Maternal Effects and Trophodynamics Drive Interannual Larval Growth Variability of Atlantic Bluefin Tuna (Thunnus thynnus) from the Gulf of Mexico
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling and Processing of ABFT Larvae and Plankton
2.2. Otolith Analyses
2.3. SIA Analyses of Larvae and Zooplankton
2.4. Estimation of Isotopic Maternal Signatures
2.5. Larval Trophic Positions
2.6. Maternal and Larval Isotopic Niche Widths and Overlaps
2.7. Statistical Analyses
3. Results
3.1. Environmental and Abiotic Variables
3.2. Larval Growth
3.3. Larval Trophic Variables
3.4. Trophic Niches
3.4.1. Maternal Trophic Niches
3.4.2. Larval Trophic Niches
4. Discussion
4.1. Maternal Influence (Pre-Flexion Larvae)
4.2. Trophic Behavior (Post-Flexion Larvae)
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
GOM17 | GOM18 | ANCOVA | ANOVA | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n | Min | Max | Mean ± SD | n | Min | Max | Mean ± SD | F1,154 | p | F1,154 | p | ||
TOTAL | δ15N | 83 | 3.27 | 6.16 | 4.47 ± 0.59 | 74 | 5.46 | 9.04 | 6.60 ± 0.78 | 454.78 | ** | ||
δ13C | −20.3 | −18.1 | −19.1 ± 0.34 | −20.5 | −18.2 | −18.8 ± 0.42 | 37.02 | ** | |||||
CN | 3.62 | 4.96 | 4.20 ± 0.27 | 3.86 | 7.97 | 4.40 ± 0.54 | 9.19 | ** | |||||
n | Min | Max | Mean ± SD | n | Min | Max | Mean ± SD | F1,82 | p | ||||
PRE | δ15N | 49 | 3.51 | 6.16 | 4.68 ± 0.61 | 36 | 5.72 | 9.04 | 7.06 ± 0.85 | 197.89 | ** | ||
δ13C | −20.3 | −18.1 | −19.1 ± 0.40 | −19.4 | −18.4 | −18.8 ± 0.23 | 21.6 | ** | |||||
CN | 3.93 | 4.96 | 4.33 ± 0.26 | 3.95 | 5.01 | 4.42 ± 0.27 | 0.602 | NS | |||||
n | Min | Max | Mean ± SD | n | Min | Max | Mean ± SD | F1,69 | p | F1,69 | p | ||
POST | δ15N | 34 | 3.27 | 5.21 | 4.17 ± 0.42 | 38 | 5.46 | 7.00 | 6.16 ± 0.35 | 474.88 | ** | ||
δ13C | −20 | −19 | −19.10 ± 0.23 | −20.5 | −18.20 | −18.80 ± 0.54 | 13.137 | ** | |||||
CN | 3.62 | 4.3 | 4.01 ± 0.14 | 3.86 | 7.97 | 4.37 ± 0.71 | 8.786 | ** | |||||
TP(1.46) | 3.77 | 5.10 | 4.38 ± 0.29 | 3.17 | 4.23 | 3.65 ± 0.24 | 136.49 | ** |
OPT(+) | DEF(−) | ANCOVA | ANOVA | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
GOM17 | n | Min | Max | Mean ± SD | n | Min | Max | Mean ± SD | F1,52 | p | F1,52 | p | ||
TOTAL | δ15N | 27 | 3.43 | 4.67 | 4.15 ± 0.33 | 28 | 3.79 | 5.86 | 4.75 ± 0.56 | 19.83 | ** | |||
δ13C | −19.4 | −18.7 | −19.1 ± 0.20 | −20.3 | −18.1 | −19.2 ± 0.46 | 2.626 | NS | ||||||
CN | 3.76 | 4.30 | 4.05 ± 0.13 | 3.62 | 4.96 | 4.33 ± 0.31 | 18.31 | ** | ||||||
GOM18 | n | Min | Max | Mean ± SD | n | Min | Max | Mean ± SD | F1,59 | p | F1,59 | p | ||
δ15N | 36 | 5.46 | 7.69 | 6.26 ± 0.46 | 26 | 5.69 | 9.04 | 6.95 ± 0.93 | 19.68 | ** | ||||
δ13C | −19.9 | −18.2 | −18.7 ± 0.40 | −19.9 | −18.3 | −18.8 ± 0.31 | 0.23 | NS | ||||||
CN | 3.86 | 5.01 | 4.26 ± 0.28 | 3.92 | 5.79 | 4.44 ± 0.39 | 5.324 | * | ||||||
GOM17 | n | Min | Max | Mean ± SD | n | Min | Max | Mean ± SD | F1,27 | p | F1,27 | p | ||
PRE | δ15N | 15 | 3.82 | 5.55 | 4.33 ± 0.44 | 15 | 3.96 | 5.86 | 4.94 ± 0.59 | 10.09 | ** | |||
δ13C | −19.4 | −18.8 | −19.1 ± 0.18 | −20.3 | −18.8 | −19.4 ± 0.47 | 3.985 | NS | ||||||
CN | 4.04 | 4.66 | 4.20 ± 0.17 | 4.06 | 4.82 | 4.43 ± 0.25 | 8.317 | ** | ||||||
GOM18 | n | Min | Max | Mean ± SD | n | Min | Max | Mean ± SD | F1,23 | p | F1,23 | p | ||
δ15N | 11 | 5.72 | 7.69 | 6.50 ± 0.56 | 14 | 6.06 | 9.04 | 7.53 ± 0.84 | 24.81 | ** | ||||
δ13C | −19.4 | −18.4 | −18.7 ± 0.29 | −19.0 | −18.4 | −18.7 ± 0.18 | 0.148 | NS | ||||||
CN | 3.95 | 5.01 | 4.36 ± 0.21 | 4.07 | 4.97 | 4.51 ± 0.29 | 1.71 | NS | ||||||
GOM17 | n | Min | Max | Mean ± SD | n | Min | Max | Mean ± SD | F1,26 | p | F1,26 | p | ||
POST | δ15N | 14 | 3.27 | 4.67 | 4.04 ± 0.44 | 11 | 3.79 | 4.95 | 4.33 ± 0.34 | 3.32 | NS | |||
δ13C | −19.3 | −18.7 | −19.1 ± 0.22 | −19.7 | −18.9 | −19.2 ± 0.21 | 2.37 | NS | ||||||
CN | 3.74 | 4.30 | 3.98 ± 0.15 | 3.62 | 4.20 | 4.03 ± 0.16 | 4.74 | * | ||||||
TP(1.46) | 3.77 | 4.72 | 4.29 ± 0.30 | 4.13 | 4.92 | 4.49 ± 0.23 | 3.32 | NS | ||||||
GOM18 | n | Min | Max | Mean ± SD | n | Min | Max | Mean ± SD | F1,26 | p | F1,26 | p | ||
δ15N | 15 | 5.46 | 6.63 | 6.10 ± 0.39 | 14 | 5.69 | 6.52 | 6.07 ± 0.26 | 0.078 | NS | ||||
δ13C | −19.7 | −18.2 | −18.6 ± 0.41 | −20.5 | −18.4 | −19.1 ± 0.61 | 9.72 | ** | ||||||
CN | 3.86 | 4.94 | 4.14 ± 0.26 | 3.92 | 7.97 | 4.73 ± 1.06 | 4.76 | * | ||||||
TP(1.46) | 3.17 | 3.97 | 3.61 ± 0.27 | 3.33 | 3.90 | 3.59 ± 0.18 | 0.078 | NS |
References
- Bakun, A.; Broad, K. Environmental ‘loopholes’ and fish population dynamics: Comparative pattern recognition with focus on El Nino effects in the Pacific. Fish. Ocean. 2003, 12, 458–473. [Google Scholar] [CrossRef]
- Bakun, A. Fronts and eddies as key structures in the habitat of marine fish larvae: Opportunity, adaptive response and competitive advantage. Sci. Mar. 2006, 70, 105–122. [Google Scholar] [CrossRef]
- Pauly, D.; Christensen, V.; Dalsgaard, J.; Froese, R.; Torres, F.C. Fishing down marine food webs. Science 1998, 279, 860–863. [Google Scholar] [CrossRef]
