Effects of Pueraria Extract and Curcumin on Growth Performance, Antioxidant Status and Intestinal Integrity of Broiler Chickens
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design, Birds and Management
2.2. Sample Collection
2.3. Growth Performance
2.4. Antioxidant Status
2.5. Histological Mesurements of Small Intestine
2.6. RNA Extraction and Quantitative Analysis of Tight Junction mRNA with Real-Time PCR
2.7. Statistical Analysis
3. Results
3.1. Growth Performance
3.2. Antioxidant Status
3.3. Intestinal Morphology
3.4. Relative mRNA Levels of Claudin-1, Occludin, ZO-1 and Mucin-2 in Jejunum
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Luo, D.; Li, J.; Xing, T.; Zhang, L.; Gao, F. Combined effects of xylo-oligosaccharides and coated sodium butyrate on growth performance, immune function, and intestinal physical barrier function of broilers. Anim. Sci. J. 2021, 92, e13545. [Google Scholar] [CrossRef] [PubMed]
- Verstegen, M.W.; Williams, B.A. Alternatives to the use of antibiotics as growth promoters for monogastric animals. Anim. Biotechnol. 2002, 13, 113–127. [Google Scholar] [CrossRef]
- Diaz Carrasco, J.M.; Redondo, L.M.; Redondo, E.A.; Dominguez, J.E.; Chacana, A.P.; Fernandez Miyakawa, M.E. Use of plant extracts as an effective manner to control Clostridium perfringens induced necrotic enteritis in poultry. Biomed. Res. Int. 2016, 2016, 3278359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pliego, A.B.; Tavakoli, M.; Khusro, A.; Seidavi, A.; Elghandour, M.M.M.Y.; Salem, A.Z.M.; Márquez-Molina, O.; Rivas-Caceres, R.R. Beneficial and adverse effects of medicinal plants as feed supplements in poultry nutrition: A review. Anim. Biotechol. 2020, 33, 369–391. [Google Scholar] [CrossRef] [PubMed]
- Wong, K.H.; Li, G.Q.; Li, K.M.; Razmovski-Naumovski, V.; Chan, K. Kudzu root: Traditional uses and potential medicinal benefits in diabetes and cardiovascular diseases. J. Ethnopharmacol. 2011, 134, 584–607. [Google Scholar] [CrossRef]
- Meng, F.; Guo, B.; Ma, Y.Q.; Li, K.W.; Niu, F.J. Puerarin: A review of its mechanisms of action and clinical studies in ophthalmology. Phytomedicine 2022, 107, 154465. [Google Scholar] [CrossRef]
- Choi, S.; Woo, J.K.; Jang, Y.S.; Kang, J.H.; Jang, J.E.; Yi, T.H.; Park, S.Y.; Kim, S.Y.; Yoon, Y.S.; Oh, S.H. Fermented Pueraria Lobata extract ameliorates dextran sulfate sodium-induced colitis by reducing pro-inflammatory cytokines and recovering intestinal barrier function. Lab. Anim. Res. 2016, 32, 151–159. [Google Scholar] [CrossRef] [Green Version]
- Song, X.; Wang, W.; Ding, S.; Wang, Y.; Ye, L.; Chen, X.; Ma, H. Exploring the potential antidepressant mechanisms of puerarin: Anti-inflammatory response via the gut-brain axis. J. Affective Disord. 2022, 310, 459–471. [Google Scholar] [CrossRef]
- Xu, X.; Guo, Y.; Chen, S.; Ma, W.; Xu, X.; Hu, S.; Jin, L.; Sun, J.; Mao, J.; Shen, C. The positive influence of polyphenols extracted from pueraria lobata root on the gut microbiota and its antioxidant capability. Front. Nutr. 2022, 9, 868188. [Google Scholar] [CrossRef]
