Effect of Different Water Salinities on the Larvae of the Blue Bream Ballerus ballerus (Linnaeus, 1758) during Rearing
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Molenda, T. Impact of a saline mine water discharge on the development of a meromictic pond, the Rontok Wielki Reservoir, Poland. Mine Water Environ. 2018, 37, 807–814. [Google Scholar] [CrossRef] [Green Version]
- Pörtner, H.O.; Peck, M.A. Climate change effects on fishes and fisheries: Towards a cause-and-effect understanding. J. Fish Biol. 2010, 77, 1745–1779. [Google Scholar] [CrossRef] [PubMed]
- Aldous, A.; Fitzsimons, J.; Richter, B.; Bach, L. Droughts, floods and freshwater ecosystems: Evaluating climate change impacts and developing adaptation strategies. Mar. Freshw. Res. 2011, 62, 223–231. [Google Scholar] [CrossRef]
- Malmqvist, B.; Rundle, S. Threats to the running water ecosystems of the world. Environ. Conserv. 2002, 29, 134–153. [Google Scholar] [CrossRef]
- Nel, J.L.; Roux, D.J.; Maree, G.; Kleynhans, C.J.; Moolman, J.; Reyers, B.; Rouget, M.; Cowling, R.M. Rivers in peril inside and outside protected areas: A systematic approach to conservation assessment of river ecosystems. Divers. Distrib. 2007, 13, 341–352. [Google Scholar] [CrossRef]
- Vörösmarty, C.J.; McIntyre, P.B.; Gessner, M.O.; Dudgeon, D.; Prusevich, A.; Green, P.; Glidden, S.; Bunn, S.E.; Sullivan, C.A.; Reidy Liermann, C.; et al. Global threats to human water security and river biodiversity. Nature 2010, 467, 555–561. [Google Scholar] [CrossRef] [Green Version]
- Braukmann, U.; Böhme, D. Salt pollution of the middle and lower sections of the river Werra (Germany) and its impact on benthic macroinvertebrates. Limnologica 2011, 41, 113–124. [Google Scholar] [CrossRef] [Green Version]
- Hübner, G. Ökologisch-Faunistische Fließgewässerbewertung am Beispiel der Salzbelasteten Unteren Werra und Ausgewählter Zuflüsse. Doctoral Dissertation, Fachbereich Architektur, Stadtplanung, Landschaftsplanung, 303 S, Universität Kassel, Kassel, Germany, 2007. [Google Scholar]
- Sauer, F.G.; Bundschuh, M.; Zubrod, J.P.; Schäfer, R.B.; Thompson, K.; Kefford, B.J. Effects of salinity on leaf breakdown: Dryland salinity versus salinity from a coalmine. Aquat. Toxicol. 2016, 177, 425–432. [Google Scholar] [CrossRef] [Green Version]
- Cañedo-Argüelles, M.; Kefford, B.J.; Piscart, C.; Prat, N.; Schäfer, R.B.; Schulz, C.J. Salinisation of rivers: An urgent ecological issue. Environ. Pollut. 2013, 173, 157–167. [Google Scholar] [CrossRef]
- Evans, M.; Frick, C. The Effects of Road Salts on Aquatic Ecosystems; Report no. 02–308; Environment Canada, Water Science and Technology Directorate: Ottawa, ON, Canada, 2001. [Google Scholar]
- Hintz, W.D.; Relyea, R.A. A review of the species, community, and ecosystem impacts of road salt salinisation in fresh waters. Freshw. Biol. 2019, 64, 1081–1097. [Google Scholar] [CrossRef] [Green Version]
- James, K.R.; Cant, B.; Ryan, T. Responses of freshwater biota to rising salinity levels and implications for saline water management: A review. Aust. J. Bot. 2003, 51, 703–713. [Google Scholar] [CrossRef]