- Essington, T.E.; Schindler, D.E.; Olson, R.J.; Kitchell, J.F.; Boggs, C.; Hilborn, R. Alternative fisheries and the predation rate of yellowfin tuna in the eastern pacific ocean. Ecol. Appl. 2002, 12, 724–734. [Google Scholar] [CrossRef]
- Scheffer, M.; Carpenter, S.; Young, B. Cascading effects of overfishing marine systems. Trends Ecol. Evol. 2005, 20, 579–581. [Google Scholar] [CrossRef] [PubMed]
- Rooker, J.R.; Alvarado Bremer, J.R.; Block, B.A.; Dewar, H.; de Metrio, G.; Corriero, A.; Krause, R.T.; Prince, E.D.; Rodríguez-Marín, E.; Secor, D.H. Life history and stock structure of Atlantic bluefin tuna (Thunnus thynnus). Rev. Fish. Sci. 2007, 15, 265–310. [Google Scholar] [CrossRef]
- McDowell, J.R.; Carlsson, J.E.L.; Graves, J.E. Genetic identity of YOY bluefin tuna from the eastern and western Atlantic spawning areas. J. Hered. 2007, 98, 23–28. [Google Scholar]
- Rooker, J.R.; Secor, D.H.; DeMetrio, G.; Kaufman, A.J.; Ríos, A.B.; Ticina, V. Evidence of trans-Atlantic movement and natal homing of bluefin tuna from stable isotopes in otoliths. Mar. Ecol. Prog. Ser. 2008, 368, 231–239. [Google Scholar] [CrossRef]
- Johnstone, C.; Pérez, M.; Malca, E.; Quintanilla, J.M.; Gerard, T.; Lozano-Peral, D.; Alemany, F.; Lamkin, J.; García, A.; Laiz-Carrión, R. Genetic connectivity between Atlantic bluefin tuna larvae spawned in the Gulf of Mexico and in the Mediterranean Sea. PeerJ 2021, 9, e11568. [Google Scholar] [CrossRef]
- Deshpande, A.D.; Dickhut, R.M.; Dockum, B.W.; Farrington, C.; Brill, R.W. Polychlorinated biphenyls and organochlorine pesticides as intrinsic tracer tags of foraging grounds of bluefin tuna in the Northwest Atlantic Ocean. Mar. Pollut. Bull. 2016, 105, 265–276. [Google Scholar] [CrossRef]
- Druon, J.N.; Fromentin, J.M.; Hanke, A.; Arrizabalaga, H.; Damalas, D.; Ticina, V.; Quílez-Badia, G.; Ramirez, K.; Arregui, I.; Tserpes, G.; et al. Habitat suitability of the Atlantic bluefin tuna by size class: An ecological niche approach. Prog. Oceanogr. 2016, 142, 30–46. [Google Scholar] [CrossRef]
- ICCAT. Report of the 2019 Intersessional Meeting of the ICCAT Bluefin Tuna Species Group. Collect. Vol. Sci. Pap. ICCAT 2019, 76, 1–70. [Google Scholar]
- Puncher, G.N.; Hanke, A.; Busawon, D.; Sylvester, E.V.A.; Golet, W.; Hamilton, L.C.; Pavey, S.A. Individual assignment of Atlantic bluefin tuna in the northwestern Atlantic Ocean using single nucleotide polymorphisms reveals an increasing proportion of migrants from the eastern Atlantic Ocean. Can. J. Fish. Aquat. Sci 2022, 79, 111–123. [Google Scholar] [CrossRef]
- Laiz-Carrión, R.; Gerard, T.; Suca, J.J.; Malca, E.; Uriarte, A.; Quintanilla, J.M.; Privoznik, S.L.; Llopiz, J.K.; Lamkin, J.; García, A. Stable isotope analysis indicates resource partitioning and trophic niche overlap in larvae of four tuna species in the Gulf of Mexico. Mar. Ecol. Prog. Ser. 2019, 619, 53–68. [Google Scholar] [CrossRef]
- Medina, A. Reproduction of Atlantic bluefin tuna. Fish Fish. 2020, 21, 1109–1119. [Google Scholar] [CrossRef]
- Muhling, B.A.; Lamkin, J.T.; Alemany, F.; García, A.; Farley, J.; Ingram, G.W., Jr.; Alvarez Berastegui, D.A.; Reglero, P.; Carrión, R. Reproduction and larval biology in tunas, and the importance of restricted area spawning grounds. Rev. Fish Biol. Fish. 2017, 27, 697–732. [Google Scholar] [CrossRef]
- Alemany, F.; Quintanilla, L.; Velez-Belchi, P.; García, A.; Cortés, D.; Rodróguez, J.M.; Fernández de Puelles, M.L.; González-Pola, C.; López-Jurado, J.L. Characterization of the spawning hábitat of atlantic bluefin tuna and related species in the Balearic Sea (western Mediterranean). Prog. Oceanogr. 2010, 86, 21–38. [Google Scholar] [CrossRef]
- Biggs, D.C.; Müller-Karger, F.E. Ship and satellite observations of chlorophyll stocks in interacting cyclone-anticyclone eddy pairs in the western Gulf of Mexico. J. Geophys. Res. Ocean. 1994, 99, 7371–7384. [Google Scholar] [CrossRef]
- Hidalgo-González, R.M.; Alvarez-Borrego, S.; Fuentes-Yaco, C.; Platt, T. Satellite-derived total and new phytoplankton production in the Gulf of Mexico. Indian J. Mar. Sci. 2005, 34, 408–417. [Google Scholar]
- Fahnenstiel, G.; Mccormick, M.J.; Lang, G.A.; Redalje, D.G.; Lohrenz, S.E.; Markowitz, M.; Wagoner, B.; Carrick, H.J. Taxon-specific growth and loss rates for dominant phytoplankton populations from the northern Gulf of Mexico. Mar. Ecol. Prog. Ser. 1995, 117, 229–239. [Google Scholar] [CrossRef]
- Rabalais, N.; Turner, R.E.; Dortch, Q.; Justic, D.; Bierman, V.J.R.; Wiseman, W.J.R. Nutrient-enhanced productivity in the northern Gulf of Mexico: Past, present and future. Hydrobiologia 2002, 475/476, 39–63. [Google Scholar] [CrossRef]
- Lohrenz, S.E.; Redalje, D.G.; Cai, W.J.; Acker, J.; Dagg, M. A retrospective analysis of nutrients and phytoplankton productivity in the Mississippi River plume. Cont. Shelf Res. 2008, 28, 1466–1475. [Google Scholar] [CrossRef]