- Niu, L.; Luo, R.; Zou, M.; Sun, Y.; Fu, Y.; Wang, Y.; Peng, X. Puerarin inhibits Mycoplasma gallisepticum (MG-HS)-induced inflammation and apoptosis via suppressing the TLR6/MyD88/NF-κB signal pathway in chicken. Int. Immunopharmacol. 2020, 88, 106993. [Google Scholar] [CrossRef] [PubMed]
- Kannigadu, C.; N’Da, D.D. Recent advances in the synthesis and development of curcumin, its combinations and formulations and curcumin-like compounds as anti-infective agents. Curr. Med. Chem. 2021, 28, 5463–5497. [Google Scholar] [CrossRef]
- Yadav, S.; Teng, P.-Y.; dos Santos, T.S.; Gould, R.L.; Craig, S.W.; Fuller, A.L.; Pazdro, R.; Kim, W.K. The effects of different doses of curcumin compound on growth performance, antioxidant status, and gut health of broiler chickens challenged with Eimeria species. Poult. Sci. 2020, 99, 5936–5945. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.K.; Jiang, Y.; Gupta, S.; Younus, M.; Ramzan, M. Anti-inflammatory potency of nano-formulated puerarin and curcumin in rats subjected to the lipopolysaccharide-induced inflammation. J. Med. Food. 2013, 16, 899–911. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.K.; Jiang, Y.; Benlhabib, E.; Gupta, S. Herbal mixtures consisting of puerarin and either polyenylphosphatidylcholine or curcumin provide comprehensive protection against alcohol-related disorders in P-rats receiving free choice water and 15% ethanol in pure water. J. Med. Food. 2007, 10, 526–542. [Google Scholar] [CrossRef]
- Xiao, Y.Q.; Shao, D.; Sheng, Z.W.; Wang, Q.; Shi, S.R. A mixture of daidzein and Chinese herbs increases egg production and eggshell strength as well as blood plasma Ca, P, antioxidative enzymes, and luteinizing hormone levels in postpeak, brown laying hens. Poult. Sci. 2019, 98, 3298–3303. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Sihvo, H.K.; Immonen, K.; Puolanne, E. Myodegeneration with fibrosis and regeneration in the pectoralis major muscle of broilers. Vet. Pathol. 2014, 51, 619–623. [Google Scholar] [CrossRef]
- Payne, R.L.; Bidner, T.D.; Southern, L.L.; McMillin, K.W. Dietary effects of soy isoflavones on growth and carcass traits of commercial broilers. Poult. Sci. 2001, 80, 1201–1207. [Google Scholar] [CrossRef]
- Waqas, M.; Qamar, H.; Zhang, J.; Yao, W.; Li, A.; Wang, Y.; Iqbal, M.; Mehmood, K.; Jiang, X.; Li, J. Puerarin enhance vascular proliferation and halt apoptosis in thiram-induced avian tibial dyschondroplasia by regulating HIF-1α, TIMP-3 and BCL-2 expressions. Ecotoxicol. Environ. Saf. 2020, 190, 110126. [Google Scholar] [CrossRef]
- Hu, Z.Z.; Jin, G.M.; Wang, L.K.; Wen, A.Y.; Zhou, Z.K.; Zhang, Q. Effects of curcumin on performance and immune function of broilers. Cereal Feed. Ind. 2004, 10, 44–45. [Google Scholar]
