100 g | Fat g/100 g | Calcium g/100 g | Phosphorus g/100 g | Energy kcal/100 g | |
---|---|---|---|---|---|---|
Raw lean meats | ||||||
Pork | 71.5 | 20.6 | 7.1 | 0.008 | 0.20 | 147 |
Beef | 74.0 | 20.3 | 4.6 | 0.007 | 0.18 | 123 |
Veal | 74.9 | 21.1 | 2.7 | 0.008 | 0.26 | 109 |
Lamb | 70.1 | 20.8 | 8.8 | 0.007 | 0.19 | 162 |
Chicken | 74.4 | 20.6 | 4.3 | 0.01 | 0.20 | 121 |
Average | 73.0 | 20.7 | 5.5 | 0.008 | 0.20 | 132 |
Offals | ||||||
Fatty lungs | 73.1 | 17.2 | 5.0 | 0.01 | 0.19 | 114 |
Heart | 70.1 | 14.3 | 15.5 | 0.02 | 0.18 | 197 |
Heart (trimmed) | 76.3 | 18.9 | 3.6 | 0.005 | 0.23 | 108 |
Liver (fresh) | 68.6 | 21.1 | 7.8 | 0.001 | 0.36 | 163 |
Green tripe | 76.2 | 12.3 | 11.6 | 0.01 | 0.10 | 154 |
Dressed tripe | 88.0 | 9.0 | 3.0 | 0.08 | 0.04 | 63 |
Sheep lungs | 76.0 | 16.9 | 3.2 | 0.01 | 0.20 | 96 |
Beef kidney | 79.8 | 15.7 | 2.6 | 0.02 | 0.25 | 86 |
Average | 76.0 | 15.7 | 6.5 | 0.020 | 0.19 | 123 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Watson, P.E.; Thomas, D.G.; Bermingham, E.N.; Schreurs, N.M.; Parker, M.E. Drivers of Palatability for Cats and Dogs—What It Means for Pet Food Development. Animals 2023, 13, 1134. https://doi.org/10.3390/ani13071134
Watson PE, Thomas DG, Bermingham EN, Schreurs NM, Parker ME. Drivers of Palatability for Cats and Dogs—What It Means for Pet Food Development. Animals. 2023; 13(7):1134. https://doi.org/10.3390/ani13071134
Chicago/Turabian StyleWatson, Pavinee E., David G. Thomas, Emma N. Bermingham, Nicola M. Schreurs, and Michael E. Parker. 2023. "Drivers of Palatability for Cats and Dogs—What It Means for Pet Food Development" Animals 13, no. 7: 1134. https://doi.org/10.3390/ani13071134
APA StyleWatson, P. E., Thomas, D. G., Bermingham, E. N., Schreurs, N. M., & Parker, M. E. (2023). Drivers of Palatability for Cats and Dogs—What It Means for Pet Food Development. Animals, 13(7), 1134. https://doi.org/10.3390/ani13071134