- Liu, H.; Dagg, M. Interactions between nutrients, phytoplankton growth, and micro- and mesozooplankton grazing in the plume of the Mississippi River. Mar. Ecol. Prog. Ser. 2003, 258, 31–42. [Google Scholar] [CrossRef]
- Qian, Y.; Jochens, A.E.; Kennicutt, M.C., II; Biggs, D.C. Spatial and temporal variability of phytoplankton biomass and community structure over the continental margin of the Northeast Gulf of Mexico based on pigment analysis. Cont. Shelf Res. 2003, 23, 1–17. [Google Scholar] [CrossRef]
- Wawrik, B.; Paul, J.H. Phytoplankton community structure and productivity along the axis of the Mississippi River plume in oligotrophic Gulf of Mexico waters. Aquat. Microb. Ecol. 2004, 35, 185–196. [Google Scholar] [CrossRef]
- Lindo-Atichati, D.; Bringas, F.; Goni, G.; Muhling, B.; Muller-Karger, F.E.; Habtes, S. Varying mesoscale structures influence larval fish distribution in the northern Gulf of Mexico. Mar. Ecol. Prog. Ser. 2012, 463, 245–257. [Google Scholar] [CrossRef]
- Vukovich, F.M. Climatology of ocean features in the Gulf of Mexico using satellite remote sensing data. J. Phys. Oceanogr. 2007, 37, 689–707. [Google Scholar] [CrossRef]
- Bracco, A.; Choi, J.; Joshi, K.; Luo, H.; McWilliams, J.C. Submesoscale currents in the northern Gulf of Mexico: Deep phenomena and dispersion over the continental slope. Ocean Model. 2016, 101, 43–58. [Google Scholar] [CrossRef]
- Bakun, A. Ocean eddies, predator pits and bluefin tuna: Implications of an inferred ‘low risk–limited payoff’ reproductive scheme of a (former) archetypical top predator. Fish Fish. 2013, 14, 424–438. [Google Scholar] [CrossRef]
- Muhling, B.A.; Lamkin, J.T.; Roffer, M.A. Predicting the occurrence of bluefin tuna (Thunnus thynnus) larvae in the northern GOM: Building a classification model from archival data. Fish. Ocean. 2010, 19, 526–539. [Google Scholar] [CrossRef]
- Tanaka, Y.; Satoh, K.; Iwahashi, M.; Yamada, H. Growth dependent recruitment of Pacific bluefin tuna (Thunnus orientalis) in the northwestern Pacific Ocean. Mar. Ecol. Prog. Ser. 2006, 319, 225–235. [Google Scholar] [CrossRef]
- Wexler, J.B.; Chow, S.; Wakabayashi, T.; Nohara, K.; Margulies, D. Temporal variation in growth of yellowfin tuna (Thunnus albacares) larvae in the Panama Bight, 1990–97. Fish. Bull 2007, 105, 1–18. [Google Scholar]
- García, A.; Cortés, D.; Quintanilla, J.; Ramirez, T.; Quintanilla, L.; Rodrıíguez, J.M.; Alemany, F. Climate-induced environmental conditions influencing interannual variability of Mediterranean bluefin (Thunnus thynnus) larval growth. Fish. Ocean. 2013, 22, 273–287. [Google Scholar] [CrossRef]
- Satoh, K.; Tanaka, Y.; Masujima, M.; Okazaki, M.; Kato, Y.; Shono, H.; Suzuki, K. Relationship between the growth and survival of larval Pacific bluefin tuna, Thunnus orientalis. Mar. Biol. 2013, 160, 691–702. [Google Scholar] [CrossRef]
- Reglero, P.; Tittensor, D.P.; Álvarez-Berastegui, D.; Aparicio-González, A.; Worm, B. Worldwide distributions of tuna larvae: Revisiting hypotheses on environmental requirements for spawning habitats. Mar. Ecol. Prog. Ser. 2014, 501, 207–224. [Google Scholar] [CrossRef]
- Chambers, R.C.; Leggett, W.C. Size and age at metamorphosis in marine fishes: An analysis of laboratory- reared winter flounder (Pseudopleuronectes americanus) with a review of variation in other species. Can. J. Fish. Aquat. Sci. 1987, 44, 1936–1947. [Google Scholar] [CrossRef]
- Houde, E.D. Fish early life dynamics and recruitment variability. Am. Fish. Soc. Symp. Ser. 1987, 2, 17–29. [Google Scholar]
- Kimura, S.; Kato, Y.; Kitigawa, T.; Yamaoka, N. Impacts of environmental variability and global warming scenario on Pacific bluefin tuna (Thunnus orientalis) spawning grounds and recruitment habitat. Prog. Oceanogr. 2010, 86, 39–44. [Google Scholar] [CrossRef]
- Suzuki, Z.; Kimoto, A.; Sakai, O. Note on the strong 2003 year-class that appeared in the Atlantic bluefin fisheries. Collect. Vol. Sci. Pap. ICCAT 2013, 69, 229–234. [Google Scholar]
- Costalago, D.; Tecchio, S.; Palomera, I.; Alvarez-Calleja, I.; Ospina-Alvarez, A.; Raicevich, S. Ecological understanding for fishery management: Condition and growth of anchovy late larvae during different seasons in the Northwestern Mediterranean. Estuar. Coast. Shelf Sci. 2011, 93, 350–358. [Google Scholar] [CrossRef]
- Pepin, P.; Robert, D.; Bouchard, C.; Dower, J.F.; Falardeau, M.; Fortier, L.; Jenkins, G.P.; Leclerc, V.; Levesque, K.; Llopiz, J.K.; et al. Once upon a larva: Revisiting the relationship between feeding success and growth in fish larvae. ICES J. Mar. Sci. 2015, 72, 359–373. [Google Scholar] [CrossRef]
- Cata, E.; Olivar, M.P.; Villate, F.; Uriarte, I. A comparison of anchovy (Engraulis encrasicolus) and sardine (Sardina pilchardus) larvae feeding in the Northwest Mediterranean: Influence of prey availability and ontogeny. ICES J. Mar. Sci. 2010, 67, 897–908. [Google Scholar]