- Ruan, D.; Wu, S.; Fouad, A.M.; Zhu, Y.; Huang, W.; Chen, Z.; Gou, Z.; Wang, Y.; Han, Y.; Yan, S.; et al. Curcumin alleviates LPS-induced intestinal homeostatic imbalance through reshaping gut microbiota structure and regulating group 3 innate lymphoid cells in chickens. Food Funct. 2022, 13, 11811. [Google Scholar] [CrossRef]
- Duangjan, C.; Rangsinth, P.; Zhang, S.; Gu, X.; Wink, M.; Tencomnao, T. Vitis vinifera leaf extract protects against glutamate-induced oxidative toxicity in HT22 hippocampal neuronal cells and increases stress resistance properties in Caenorhabditis Elegans. Front. Nutr. 2021, 8, 634100. [Google Scholar]
- Mittler, R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 2002, 7, 405–410. [Google Scholar] [CrossRef]
- Abdel-Tawwab, M.; Eissa, E.H.; Tawfik, W.A.; Abd, E.H.E.; Saadony, S.; Bazina, W.K.; Ahmed, R.A. Dietary curcumin nanoparticles promoted the performance, antioxidant activity, and humoral immunity, and modulated the hepatic and intestinal histology of Nile tilapia fingerlings. Fish Physiol. Biochem. 2022, 48, 585–601. [Google Scholar] [CrossRef]
- Manju, M.; Akbarsha, M.A.; Oommen, O.V. In vivo protective effect of dietary curcumin in fish Anabas testudineus (Bloch). Fish Physiol. Biochem. 2012, 38, 309–318. [Google Scholar] [CrossRef]
- Xu, X.Y.; Meng, X.; Li, S.; Gan, R.Y.; Li, Y.; Li, H.B. Bioactivity, health benefts, and related molecular mechanisms of curcumin: Current progress, challenges, and perspectives. Nutrients 2018, 10, 1553. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Hu, Z.; Lu, C.; Bai, K.; Zhang, L.; Wang, T. Effect of various levels of dietary curcumin on meat quality and antioxidant profile of breast muscle in broilers. J. Agric. Food Chem. 2015, 63, 3880–3886. [Google Scholar] [CrossRef] [PubMed]
- Moskaug, J.; Carlsen, H.; Myhrstad, M.C.; Blomhof, R. Polyphenols and glutathione synthesis regulation. Am. J. Clin. Nutr. 2005, 81, 277–283. [Google Scholar] [CrossRef] [Green Version]
- Viveros, A.; Chamorro, S.; Pizarro, M.; Arija, I.; Centeno, C.; Brenes, A. Effects of dietary polyphenol-rich grape products on intestinal microflora and gut morphology in broiler chicks. Poult. Sci. 2011, 90, 566–578. [Google Scholar] [CrossRef] [PubMed]
- Kiela, P.R.; Ghishan, F.K. Physiology of intestinal absorption and secretion. Best Pract. Res. Clin. Gastroenterol. 2016, 30, 145–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xun, W.J.; Shi, L.G.; Zhou, H.L.; Hou, G.Y.; Cao, T.; Zhao, C.P. Effects of curcumin on growth performance, jejunal mucosal membrane integrity, morphology and immune status in weaned piglets challenged with enterotoxigenic Escherichia coli. Int. Immunopharmacol. 2015, 27, 46–52. [Google Scholar] [CrossRef] [PubMed]
- Vicente, Y.; Da Rocha, C.; Yu, J.; Hernandez-Peredo, G.; Martinez, L.; Pérez-Mies, B.; Tovar, J.A. Architecture and function of the gastroesophageal barrier in the piglet. Dig. Dis. Sci. 2001, 46, 1899–1908. [Google Scholar] [CrossRef] [PubMed]