- Fridman, S.; Bron, J.; Rana, K. Influence of salinity on embryogenesis, survival, growth and oxygen consumption in embryos and yolk-sac larvae of the Nile tilapia. Aquaculture 2012, 334, 182–190. [Google Scholar] [CrossRef]
- Mardaneh Khatooni, M.; Mojazi Amiri, B.; Mirvaghefi, A.; Jafari, V.; Hoseinifar, S.H. The effects of salinity on the fertilization rate and rearing of the Persian sturgeon (Acipenser persicus) larvae. Aquac. Int. 2012, 20, 1097–1105. [Google Scholar] [CrossRef]
- Kültz, D. Physiological mechanisms used by fish to cope with salinity stress. J. Exp. Biol. 2015, 218, 1907–1914. [Google Scholar] [CrossRef] [Green Version]
- Hintz, W.D.; Relyea, R.A. Impacts of road deicing salts on the early-life growth and development of a stream salmonid: Salt type matters. Environ. Pollut. 2017, 223, 409–415. [Google Scholar] [CrossRef] [PubMed]
- Swanson, C. Interactive effects of salinity on metabolic rate, activity, growth and osmoregulation in the euryhaline milkfish (Chanos chanos). J. Exp. Biol. 1998, 201, 3355–3366. [Google Scholar] [CrossRef] [PubMed]
- Bein, R.; Ribi, G. Effects of larval density and salinity on the development of perch larvae (Perca fluviatilis L.). Aquat. Sci. 1994, 56, 97–105. [Google Scholar] [CrossRef]
- Jäger, T.; Nellen, W.; Schöfer, W.; Shodjai, F. Influence of salinity and temperature on early life stages of Coregonus albula, C. lavaretus, R. rutilus and L. lota. Rapp. Er Proces-Verbaux Des Réunions Cons. Perm. Int. Pour L’exploration La Mer 1981, 178, 345–348. [Google Scholar]
- Klinkhardt, M.B.; Winkler, H.M. Einfluß der Salinität auf die Befruchtungs-und Entwicklungsfähigkeit der Eier von vier Süßwasserfischarten Plötz (Rutilus rutilus), Barsch (Perca fluviatilis), Kaulbarsch (Gymnocephalus cernua) und Zander (Stizostedion lucioperca). Wiss. Z. Univ. Rostock 1989, 38, 23–30. [Google Scholar]
- Grøtan, K.; Østbye, K.; Taugbøl, A.; Vøllestad, L.A. No short-term effect of salinity on oxygen consumption in threespine stickleback (Gasterosteus aculeatus) from fresh, brackish, and salt water. Can. J. Zool. 2012, 90, 1386–1393. [Google Scholar] [CrossRef]
- Ballerus ballerus (Linnaeus, 1758). Available online: https://www.fishbase.se/summary/Ballerus-ballerus.html (accessed on 13 February 2023).
- Tadajewska, M. Blue bram Abramis ballerus. In Freshwater Fish of Poland; Brylińska, M., Ed.; Wydawnictwo Naukowe PWN: Warsaw, Poland, 2000; pp. 257–261. [Google Scholar]
- Piech, P.; Kujawa, R. Artificial reproduction of blue bream (Ballerus ballerus L.) as a conservative method under controlled conditions. Animals 2021, 11, 1326. [Google Scholar] [CrossRef] [PubMed]
- Piech, P.; Kujawa, R. Impact of replacing natural food with commercial feed on the growth and survival of blue bream larvae (Ballerus ballerus) under controlled conditions. Fish. Aquat. Life 2022, 30, 192–201. [Google Scholar] [CrossRef]
- Kolada, A. Wstępny Raport Zespołu ds. Sytuacji na Rzece Odrze; Instytut Ochrony Środowiska-Państwowy Instytut Badawczy: Warszawa, Poland, 2022. [Google Scholar]