- Catalán, I.A.; Tejedor, A.; Alemany, F.; Reglero, P. Trophic ecology of Atlantic bluefin tuna (Thunnus thynnus) larvae. J. Fish Biol. 2011, 78, 1545–1560. [Google Scholar] [CrossRef] [PubMed]
- Llopiz, J.K.; Muhling, B.A.; Lamkin, J.T. Feeding dynamics of Atlantic bluefin tuna (Thunnus thynnus) larvae in the Gulf of Mexico. Collect. Vol. Sci. Pap. ICCAT 2015, 71, 1710–1715. [Google Scholar]
- Shiroza, A.; Malca, E.; Lamkin, J.T.; Gerard, T.; Landry, M.R.; Stukel, M.R.; Laiz-Carrión, R.; Swalethorp, R. Diet and prey selection in developing larvae of Atlantic bluefin tuna (Thunnus thynnus) in spawning grounds of the Gulf of Mexico. J. Plank. Res. 2022, 44, 728–746. [Google Scholar] [CrossRef]
- Logan, J.; Haas, H.; Deegan, L.; Gaines, E. Turnover rates of nitrogen stable isotopes in the salt marsh mummichog, Fundulus heteroclitus, following a laboratory diet switch. Oecologia 2006, 147, 391–395. [Google Scholar] [CrossRef]
- Laiz-Carrion, R.; Cabrero, A.; Quintanilla, J.M.; Hernández, A.; Uriarte, A.; Gago, J.; Rodríguez, J.M.; Piñeiro, C.; García, A.; Saborido-Rey, F. Shifts in the seasonal trophic ecology of larvae and juveniles of European hake (Merluccius merluccius): From the Galician upwelling system (NW Spain). Fish. Oceanogr. 2022, 31, 539–553. [Google Scholar] [CrossRef]
- Minagawa, M.; Wada, E. Stepwise enrichment of δ15N along food chains: Further evidence and the relation between δ15N and animal age. Geochim. Cosmochim. Acta 1984, 48, 1135–1140. [Google Scholar] [CrossRef]
- Peterson, B.J.; Fry, B. Stable isotopes in ecosystem studies. Ann. Rev. Ecol. Syst. 1987, 18, 293–320. [Google Scholar] [CrossRef]
- Post, D.M. Using stable isotopes to estimate trophic position: Models, methods, and assumptions. Ecology 2002, 83, 703–718. [Google Scholar] [CrossRef]
- France, R.L.; Peters, R.H. Ecosystem differences in δ13C enrichment in aquatic foodwebs. Can. J. Fish Aquat. Sci. 1997, 54, 1255–1258. [Google Scholar] [CrossRef]
- Laiz-Carrion, R.; Gerard, T.; Uriarte, A.; Malca, E.; Quintanilla, J.M.; Muhling, B.A.; Alemany, F.; Privoznik, S.L.; Shiroza, A.; Lamkin, J.T.; et al. Trophic ecology of Atlantic bluefin tuna (Thunnus thynnus) larvae from the Gulf of Mexico and NW Mediterranean spawning grounds: A comparative stable isotope study. PLoS ONE 2015, 10, e0133406. [Google Scholar]
- Uriarte, A.; García, A.; Ortega, A.; De La Gándara, F.; Quintanilla, J.; Laiz-Carrión, R. Isotopic discrimination factors and nitrogen turnover rates in reared Atlantic bluefin tuna larvae (Thunnus thynnus): Effects of maternal transmission. Sci. Mar. 2016, 80, 447–456. [Google Scholar] [CrossRef]
- García, A.; Laiz-Carrión, R.; Uriarte, A.; Quintanilla, J.; Morote, E.; Rodriguez, J.; Alemany, F. Differentiated stable isotopes signatures between pre- and post-flexion larvae of Atlantic bluefin tuna (Thunnus thynnus) and of its associated tuna species of the Balearic Sea (NW Mediterranean). Deep. Sea Res. Part II 2017, 140, 18–24. [Google Scholar] [CrossRef]
- Starrs, D.; Davis, J.T.; Schlaefer, J.; Ebner, B.C.; Eggins, S.M.; Fulton, C.J. Maternally transmitted isotopes and their effects on larval fish: A validation of dual isotopic marks within a meta-analysis context. Can. J. Fish. Aquat. Sci. 2014, 71, 387–397. [Google Scholar] [CrossRef]
- Quintanilla, J.M.; Laiz-Carrión, R.; García, A.; Quintanilla, L.F.; Cortés, D.; Gómez-Jakobsen, F.; Yebra, L.; Salles, S.; Putzeys, S.; León, P.; et al. Early life trophodynamic influence on daily growth patterns of the Alboran Sea sardine (Sardina pilchardus) from two distinct nursery habitats (Bays of Málaga and Almerı́a) in the Western Mediterranean Sea. Mar. Env. Res. 2020, 162, 105195. [Google Scholar] [CrossRef]
- Quezada-Romegialli, C.; Jackson, A.L.; Hayden, B.; Kahilainen, K.K.; Lopes, C.; Harrod, C. tRophicPosition, an r package for the Bayesian estimation of trophic position from consumer stable isotope ratios. Methods Ecol. Evol. 2018, 9, v1592–v1599. [Google Scholar] [CrossRef]
- Polunin, N.V.C.; Pinnegar, J.K. Trophic ecology and the structure of marine food webs. In Handbook of Fish and Fisheries; Hart, P.J.B., Reynolds, J.C., Eds.; Blackwell: Oxford, UK, 2002; Volume I, pp. 310–320. [Google Scholar]
- Jackson, A.L.; Inger, R.; Parnell, A.C.; Bearhop, S. Comparing isotopic niche widths among and within communities: SIBER–Stable Isotope Bayesian Ellipses in R. J. Anim. Ecol. 2011, 80, 595–602. [Google Scholar] [CrossRef]
- Bearhop, S.; Adams, C.E.; Waldron, S.; Fuller, R.A.; MacLeod, H. Determining trophic niche width: A novel approach using stable isotope analysis. J. Anim. Ecol. 2004, 73, 1007–1012. [Google Scholar] [CrossRef]
- Newsome, S.; Martínez del Rio, C.; Bearhop, S.; Phillips, D. A niche for isotopic ecology. Front. Ecol. Environ. 2007, 5, 429–436. [Google Scholar] [CrossRef]