- Bergstrom, K.S.B.; Kissoon-Singh, V.; Gibson, D.L.; Ma, C.; Montero, M.; Sham, H.P.; Ryz, N.; Huang, T.; Velcich, A.; Finlay, B.B.; et al. Muc2 protects against lethal infectious colitis by disassociating pathogenic and commensal bacteria from the colonic mucosa. PLoS Pathog. 2010, 6, e1000902. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Ghosh, S.S.; Ghosh, S. Curcumin improves intestinal barrier function: Modulation of intracellular signaling, and organization of tight junctions. Am. J. Physiol. Cell Physiol. 2017, 312, C438–C445. [Google Scholar] [CrossRef]
- Ghosh, S.S.; Bie, J.; Wang, J.; Ghosh, S. Oral supplementation with non-absorbable antibiotics or curcumin attenuates western diet-induced atherosclerosis and glucose intolerance in LDLR-/- mice--role of intestinal permeability and macrophage activation. PLoS ONE 2014, 9, e108577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruan, D.; Wang, W.C.; Lin, C.X.; Fouad, A.M.; Chen, W.; Xia, W.G.; Wang, S.; Luo, X.; Zhang, W.H.; Yan, S.J.; et al. Effects of curcumin on performance, antioxidation, intestinal barrier and mitochondrial function in ducks fed corn contaminated with ochratoxin A. Animal 2019, 13, 42–52. [Google Scholar] [CrossRef] [PubMed]
- Li, J.J.; Zhang, L.; Li, Y.F.; Wu, Y.; Wu, T.; Feng, H.; Xu, Z.J.; Liu, Y.H.; Ruan, Z.; Zhou, S.C. Puerarin improves intestinal barrier function through enhancing goblet cells and mucus barrier. J. Funct. Foods 2020, 75, 104246. [Google Scholar] [CrossRef]
Items | 1–28 Days of Age |
---|---|
Ingredients (g/kg of feed) | |
Corn | 517.3 |
Soybean meal (crude protein, 43.0%) | 407.3 |
Soybean oil | 33.6 |
Dicalcium phosphate | 19.2 |
Limestone | 11.6 |
Sodium chloride | 3.5 |
DL-Methionine | 2.6 |
Choline chloride (50%) | 2.5 |
Multi-Minerals 1 | 2.0 |
Multi-Vitamins 2 | 0.4 |
Calculated nutrient levels (g/kg of dry matter) | |
Metabolizable energy (Mcal/kg) | 2.92 |
Dry matter | 926.8 |
Crude protein | 215.0 |
Starch | 380.2 |
Crude fat | 57.8 |
Crude ash | 74.5 |
Calcium | 10.0 |
Available phosphorus | 4.5 |
Lysine | 11.7 |
Methionine + cysteine | 9.0 |
Methionine | 5.7 |
Threonine | 8.2 |
Target Genes | GenBank Accession Number | Product Size | Primer Sequences (5′-3′) |
---|---|---|---|
β-actin | NM_205518.1 | 152 | F:GAGAAATTGTGCGTGATCA R:CCTGAACCTCTCATTGCCA |
ZO-1 | XM_413773 | 131 | F:CTTCAGGTGTTTCTCTTCCTCCTC R:CTGTGGTTTCATGGCTGGATC |
Occludin | D21837.1 | 123 | F:ACGGCAGCACCTACCTCAA R: GGGCGAAGAAGCAGATGAG |
Claudin-1 | AY750897.1 | 100 | F:CATACTCCTGGGTCTGGTTGGT R:GACACGCATCCGCATCTTCT |
Mucin-2 | XM_421035 | 93 | F:TTCATGATGCCTGCTCTTGTG R:CCTGAGCCTTGGTACATTCTTGT |
Items | CON | PE | CUR | PE + CUR | SEM | p-Value | ||
---|---|---|---|---|---|---|---|---|
PE | CUR | PE × CUR | ||||||
1–14 days of age | ||||||||
ADG (g/d) | 24.90 | 22.38 | 23.24 | 22.37 | 0.34 | 0.005 | 0.131 | 0.136 |
ADFI (g/d) | 30.17 | 29.99 | 30.55 | 30.50 | 0.41 | 0.899 | 0.626 | 0.943 |
FCR | 1.21 | 1.34 | 1.32 | 1.37 | 0.03 | 0.095 | 0.219 | 0.521 |
15–28 days of age | ||||||||
ADG (g/d) | 56.69 | 53.54 | 55.81 | 54.86 | 0.45 | 0.019 | 0.783 | 0.183 |