- Kujawa, R.; Piech, P. Influence of Water Salinity on the Growth and Survivability of Asp Larvae Leuciscus aspius (Linnaeus, 1758) under Controlled Conditions. Animals 2022, 12, 2299. [Google Scholar] [CrossRef] [PubMed]
- Sorgeloos, P.; Bossuyt, E.; Lavina, E.; Baeza-Mesa, M.; Persoone, G. Decapsulation of Artemia cysts: A simple technique for the improvement of the use of brine shrimp in aquaculture. Aquaculture 1977, 12, 311–315. [Google Scholar] [CrossRef]
- Nowosad, J.; Żarski, D.; Biłas, M.; Dryl, K.; Krejszeff, S.; Kucharczyk, D. Dynamics of ammonia excretion in juvenile common tench, Tinca tinca (L.), during intensive rearing under controlled conditions. Aquac. Int. 2013, 21, 629–637. [Google Scholar] [CrossRef]
- Imanpoor, M.R.; Najafi, E.; Kabir, M. Effects of different salinity and temperatures on the growth, survival, haematocrit and blood biochemistry of Goldfish (Carassius auratus). Aquac. Res. 2012, 43, 332–338. [Google Scholar] [CrossRef]
- Peňáz, M.; Prokeš, M.; Kouřil, J.; Hamáčková, J. Influence of water temperature on the early development and growth of the tench, Tinca tinca. Folia Zool. 1989, 38, 275–287. [Google Scholar]
- Brown, M.E. (Ed.) Experimental studies on growth. In The Physiology of Fishes; Academic Press: New York, NY, USA, 1957; pp. 361–400. [Google Scholar]
- Myszkowski, L. Pitfalls of using growth rate coefficients. Pol. Arch. Hydrobiol. 1997, 44, 389–396. [Google Scholar]
- Duncan, D.B. Multiple range and multiple F tests. Biometrics 1955, 11, 1–42. [Google Scholar] [CrossRef]
- Castillo, A.M.; Sharpe, D.M.; Ghalambor, C.K.; De León, L.F. Exploring the effects of salinization on trophic diversity in freshwater ecosystems: A quantitative review. Hydrobiologia 2018, 807, 1–17. [Google Scholar] [CrossRef]
- Herbert, E.R.; Boon, P.; Burgin, A.J.; Neubauer, S.C.; Franklin, R.B.; Ardón, M.; Hopfensperger, K.N.; Lamers, L.P.M.; Gell, P. A global perspective on wetland salinization: Ecological consequences of a growing threat to freshwater wetlands. Ecosphere 2015, 6, 1–43. [Google Scholar] [CrossRef]
- Lind, L.; Schuler, M.S.; Hintz, W.D.; Stoler, A.B.; Jones, D.K.; Mattes, B.M.; Relyea, R.A. Salty fertile lakes: How salinization and eutrophication alter the structure of freshwater communities. Ecosphere 2018, 9, e02383. [Google Scholar] [CrossRef]
- Jackson, A.G. Salinity tolerance and osmotic behavior of European carp (Cyprinus carpio L.) from the river Murray, Australia. Trans. R. Soc. Aust. 1981, 103, 185–189. [Google Scholar]
- Wang, J.Q.; Lui, H.; Po, H.; Fan, L. Influence of salinity on food consumption, growth and energy conversion efficiency of common carp (Cyprinus carpio) fingerlings. Aquaculture 1997, 148, 115–124. [Google Scholar] [CrossRef]
- Al-Faiz, A.F.; Jabir, A.; Yesser, A. Variance salinity concentrations effects on survival, growth and feeding of common carp (Cyprinus carpio) fingerlings. Iraqi J. Aquac. 2009, 6, 59–70. [Google Scholar] [CrossRef]
- Kang’ombe, J.; Brown, J.A. Effect of salinity on growth, feed utilization, and survival of Tilapia rendalli under laboratory conditions. J. Appl. Aquac. 2010, 20, 256–271. [Google Scholar] [CrossRef]