- Syväranta, J.; Lensu, A.; Marjomäki, T.J.; Oksanen, S.; Jones, R.I. An empirical evaluation of the utility of convex hull and standard ellipse areas for assessing population niche widths from stable isotope data. PLoS ONE 2013, 8, e56094. [Google Scholar]
- Gerard, T.; Lamkin, J.T.; Kelly, B.T.; Knapp, N.A.; Laiz-Carrión, R.; Malca, E.; Selph, K.E.; Shiroza, A.; Shropshire, T.A.; Stukel, M.R.; et al. Bluefin Larvae in Oligotrophic Ocean Foodwebs, investigations of nutrients to zooplankton: Overview of the BLOOFINZ-Gulf of Mexico program. J. Plankton Res. 2022, 44, 600–617. [Google Scholar] [CrossRef]
- Malca, E.; Quintanilla, J.M.; Gerard, T.; Alemany, F.; Sutton, T.; García, A.; Lamkin, J.T.; Laiz-Carrión, R. Differential larval growth strategies and trophodynamics of larval Atlantic bluefin tuna (Thunnus thynnus) from two discrete spawning grounds. Front. Mar. Sci. 2023, 10, 1233249. [Google Scholar] [CrossRef]
- Quintanilla, J.M.; Malca, E.; Gerard, T.; Lamkin, J.T.; Garcı́a, A.; Laiz-Carrión, R. Evidence of isotopic maternal transmission for bluefin tuna (Thunnus thynnus) larval growth. Mar. Environ. Res. 2023, 190, 106112. [Google Scholar] [CrossRef] [PubMed]
- Malca, E.; Shropshire, T.M.; Landry, M.R.; Quintanilla, J.M.; Laiz-Carrión, R.; Shiroza, A.; Stukel, M.R.; Lamkin, J.; Gerard, T.; Swalethorp, R. Influence of food quality on larval growth of Atlantic bluefin tuna (Thunnus thynnus) in the Gulf of Mexico. J. Plankton Res. 2022, 44, 474–762. [Google Scholar] [CrossRef]
- Logan, J.M.; Jardine, T.D.; Miller, T.J.; Bunn, S.E.; Cunjak, R.A.; Lutcavage, M.E. Lipid corrections in carbon and nitrogen stable isotope analyses: Comparison of chemical extraction and modelling methods. J. Anim. Ecol. 2008, 77, 838–846. [Google Scholar] [CrossRef] [PubMed]
- Bode, A.; Alvarez-Ossorio, M.T.; Cunha, M.E.; Garrido, S.; Peleteiro, J.B.; Porteiro, C.; Valdés, L.; Varela, M. Stable nitrogen isotope studies of the pelagic food web on the Atlantic Shelf of the Iberian Peninsula. Prog. Oceanogr. 2007, 74, 115–131. [Google Scholar] [CrossRef]
- Varela, J.L.; de la Gándara, F.; Ortega, A.; Medina, A. 13C and 15N analysis in muscle and liver of wild and reared young-of-the-year (YOY) Atlantic bluefin tuna. Aquaculture 2012, 354–355, 17–21. [Google Scholar] [CrossRef]
- Sokal, R.R.; Rohlf, F.J. Biometría. In Principios y Métodos Estadísticos en la Investigación Biológica; Tursen, S.A., Ed.; Hermann Blume Ediciones: Madrid, Spain, 1979. [Google Scholar]
- Quintanilla, J.M.; Laiz-Carrión, R.; Uriarte, A.; García, A. Influence of trophic pathways on daily growth patterns of Western Mediterranean anchovy (Engraulis encrasicolus) larvae. Mar. Ecol. Prog. Ser. 2015, 531, 263–275. [Google Scholar] [CrossRef]
- Pepin, P. Effect of temperature and size on development, mortality, and survival rates of the pelagic early life history stages of Marine Fish. Can. J. Fish. Aquat. Sci. 1991, 48, 503–518. [Google Scholar] [CrossRef]
- Chick, J.H.; Van Den Avyle, M.J. Effects of feeding ration on larval swimming speed and responsiveness to predator attacks: Implications for cohort survival. Can. J. Fish. Aquat. Sci 2000, 57, 106–115. [Google Scholar] [CrossRef]
- Pitchford, J.W.; Brindley, J. Prey patchiness, predator survival and fish recruitment. Bull. Math. Biol. 2001, 63, 527–546. [Google Scholar] [CrossRef]
- Hjort, J. Fluctuations in the great fisheries of Norther Europe. Rapp. Procés-Verbaux 1914, 20, 1–228. [Google Scholar]
- Hjort, J. Fluctuations in the year classes of important food fishes. ICES J. Mar. Sci. 1926, 1, 5–38. [Google Scholar] [CrossRef]
- Schismenou, E.; Giannoulaki, M.; Tsiaras, K.; Lefkaditou, E.; Triantafyllou, G.; Somarakis, S. Disentangling the effects of inherent otolith growth and model-simulated ecosystem parameters on the daily growth rate of Young anchovies. Mar. Ecol. Prog. Ser 2014, 515, 227–237. [Google Scholar] [CrossRef]
- Takahashi, M.; Watanabe, Y. Growth rate-dependent recruitment of Japanese anchovy (Engraulis japonicus) in the Kuroshio–Oyashio transitional waters. Mar. Ecol. Prog. Ser. 2004, 266, 227–238. [Google Scholar] [CrossRef]
- Tsuda, Y.; Sakamoto, W.; Yamamoto, S.; Murata, O. Effect of environmental fluctuations on mortality of juvenile Pacific bluefin tuna, Thunnus orientalis, in closed life-cycle aquaculture. Aquaculture 2012, 330–333, 142–147. [Google Scholar] [CrossRef]
- Aranda, G.; Abascal, F.J.; Varela, J.L.; Medina, A. Spawning Behaviour and Post-Spawning Migration Patterns of Atlantic Bluefin Tuna (Thunnus thynnus) Ascertained from Satellite Archival Tags. PLoS ONE 2013, 8, e76445. [Google Scholar]
- Varela, J.L.; Spares, A.D.; Stokesbury, M.J. Feeding ecology of Atlantic bluefin tuna (Thunnus thynnus) in the Gulf of Saint Lawrence, Canada. Mar. Environ. Res. 2020, 161, 105087. [Google Scholar] [CrossRef]
- Goolish, E.M.; Alderman, I.R. Effects of ration size and temperature on the growth of juvenile common carp (Cyprinus carpio L.). Aquaculture 1984, 36, 27–35. [Google Scholar] [CrossRef]