ADFI (g/d) | 87.24 b | 97.61 a | 96.48 a | 84.08 b | 1.94 | 0.721 | 0.453 | 0.001 |
FCR | 1.56 b | 1.81 a | 1.75 a | 1.54 b | 0.04 | 0.638 | 0.354 | <0.001 |
1–28 days of age | ||||||||
ADG (g/d) | 40.79 | 37.96 | 39.52 | 38.61 | 0.33 | 0.001 | 0.540 | 0.068 |
ADFI (g/d) | 58.82 ab | 63.58 a | 63.47 a | 58.00 b | 0.95 | 0.765 | 0.818 | 0.005 |
FCR | 1.46 c | 1.67 a | 1.61 ab | 1.51 bc | 0.03 | 1.000 | 0.142 | 0.001 |
Items | CON | PE | CUR | PE + CUR | SEM | p-Value | ||
---|---|---|---|---|---|---|---|---|
PE | CUR | PE × CUR | ||||||
Plasma | ||||||||
T-AOC (mmol/mL) | 1.22 | 1.15 | 1.18 | 1.17 | 0.01 | 0.066 | 0.413 | 0.100 |
T-SOD (U/mL) | 105.12 | 110.68 | 110.41 | 108.99 | 1.02 | 0.306 | 0.371 | 0.088 |
GSH-Px (U/mL) | 1150.98 d | 2039.73 a | 1762.25 b | 1293.62 c | 63.73 | <0.001 | 0.127 | <0.001 |
CAT (U/mL) | 2.27 a | 1.61 b | 1.43 b | 1.81 ab | 0.10 | 0.453 | 0.094 | 0.008 |
H2O2 (mmol/L) | 14.77 | 12.22 | 10.50 | 11.86 | 0.66 | 0.648 | 0.080 | 0.137 |
MDA (nmol/mL) | 1.44 | 1.52 | 1.29 | 1.36 | 0.06 | 0.559 | 0.198 | 0.987 |
Liver | ||||||||
T-AOC (mmol/mg prot) | 0.13 | 0.14 | 0.14 | 0.14 | 0.00 | 0.231 | 0.987 | 0.379 |
T-SOD (U/mg prot) | 119.77 | 125.11 | 119.46 | 122.30 | 2.10 | 0.354 | 0.722 | 0.775 |
GSH-Px (U/mg prot) | 55.78 | 51.41 | 53.94 | 44.38 | 1.22 | 0.002 | 0.036 | 0.211 |
CAT (U/mg prot) | 12.81 | 10.71 | 12.11 | 8.37 | 0.75 | 0.052 | 0.300 | 0.573 |
H2O2 (mmol/g prot) | 27.76 | 28.72 | 31.12 | 29.60 | 0.72 | 0.847 | 0.151 | 0.398 |
MDA (nmol/mg prot) | 1.31 | 0.87 | 1.07 | 1.03 | 0.06 | 0.052 | 0.725 | 0.105 |
Items | CON | PE | CUR | PE + CUR | SEM | p-Value | ||
---|---|---|---|---|---|---|---|---|
PE | CUR | PE × CUR | ||||||
Duodenum | ||||||||
T-AOC (mmol/mg prot) | 0.35 | 0.35 | 0.36 | 0.39 | 0.01 | 0.343 | 0.140 | 0.552 |
T-SOD (U/mg prot) | 326.61 | 315.45 | 360.62 | 343.27 | 6.63 | 0.262 | 0.019 | 0.806 |
GSH-Px (U/mg prot) | 24.47 b | 53.19 a | 46.05 a | 42.86 a | 2.78 | 0.006 | 0.197 | 0.001 |
CAT (U/mg prot) | 11.85 | 13.71 | 11.72 | 12.38 | 0.55 | 0.270 | 0.520 | 0.595 |
H2O2 (mmol/g prot) | 20.26 a | 20.46 a | 20.26 a | 16.11 b | 0.58 | 0.060 | 0.040 | 0.040 |
MDA (nmol/mg prot) | 0.43 | 0.39 | 0.40 | 0.50 | 0.03 | 0.671 | 0.573 | 0.343 |
Jejunum | ||||||||
T-AOC (mmol/mg prot) | 0.21 | 0.21 | 0.21 | 0.23 | 0.01 | 0.472 | 0.136 | 0.310 |
T-SOD (U/mg prot) | 350.95 | 363.75 | 353.42 | 347.16 | 6.40 | 0.806 | 0.597 | 0.476 |
GSH-Px (U/mg prot) | 27.79 | 30.71 | 31.78 | 30.31 | 1.18 | 0.766 | 0.462 | 0.368 |
CAT (U/mg prot) | 3.59 | 3.24 | 3.40 | 3.24 | 0.25 | 0.630 | 0.864 | 0.864 |
H2O2 (mmol/g prot) | 28.01 | 29.47 | 23.90 | 31.41 | 1.36 | 0.103 | 0.687 | 0.266 |
MDA (nmol/mg prot) | 1.60 | 1.46 | 2.72 | 1.55 | 0.25 | 0.192 | 0.230 | 0.302 |
Ileum | ||||||||
T-AOC (mmol/mg prot) | 0.22 | 0.24 | 0.20 | 0.23 | 0.04 | 0.118 | 0.397 | 0.725 |
T-SOD (U/mg prot) | 224.66 | 243.36 | 246.20 | 241.20 | 4.40 | 0.438 | 0.274 | 0.183 |