- Qiang, J.; Xu, P.; Wang, H.; Li, R.; Wang, H. Combined effect of temperature, salinity and density on the growth and feed utilization of Nile tilapia juveniles (Oreochromis niloticus). Aquac. Res. 2012, 43, 1344–1356. [Google Scholar]
- Al-Khshali, M.S.; Al Hilali, H.A. Influence of transfer to high salinity on chloride cells, oxygen and energy consumption in Common carp Cyprinus carpio. J. Anim. Sci. Prod. 2019, 2, 1–12. [Google Scholar]
- Kujawa, R.; Lach, M.; Pol, P.; Ptaszkowski, M.; Mamcarz, A.; Nowosad, J.; Furgała-Selezniow, G.; Kucharczyk, D. Influence of water salinity on the survival of embryos and growth of the sichel larvae Pelecus cultratus (L.) under controlled conditions. Aquac. Res. 2017, 48, 1302–1314. [Google Scholar] [CrossRef]
- Lawson, E.O.; Alake, S.A. Salinity adaptability and tolerance of hatchery reared comet goldfish Carassius auratus (Linnaeus 1758). Int. J. Zool. Res. 2011, 7, 68–76. [Google Scholar] [CrossRef] [Green Version]
- Ziemann, H. Untersuchungen über den Einfluß verdünnter Kaliendlaugen auf den Abbau organischer Substanzen im Wasser. Acta Hydrochim. Hydrobiol. 1973, 1, 257–265. [Google Scholar] [CrossRef]
- Schulz, C.J.; Cañedo-Argüelles, M. Lost in translation: The German literature on freshwater salinization. Philos. Trans. R. Soc. B 2019, 374, 20180007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skovrind, M.; Olsen, M.T.; Vieira, F.G.; Pacheco, G.; Carl, H.; Gilbert, M.T.P.; Møller, P.R.R. Genomic population structure of freshwater-resident and anadromous ide (Leuciscus idus) in north-western Europe. Ecol. Evol. 2016, 6, 1064–1074. [Google Scholar] [CrossRef]
- Febry, R.; Lutz, P. Energy partitioning in fish: The activity related cost of osmoregulation in a euryhaline cichlid. J. Exp. Biol. 1987, 128, 63–85. [Google Scholar] [CrossRef]
- Alderdice, D.F. Osmotic and ionic regulation in teleost eggs and larvae. In Fish Physiology; Hoar, W.S., Randall, D.J., Eds.; Academic Press: New York, NY, USA, 1988; Volume XIA, pp. 163–251. [Google Scholar]
- Bœuf, G.; Payan, P. How should salinity influence Fish growth? Comp. Biochem. Physiol. Part C 2001, 130, 411–423. [Google Scholar] [CrossRef]
- Varsamos, S.; Nebel, C.; Charmantier, G. Ontogeny of osmoregulation in postembryonic fish: A review. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2005, 141, 401–429. [Google Scholar] [CrossRef]
- Lax, S.; Peterson, E.W. Characterization of chloride transport in the unsaturated zone near salted road. Environ. Geol. 2009, 58, 1041–1049. [Google Scholar] [CrossRef]
- Coldsnow, K.D.; Mattes, B.M.; Hintz, W.D.; Relyea, R.A. Rapid evolution of tolerance to road salt in zooplankton. Environ. Pollut. 2017, 222, 367–373. [Google Scholar] [CrossRef] [PubMed]
- Van Dam, R.A.; Harford, A.J.; Lunn, S.A.; Gagnon, M.M. Identifying the cause of toxicity of a saline mine water. PLoS ONE 2014, 9, e106857. [Google Scholar] [CrossRef]
- Scheibener, S.A. In The Osmoregulatory Physiology in Aquatic Insects: Implications for Major Ion Toxicity in a Saltier World. Available online: https://repository.lib.ncsu.edu/bitstream/handle/1840.20/34347/etd.pdf?sequence=1 (accessed on 1 April 2023).