- Catalán, I.A.; Folkvord, A.; Palomera, I.; Quílez-Badía, G.; Kallianoti, F.; Tselepides, A.; Kallianotis, A. Growth and feeding patterns of European anchovy (Engraulis encrasicolus) early life stages in the Aegean Sea (NE Mediterranean). Estuar. Coast. Shelf Sci. 2010, 86, 299–312. [Google Scholar] [CrossRef]
- Wilson, D.; Meekan, M.G. Growth-related advantages for survival to the point of replenishment in the coral reef fish Stegastes partitus (Pomacentridae). Mar. Ecol. Prog. Ser. 2002, 231, 247–260. [Google Scholar] [CrossRef]
- Caldarone, E.M.; Onge-Burns, J.M.S.; Buckley, L.J. Relationship of RNA/DNA ratio and temperature to growth in larvae of Atlantic cod (Gadus morhua). Mar. Ecol. Prog. Ser. 2003, 262, 229–240. [Google Scholar] [CrossRef]
- Kouwenberg, A.L.; Hipfner, J.M.; McKay, D.W.; Storey, A.E. Corticosterone and stable isotopes in feathers predict egg size in Atlantic Puffins Fratercula arctica. Ibis 2013, 155, 413–418. [Google Scholar] [CrossRef]
- Bernardo, J.H. Maternal effects in animal ecology. Am. Zool. 1996, 36, 83–105. [Google Scholar] [CrossRef]
- Letcher, B.H.; Rice, J.A.; Crowder, L.B.; Rose, K.A. Variability in survival of larval fish: Disentangling components with a generalized individual-based model. Can. J. Fish. Aquat. Sci. 1996, 53, 787–801. [Google Scholar] [CrossRef]
- Sará, G.; Sará, R. Feeding habits and trophic levels of bluefin tuna (Thunnus thynnus) of different size classes in the Mediterranean Sea. J. Appl. Ichthyol 2007, 23, 122–127. [Google Scholar] [CrossRef]
- Logan, J.M.; Rodríguez-Marín, E.; Goñi, N.; Barreiro, S.; Arrizabalaga, H.; Golet, W.; Lutcavage, M. Diet of young Atlantic bluefin tuna (Thunnus thynnus) in eastern and western Atlantic foraging grounds. Mar. Biol. 2011, 158, 73–85. [Google Scholar] [CrossRef]
- Butler, C.M.; Logan, J.M.; Provaznik, J.M.; Hoffmayer, E.R.; Staudinger, M.D.; Quattro, J.M.; Roberts, M.A.; Ingram, G.W., Jr.; Pollack, A.G.; Lutcavage, M.E. Atlantic bluefin tuna (Thunnus thynnus) feeding ecology in the northern Gulf of Mexico: A preliminary description of diet from the western Atlantic spawning grounds. J. Fish Biol. 2015, 86, 365–374. [Google Scholar] [CrossRef]
- Sorell, J.M.; Varela, J.L.; Goñi, N.; Macías, D.; Arrizabalaga, H.; Madina, A. Diet and consumption rate of Atlantic bluefin tuna (Thunnus thynnus) in the Strait of Gibraltar. Fish. Res. 2017, 188, 112–120. [Google Scholar] [CrossRef]
- Varela, J.L.; Rojo-Nieto, E.; Sorell, J.M.; Medina, A. Using stable isotope analysis to assess trophic relationships between Atlantic bluefin tuna (Thunnus thynnus) and striped dolphin (Stenella coeruleoalba) in the Strait of Gibraltar. Mar. Environ. Res. 2018, 139, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Lesser, J.S.; James, W.R.; Stallings, C.D.; Wilson, R.M.; Nelson, J.A. Trophic niche size and overlap decreases with increasing ecosystem productivity. Oikos 2020, 129, 1303–1313. [Google Scholar] [CrossRef]
- Galuardi, B.; Royer, F.; Golet, W.; Logan, J.; Neilson, J.; Lutcavage, M.E.; Wilson, S.G.; Jonsen, I.D.; Schallert, R.J.; Ganong, J.E.; et al. Complex migration routes of Atlantic bluefin tuna (Thunnus thynnus) question current population structure paradigm. Can. J. Fish. Aquat. Sci. 2010, 67, 966–976. [Google Scholar] [CrossRef]
- Wilson, S.G.; Lawson, G.L.; Stokesbury, M.J.W.; Spares, A.; Boustany, A.M.; Neilson, J.D.; Block, B.A. Movements of Atlantic bluefin tuna from the Gulf of St Lawrence to their spawning grounds. ICCAT Col. Vol. Sci. Pap. 2011, 66, 1247–1256. [Google Scholar]
- MacArthur, R.H.; Pianka, E.R. On optimal use of a patchy environment. Am. Nat. 1996, 100, 603–609. [Google Scholar] [CrossRef]
- O’Farrell, S.; Bearhop, S.; McGill, R.A.R.; Dahlgren, C.P.; Brumbaugh, D.R.; Mumby, P.J. Habitat and body size effects on the isotopic niche space of invasive lionfish and endangered Nassau grouper. Ecosphere 2014, 5, 1–11. [Google Scholar] [CrossRef]
- Montoya, J.P. Natural abundance of 15N in marine planktonic ecosystems. In Stable Isotopes in Ecology and Environmental Science; Michener, R., Lajtha, K., Eds.; Wiley-Blackwell: Hoboken, NJ, USA, 2007; pp. 176–194. [Google Scholar]
- Morote, E.; Olivar, M.P.; Pankhurst, P.M.; Villate, F.; Uriarte, I. Trophic ecology of bullet tuna Auxis rochei larvae and ontogeny of feeding-related organs. Mar. Ecol. Prog. Ser. 2008, 353, 243–254. [Google Scholar] [CrossRef]
- Kwan, G.T.; Walsh, K.A.; Thompson, A.R.; Ben-Aderet, N.J.; Fennie, H.W.; Semmens, B.X.; Swalethorp, R. Trophic efficiency facilitates larval Shortbelly Rockfish (Sebastes jordani) development. Mar. Coast. Fish. Under review. [CrossRef]
- Caut, S.; Angulo, E.; Courchamp, F. Variation in discriminant factors (δ15N and δ13C): The effect of diet isotopic values and applications for diet reconstruction. J. Appl. Ecol. 2009, 46, 443–453. [Google Scholar] [CrossRef]