GSH-Px (U/mg prot) | 37.85 b | 41.51 ab | 44.69 a | 40.83 ab | 0.84 | 0.947 | 0.052 | 0.019 |
CAT (U/mg prot) | 2.32 | 3.15 | 2.52 | 2.76 | 0.13 | 0.032 | 0.704 | 0.230 |
H2O2 (mmol/g prot) | 16.76 | 17.97 | 16.51 | 16.19 | 0.82 | 0.799 | 0.556 | 0.658 |
MDA (nmol/mg prot) | 1.04 | 1.24 | 1.16 | 1.05 | 0.07 | 0.765 | 0.845 | 0.338 |
Items | CON | PE | CUR | PE + CUR | p-Value | |||
---|---|---|---|---|---|---|---|---|
PE | CUR | PE × CUR | ||||||
Duodenum | ||||||||
VH (μm) | 1346.63 | 1189.71 | 1324.40 | 1316.70 | 22.77 | 0.060 | 0.222 | 0.086 |
CD (μm) | 137.67 | 136.78 | 123.04 | 123.80 | 3.90 | 0.994 | 0.085 | 0.917 |
VH/CD | 9.98 | 8.86 | 11.53 | 10.97 | 0.33 | 0.168 | 0.004 | 0.643 |
VA (μm2) | 251,630.12 | 239,573.53 | 253,417.31 | 232,844.37 | 6753.94 | 0.246 | 0.859 | 0.760 |
Jejunum | ||||||||
VH (μm) | 706.37 | 816.88 | 827.64 | 750.62 | 26.06 | 0.748 | 0.598 | 0.079 |
CD (μm) | 109.07 | 85.14 | 103.38 | 94.23 | 2.57 | 0.001 | 0.695 | 0.095 |
VH/CD | 6.63 b | 9.72 a | 8.51 ab | 7.49 b | 0.38 | 0.138 | 0.803 | 0.005 |
VA (μm2) | 106,046.58 | 156,371.87 | 112,539.98 | 116,809.34 | 6462.33 | 0.023 | 0.158 | 0.053 |
Ileum | ||||||||
VH (μm) | 633.83 | 559.72 | 632.38 | 682.83 | 18.32 | 0.738 | 0.092 | 0.085 |
CD (μm) | 84.60 | 72.46 | 78.07 | 82.75 | 2.50 | 0.459 | 0.708 | 0.100 |
VH/CD | 7.36 | 7.88 | 8.02 | 8.53 | 0.25 | 0.302 | 0.197 | 0.995 |
VA (μm2) | 94,809.34 | 86,614.06 | 106,961.24 | 103,019.27 | 6820.49 | 0.667 | 0.315 | 0.880 |
Items | CON | PE | CUR | PE + CUR | p-Value | |||
---|---|---|---|---|---|---|---|---|
PE | CUR | PE × CUR | ||||||
ZO-1 | 1.06 | 1.03 | 1.33 | 1.01 | 0.05 | 0.078 | 0.182 | 0.139 |
Occludin | 0.98 | 0.90 | 0.69 | 0.88 | 0.06 | 0.655 | 0.191 | 0.240 |
Claudin-1 | 1.08 | 1.28 | 1.40 | 1.32 | 0.06 | 0.597 | 0.138 | 0.236 |
Mucin-2 | 0.96 | 1.13 | 0.76 | 1.07 | 0.04 | 0.002 | 0.074 | 0.341 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, S.; Hu, J.; Ai, S.; Li, L.; Ding, B.; Zhao, D.; Wang, L.; Hou, Y. Effects of Pueraria Extract and Curcumin on Growth Performance, Antioxidant Status and Intestinal Integrity of Broiler Chickens. Animals 2023, 13, 1276. https://doi.org/10.3390/ani13081276
Guo S, Hu J, Ai S, Li L, Ding B, Zhao D, Wang L, Hou Y. Effects of Pueraria Extract and Curcumin on Growth Performance, Antioxidant Status and Intestinal Integrity of Broiler Chickens. Animals. 2023; 13(8):1276. https://doi.org/10.3390/ani13081276
Chicago/Turabian StyleGuo, Shuangshuang, Jinchao Hu, Sihan Ai, Lanlan Li, Binying Ding, Di Zhao, Lei Wang, and Yongqing Hou. 2023. "Effects of Pueraria Extract and Curcumin on Growth Performance, Antioxidant Status and Intestinal Integrity of Broiler Chickens" Animals 13, no. 8: 1276. https://doi.org/10.3390/ani13081276
APA StyleGuo, S., Hu, J., Ai, S., Li, L., Ding, B., Zhao, D., Wang, L., & Hou, Y. (2023). Effects of Pueraria Extract and Curcumin on Growth Performance, Antioxidant Status and Intestinal Integrity of Broiler Chickens. Animals, 13(8), 1276. https://doi.org/10.3390/ani13081276