- Radke, L.C.; Juggins, S.; Halse, S.A.; De Deckker, P.; Finston, T. Chemical diversity in south-eastern Australian saline lakes II: Biotic implications. Mar. Freshw. Res. 2003, 54, 895–912. [Google Scholar] [CrossRef] [Green Version]
- Finlayson, C.M.; Davis, J.A.; Gell, P.A.; Kingsford, R.T.; Parton, K.A. The status of wetlands and the predicted effects of global climate change: The situation in Australia. Aquat. Sci. 2013, 75, 73–93. [Google Scholar] [CrossRef]
- Elphick, J.F.; Bergh, K.D.; Bailey, H.C. Chronic toxicity of chloride to freshwater species: Effects of harness and implications for water quality guidelines. Environ. Toxicol. Chem. 2011, 30, 239–246. [Google Scholar] [CrossRef] [PubMed]
- Moffett, E.R.; Baker, H.K.; Bonadonna, C.C.; Shurin, J.B.; Symons, C.C. Cascading effects of freshwater salinization on plankton communities in the Sierra Nevada. Limnol. Oceanogr. Lett. 2023, 8, 30–37. [Google Scholar] [CrossRef]
0 | 3 | 5 | 7 | |
---|---|---|---|---|
Initial mean body length (mm) | 7.5 ± 0.1 a | 7.5 ± 0.1 a | 7.5 ± 0.1 a | 7.5 ± 0.1 a |
Initial mean body weight (mg) | 2.2 ± 0.1 a | 2.2 ± 0.1 a | 2.2 ± 0.1 a | 2.2 ± 0.1 a |
Final mean body length (mm) | 21.9 ± 0.9 a | 22.6 ± 0.9 a | 19.3 ± 1.3 b | 18.9 ± 1.5 b |
Final mean body weight (mg) | 62.5 ± 3.4 a | 64.1 ± 4.2 a | 52.4 ± 4.8 b | 48.6 ± 6.2 b |
Initial stock (indiv.) | 1000 | 1000 | 1000 | 1000 |
Final stock (indiv.) | 986 ± 1.0 a | 970 ± 2.0 a | 946 ± 7.2 b | 832 ± 15.4 c |
Survival (%) | 98.6 ± 0.1 a | 97 ± 0.2 a | 94.6 ± 0.7 b | 83.2 ± 1.5 c |
Average weight gain of larvae (PM) (mg) | 60.3 ± 3.4 a | 61.9 ± 4.2 a | 50.2 ± 4.8 b | 46.4 ± 6.2 b |
Increase in total length (ITL) (mm·d−1) | 0.7 ± 0.0 a | 0.6 ± 0.1 a | 0.6 ± 0.1 b | 0.5 ± 0.1 b |
Relative growth rate (RGR) for weight (%·d−1) | 17.3 ± 0.3 a | 17.4 ± 0.4 a | 16.3 ± 0.5 b | 15.9 ± 0.7 b |
Relative growth rate (RGR) for length (%·d−1) | 5.4 ± 0.2 a | 5.4 ± 0.3 a | 4.6 ± 0.3 b | 4.5 ± 0.4 b |
Relative growth rate (RBR) for biomass (RBR) (%·d−1) | 17.2 ± 0.3 a | 17.3 ± 0.4 a | 16.0 ± 0.5 b | 14.9 ± 0.7 b |
Biomass (g·dm−3) | 2.5 ± 0.1 a | 2.5 ± 0.2 a | 2.0 ± 0.2 b | 1.6 ± 0.2 b |
Biomass (g) | 61.6 ± 3.4 a | 62.2 ± 4.1 a | 49.6 ± 4.5 b | 40.4 ± 5.2 b |
Salinity (ppt) | RFL (%) | RFW (%) | RFB (%) |
---|---|---|---|
0 | 100.00 | 100.00 | 100.00 |
3 | 103.4 | 102.6 | 101.0 |
5 | 88.2 | 83.9 | 80.5 |
7 | 86.7 | 77.7 | 65.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piech, P.; Kujawa, R. Effect of Different Water Salinities on the Larvae of the Blue Bream Ballerus ballerus (Linnaeus, 1758) during Rearing. Animals 2023, 13, 1245. https://doi.org/10.3390/ani13071245
Piech P, Kujawa R. Effect of Different Water Salinities on the Larvae of the Blue Bream Ballerus ballerus (Linnaeus, 1758) during Rearing. Animals. 2023; 13(7):1245. https://doi.org/10.3390/ani13071245
Chicago/Turabian StylePiech, Przemysław, and Roman Kujawa. 2023. "Effect of Different Water Salinities on the Larvae of the Blue Bream Ballerus ballerus (Linnaeus, 1758) during Rearing" Animals 13, no. 7: 1245. https://doi.org/10.3390/ani13071245
APA StylePiech, P., & Kujawa, R. (2023). Effect of Different Water Salinities on the Larvae of the Blue Bream Ballerus ballerus (Linnaeus, 1758) during Rearing. Animals, 13(7), 1245. https://doi.org/10.3390/ani13071245