- Swalethorp, R.; Landry, M.R.; Semmens, B.X.; Ohman, M.D.; Aluwihare, L.; Chargualaf, D.; Thompson, A.R. Anchovy boom and bust linked to trophic shifts in larval diet. Nat. Commun. 2023, 14, 7412. [Google Scholar] [CrossRef]
- Stukel, M.R.; Gerard, T.; Kelly, T.B.; Knapp, A.N.; Laiz-Carrión, R.; Lamkin, J.T.; Landry, M.R.; Malca, E.; Selph, K.E.; Shiroza, A.; et al. Plankton food webs in the oligotrophic Gulf of Mexico spawning grounds of Atlantic bluefin tuna. J. Plankton Res. 2022, 44, 763–781. [Google Scholar] [CrossRef] [PubMed]
- Landry, M.R.; Beckley, L.E.; Muhling, B.A. Climate sensitivities and uncertainties in food-web pathways supporting larval bluefin tuna in subtropical oligotrophic oceans. ICES J. Mar. Sci. 2019, 76, 359–369. [Google Scholar] [CrossRef]
- Knapp, A.N.; Thomas, R.K.; Stukel, M.R.; Kelly, T.B.; Landry, M.R.; Selph, K.E.; Malca, E.; Gerard, T.; Lamkin, J. Constraining the sources of nitrogen fueling export production in the Gulf of Mexico using nitrogen isotope budgets. J. Plankton Res. 2022, 44, 692–710. [Google Scholar] [CrossRef]
- Kelly, T.B.; Knapp, A.N.; Landry, M.R.; Selph, K.E.; Shropshire, T.A.; Thomas, R.K.; Stukel, M.R. Lateral advection supports nitrogen export in the oligotrophic open-ocean Gulf of Mexico. Nat. Commun. 2021, 12, 3325. [Google Scholar] [CrossRef] [PubMed]
- Tilley, J.D.; Butler, C.M.; Suárez-Morales, E.; Franks, J.S.; Hoffmayer, E.R.; Gibson, D.; Comyns, B.H.; Ingram, G.W., Jr.; Blake, E.M. Feeding ecology of larval Atlantic bluefin tuna, Thunnus thynnus, from the central Gulf of Mexico. Bull. Mar. Sci. 2016, 92, 321–334. [Google Scholar] [CrossRef]
- Uriarte, A.; Johnstone, C.; Laiz-Carrión, R.; García, A.; Llopiz, J.K.; Shiroza, A.; Quintanilla, J.M.; Lozano-Peral, D.; Reglero, P.; Alemany, F. Evidence of density-dependent cannibalism in the diet of wild Atlantic bluefin tuna larvae (Thunnus thynnus) of the Balearic Sea (N.W. Mediterranean). Fish. Res. 2019, 212, 63–71. [Google Scholar] [CrossRef]
- Landry, M.R.; Swalethorp, R. Mesozooplankton biomass, grazing and trophic structure in the bluefin tuna spawning area of the oceanic Gulf of Mexico. J. Plankton Res. 2022, 44, 677–691. [Google Scholar] [CrossRef]
- Wells, R.J.D.; Rooker, J.R. Feeding ecology of pelagic fish larvae and juveniles in slope waters of the Gulf of Mexico. J. Fish Biol. 2009, 75, 1719–1732. [Google Scholar] [CrossRef] [PubMed]
- Kloppmann, M.H.F.; Hillgruber, N.; Von Westernhagen, H. Wind-mixing effects on feeding success and condition of blue whiting larvae in the Porcupine Bank area. Mar. Ecol. Prog. Ser. 2002, 235, 263–277. [Google Scholar] [CrossRef]
- Ingram, G.W.; Alemany, F.; Álvarez-Berastegui, D.; Garcia, A. Development of indices of larval bluefin tuna (Thunnus thynnus) in the western Mediterranean sea. ICCAT Collect. Vol. Sci. Pap. 2013, 69, 1057–1076. [Google Scholar]
Population | n | Maternal Isotopic Signature Estimation Equation | p | R2 |
---|---|---|---|---|
GOM17 | 49 | (δ15NEGG − δ15NLARVAE) = (7.206 + 0.047 * AGE) | NS | 0.01 |
(δ13CEGG − δ13CLARVAE) = (0.467 + 0.091 * AGE) | * | 0.09 | ||
GOM18 | 52 | (δ15NEGG − δ15NLARVAE) = (0.975 + 0.527 * AGE) | ** | 0.52 |
(δ13CEGG − δ13CLARVAE) = (2.423 – 0.200 * AGE) | ** | 0.45 |
GOM17 | GOM18 | MW—U test | ||
---|---|---|---|---|
Mean ± SD | Mean ± SD | Z-adjusted | p | |
TEMP (C°) | 24.69 ± 0.67 | 25.53 ± 0.47 | −2.72 | ** |
SAL (ppt) | 36.38 ± 0.06 | 36.02 ± 0.32 | 3.30 | ** |
δ15Nmicro | 0.56 ± 0.42 | 3.61 ± 0.39 | −3.00 | ** |
δ13Cmicro | −18.1 ± 0.47 | −19.3 ± 0.27 | 3.00 | ** |
δ15Nmeso | 1.75 ± 0.51 | 4.69 ± 0.42 | −2.74 | ** |
δ13Cmeso | −17.7 ± 0.52 | −19.6 ± 0.25 | 2.74 | ** |
GOM17 | GOM18 | ANCOVA | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
n | Min | Max | Mean ± SD | n | Min | Max | Mean ± SD | F1,154 | p | ||
TOTAL | SL (mm) | 83 | 4.28 | 9.01 | 6.04 ± 1.10 | 74 | 4.1 | 9.87 | 6.23 ± 1.43 | 5.42 | * |
DW (mg) | 0.1 | 2.89 | 0.49 ± 0.45 | 0.07 | 2.51 | 0.70 ± 0.61 | 26.78 | ** | |||
RADIUS (μm) | 16.7 | 95.4 | 30.5 ± 13.50 | 13.8 | 89.3 | 33.00 ± 18.40 | 3.24 | NS | |||
MIW (μm) | 1.28 | 4.15 | 2.03 ± 0.60 | 1.06 | 4.64 | 2.16 ± 0.83 | 6.01 | * | |||
n | Min | Max | Mean ± SD | n | Min | Max | Mean ± SD | F1,82 | p | ||
PRE | SL (mm) | 49 | 4.28 | 7.06 | 5.34 ± 0.68 | 36 | 4.1 | 6.36 | 5.06 ± 0.57 | 0.04 | NS |
DW (mg) | 0.1 | 0.52 | 0.27 ± 0.12 | 0.07 | 0.64 | 0.30 ± 0.14 | 6.33 | * | |||
RADIUS (μm) | 16.7 | 33.4 | 23.26 ± 4.08 | 13.8 | 28 | 20.10 ± 3.61 | 5.66 | * | |||
MIW (μm) | 1.28 | 2.22 | 1.70 ± 0.25 | 1.06 | 2.06 | 1.53 ± 0.27 | 3.87 | NS | |||
n | Min | Max | Mean ± SD | n | Min | Max | Mean ± SD | F1,69 | p | ||
POST | SL (mm) | 34 | 6.08 | 9.01 | 7.04 ± 0.75 | 38 | 5.83 | 9.87 | 7.39 ± 1.01 | 11.02 | ** |
DW (mg) | 0.21 | 2.89 | 0.81 ± 0.56 | 0.37 | 2.51 | 1.08 ± 0.63 | 20.9 | ** | |||
RADIUS (μm) | 27.4 | 95.4 | 40.93 ± 15.36 | 23.5 | 89.3 | 44.85 ± 18.38 | 7.91 | ** | |||
MIW (μm) | 1.78 | 4.15 | 2.51 ± 0.63 | 1.76 | 4.64 | 2.77 ± 0.73 | 6.52 | ** |
OPT(+) | DEF(-) | ANCOVA | ANOVA | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TOTAL | GOM17 | n | Min | Max | Mean ± SD | n | Min | Max | Mean ± SD | F1,52 | p | |||
SL (mm) | 27 | 5.4 | 8.71 | 6.78 ± 0.78 | 28 | 4.3 | 9.01 | 5.52 ± 1.05 | 115.3 | ** | ||||
DW (mg) | 0.3 | 2.13 | 0.69 ± 0.38 | 0.1 | 2.89 | 0.36 ± 0.54 | 140.8 | ** | ||||||
RADIUS (μm) | 23 | 79.3 | 36.30 ± 12.20 | 17.3 | 95.4 | 26.90 ± 15.20 | 63.98 | ** | ||||||
MIW (μm) | 1.8 | 4.14 | 2.41 ± 0.57 | 1.28 | 4.01 | 1.73 ± 0.54 | 34.14 | ** | ||||||
GOM18 | n | Min | Max | Mean ± SD | n | Min | Max | Mean ± SD | F1,59 | p | ||||
SL (mm) | 36 | 4.8 | 8.98 | 6.86 ± 1.03 | 26 | 4.1 | 9.87 | 5.77 ± 1.77 | 180.8 | ** | ||||
DW (mg) | 0.29 | 2.42 | 0.85 ± 0.43 | 0.09 | 2.51 | 0.64 ± 0.83 | 132.4 | ** | ||||||
RADIUS (μm) | 15 | 77.5 | 36.90 ± 13.50 | 15.8 | 89.3 | 32.00 ± 25.20 | 79.73 | ** | ||||||
MIW (μm) | 1.3 | 4.64 | 2.51 ± 0.69 | 1.06 | 4.22 | 1.89 ± 0.96 | 40.56 | ** | ||||||
PRE | n | Min | Max | Mean ± SD | n | Min | Max | Mean ± SD | F1,27 | p | ||||
GOM17 | SL (mm) | 15 | 4.3 | 7.06 | 5.79 ± 0.78 | 15 | 4.3 | 5.6 | 5.05 ± 0.36 | 55.85 | ** | |||
DW (mg) | 0.2 | 0.52 | 0.37 ± 0.11 | 0.1 | 0.25 | 0.18 ± 0.05 | 77.96 | ** | ||||||
RADIUS (μm) | 17 | 33.4 | 25.70 ± 4.25 | 17.9 | 26.8 | 21.78 ± 2.59 | 29.5 | ** | ||||||
MIW (μm) | 1.52 | 2.22 | 1.91 ± 0.18 | 1.28 | 1.83 | 1.53 ± 0.17 | 37.62 | ** | ||||||
n | Min | Max | Mean ± SD | n | Min | Max | Mean ± SD | F1,23 | p | F1,23 | p | |||
GOM18 | SL (mm) | 11 | 4.8 | 6.2 | 5.59 ± 0.42 | 14 | 4.1 | 5.04 | 4.66 ± 0.27 | 152.18 | ** | |||
DW (mg) | 0.3 | 0.64 | 0.44 ± 0.12 | 0.09 | 0.38 | 0.20 ± 0.08 | 34.08 | ** | ||||||
RADIUS (μm) | 15 | 26.4 | 22.74 ± 3.32 | 15.8 | 22.4 | 18.29 ± 2.29 | 54.73 | ** | ||||||
MIW (μm) | 1.26 | 2.06 | 1.79 ± 0.22 | 1.06 | 1.64 | 1.32 ± 0.17 | 51.11 | ** | ||||||
POST | GOM17 | n | Min | Max | Mean ± SD | n | Min | Max | Mean ± SD | F1,26 | p | |||
SL (mm) | 14 | 6.6 | 8.71 | 7.42 ± 0.68 | 11 | 6.08 | 9.01 | 6.78 ± 0.87 | 45.46 | ** | ||||
DW (mg) | 0.5 | 2.13 | 0.97 ± 0.50 | 0.21 | 2.89 | 0.70 ± 0.77 | 45.38 | ** | ||||||
RADIUS (μm) | 30 | 79.3 | 45.90 ± 15.50 | 27.4 | 95.4 | 39.10 ± 19.50 | 41.71 | ** | ||||||
MIW (μm) | 2 | 4.14 | 2.84 ± 0.70 | 1.78 | 4.01 | 2.24 ± 0.63 | 26.98 | ** | ||||||
GOM18 | n | Min | Max | Mean ± SD | n | Min | Max | Mean ± SD | F1,26 | p | ||||
SL (mm) | 15 | 6.4 | 9.19 | 7.77 ± 0.79 | 14 | 5.83 | 9.25 | 6.87 ± 1.12 | 105.9 | ** | ||||
DW (mg) | 0.5 | 2.51 | 1.22 ± 0.59 | 0.37 | 2.5 | 0.86 ± 0.71 | 56.48 | ** | ||||||
RADIUS (μm) | 28 | 85.5 | 49.10 ± 15.90 | 23.4 | 89.3 | 39.80 ± 22.20 | 57.97 | ** | ||||||
MIW (μm) | 2.2 | 4.64 | 3.16 ± 0.65 | 1.76 | 4.07 | 2.35 ± 0.73 | 39.15 | ** |
GOM17 | GOM18 | MW—U Test | ||||
---|---|---|---|---|---|---|
n | Mean ± SD | n | Mean ± SD | Z-adjusted | p | |
δ15Nmaternal (estimated) | 49 | 12.30 ± 0.61 | 36 | 12.10 ± 0.72 | 1.66 | NS |
δ13Cmaternal (estimated) | 49 | −17.90 ± 0.38 | 36 | −17.90 ± 0.28 | 0.07 | NS |
GOM17 | GOM18 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
OPT + | DEF – | MW—U Test | OPT + | DEF – | MW—U Test | |||||||
Mean ± SD | n | Mean ± SD | n | Z-adjusted | p | Mean ± SD | n | Mean ± SD | n | Z-adjusted | p | |
δ15Nmaternal | 11.90 ± 0.44 | 15 | 12.50 ± 0.61 | 15 | 2.76 | ** | 11.50 ± 0.33 | 11 | 12.60 ± 0.67 | 14 | 3.5 | ** |
(estimated) | ||||||||||||
δ13Cmaternal | −17.80 ± 0.22 | 15 | −18.10 ± 0.46 | 15 | −1.68 | NS | −17.80 ± 0.35 | 11 | −17.90 ± 0.17 | 14 | −0.6 | NS |
(estimated) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quintanilla, J.M.; Borrego-Santos, R.; Malca, E.; Swalethorp, R.; Landry, M.R.; Gerard, T.; Lamkin, J.; García, A.; Laiz-Carrión, R. Maternal Effects and Trophodynamics Drive Interannual Larval Growth Variability of Atlantic Bluefin Tuna (Thunnus thynnus) from the Gulf of Mexico. Animals 2024, 14, 1319. https://doi.org/10.3390/ani14091319
Quintanilla JM, Borrego-Santos R, Malca E, Swalethorp R, Landry MR, Gerard T, Lamkin J, García A, Laiz-Carrión R. Maternal Effects and Trophodynamics Drive Interannual Larval Growth Variability of Atlantic Bluefin Tuna (Thunnus thynnus) from the Gulf of Mexico. Animals. 2024; 14(9):1319. https://doi.org/10.3390/ani14091319
Chicago/Turabian StyleQuintanilla, José M., Ricardo Borrego-Santos, Estrella Malca, Rasmus Swalethorp, Michael R. Landry, Trika Gerard, John Lamkin, Alberto García, and Raúl Laiz-Carrión. 2024. "Maternal Effects and Trophodynamics Drive Interannual Larval Growth Variability of Atlantic Bluefin Tuna (Thunnus thynnus) from the Gulf of Mexico" Animals 14, no. 9: 1319. https://doi.org/10.3390/ani14091319
APA StyleQuintanilla, J. M., Borrego-Santos, R., Malca, E., Swalethorp, R., Landry, M. R., Gerard, T., Lamkin, J., García, A., & Laiz-Carrión, R. (2024). Maternal Effects and Trophodynamics Drive Interannual Larval Growth Variability of Atlantic Bluefin Tuna (Thunnus thynnus) from the Gulf of Mexico. Animals, 14(9), 1319. https://doi.org/10.3390/ani14091319