Transcriptomic and Proteomic Analyses Reveal New Insights into Regulatory Mechanisms of Strontium in Bovine Chondrocytes
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Tissue Collection
2.2. Isolation and Culture of Bovine Primary Chondrocytes
2.3. RNA Extraction, Sequencing, and Analysis
2.4. Protein Extraction, Sequencing, and Analysis
2.5. Association Analysis of Transcriptomic and Proteomic Data
3. Results
3.1. RNA-Seq Transcriptomic and Quantitative Proteomic Analyses
3.2. Gene Ontology Analysis of the Differentially Expressed Transcripts and Proteins
3.3. Function Correlation Analysis Using the KEGG System
3.4. Association Analysis of the Transcriptomic and Proteomic Data
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kolodziejska, B.; Stepien, N.; Kolmas, J. The Influence of strontium on bone tissue metabolism and its application in osteoporosis treatment. Int. J. Mol. Sci. 2021, 22, 6564. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, S.P. The biological role of strontium. Bone 2004, 35, 583–588. [Google Scholar] [CrossRef] [PubMed]
- Querido, W.; Rossi, A.L.; Farina, M. The effects of strontium on bone mineral: A review on current knowledge and microanalytical approaches. Micron 2016, 80, 122–134. [Google Scholar] [CrossRef] [PubMed]
- Dai, L.; Chen, X.; Xiong, Y.; Chen, J.; Li, J.; Li, D.; Zhou, G.; Zou, Y.; Liu, T. Strontium gluconate potently promotes osteoblast development and restores bone formation in glucocorticoid-induced osteoporosis rats. Biochem. Bioph. Res. Commun. 2021, 554, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Kyllonen, L.; D’Este, M.; Alini, M.; Eglin, D. Local drug delivery for enhancing fracture healing in osteoporotic bone. Acta Biomater. 2015, 11, 412–434. [Google Scholar] [CrossRef] [PubMed]
- Mentaverri, R.; Brazier, M.; Kamel, S.; Fardellone, P. Potential anti-catabolic and anabolic properties of strontium ranelate. Curr. Mol. Pharmacol. 2012, 5, 189–194. [Google Scholar] [CrossRef]
- Pilmane, M.; Salma-Ancane, K.; Loca, D.; Locs, J.; Berzina-Cimdina, L. Strontium and strontium ranelate: Historical review of some of their functions. Mat. Sci. Eng. C Mater. 2017, 78, 1222–1230. [Google Scholar] [CrossRef]
- Lavet, C.; Mabilleau, G.; Chappard, D.; Rizzoli, R.; Ammann, P. Strontium ranelate stimulates trabecular bone formation in a rat tibial bone defect healing process. Osteoporos. Int. 2017, 28, 3475–3487. [Google Scholar] [CrossRef] [Green Version]
- Barrionuevo, P.; Kapoor, E.; Asi, N.; Alahdab, F.; Mohammed, K.; Benkhadra, K.; Almasri, J.; Farah, W.; Sarigianni, M.; Muthusamy, K.; et al. Efficacy of pharmacological therapies for the prevention of fractures in postmenopausal women: A network meta-analysis. J. Clin. Endocr. Metab. 2019, 104, 1623–1630. [Google Scholar] [CrossRef]
- Zhao, Y.; Guo, D.; Hou, S.; Zhong, H.; Yan, J.; Zhang, C.; Zhou, Y. Porous allograft bone scaffolds: Doping with strontium. PLoS ONE 2013, 8, e69339. [Google Scholar] [CrossRef] [Green Version]
- Hyde, M.L.; Fraser, D.R. In vivo measurement of the absorption of strontium in the rumen and small intestine of sheep as an index of calcium absorption capacity. Brit. J. Nutr. 2014, 112, 718–724. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hyde, M.L.; Wilkens, M.R.; Fraser, D.R. In vivo measurement of strontium absorption from the rumen of dairy cows as an index of calcium absorption capacity. J. Dairy. Sci. 2019, 102, 5699–5705. [Google Scholar] [CrossRef] [PubMed]
- Hinton, R.J.; Jing, Y.; Jing, J.; Feng, J.Q. Roles of chondrocytes in endochondral bone formation and fracture repair. J. Dent. Res. 2017, 96, 23–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, H.; Tan, X.N.; Hu, S.; Liu, R.Q.; Peng, L.H.; Li, Y.M.; Wu, P. Molecular mechanisms of chondrocyte proliferation and differentiation. Front. Cell Dev. Biol. 2021, 9, 664168. [Google Scholar] [CrossRef]
- Yu, D.G.; Ding, H.F.; Mao, Y.Q.; Liu, M.; Yu, B.; Zhao, X.; Wang, X.Q.; Li, Y.; Liu, G.W.; Nie, S.B.; et al. Strontium ranelate reduces cartilage degeneration and subchondral bone remodeling in rat osteoarthritis model. Acta Pharmacol. Sin. 2013, 34, 393–402. [Google Scholar] [CrossRef] [Green Version]
- Mierzwa, A.G.H.; Campos, J.F.; Jesus, M.F.; Nader, H.B.; Lazaretti-Castro, M.; Reginato, R.D. Different doses of strontium ranelate and mechanical vibration modulate distinct responses in the articular cartilage of ovariectomized rats. Osteoarthr. Cartil. 2017, 25, 1179–1188. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.; Liu, Y.; Yang, X.W.; He, J.J.; Zhang, F.; Zhong, Q.; Guo, X.J. Strontium ranelate promotes chondrogenesis through inhibition of the Wnt/beta-catenin pathway. Stem Cell Res. Ther. 2021, 12, 296. [Google Scholar] [CrossRef]
- Henrotin, Y.; Labasse, A.; Zheng, S.X.; Galais, P.; Tsouderos, Y.; Crielaard, J.M.; Reginster, J.Y. Strontium ranelate increases cartilage matrix formation. J. Bone Miner. Res. 2001, 16, 299–308. [Google Scholar] [CrossRef]
- Wang, J.; Zhu, X.; Liu, L.; Shi, X.; Yin, L.; Zhang, Y.; Li, X.; Wang, Z.; Liu, G. Effects of strontium on collagen content and expression of related genes in rat chondrocytes cultured in vitro. Biol. Trace Elem. Res. 2013, 153, 212–219. [Google Scholar] [CrossRef]
- Kong, Y.Z.; Guo, Y.Z.; Zhang, J.F.; Zhao, B.Y.; Wang, J.G. Strontium promotes transforming growth factors beta 1 and beta 2 expression in rat chondrocytes cultured in vitro. Biol. Trace Elem. Res. 2018, 184, 450–455. [Google Scholar] [CrossRef]
- Zhu, X.; Kong, Y.; Huang, Y.; Zhao, B.; Wang, J. Influence of strontium on vascular endothelial growth factor and fibroblast growth factor 2 expression in rat chondrocytes cultured in vitro. Biol. Trace Elem. Res. 2019, 190, 466–471. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Shen, B.; Loor, J.J.; Jiang, Q.; Yuan, Y.; Kong, Y.; Tan, P.; Zeng, F.; Zhao, C.; Zhu, X.; et al. Strontium regulates the proliferation and differentiation of isolated primary bovine chondrocytes via the TGFβ/Smad pathway. Front. Pharmacol. 2022, 13, 925302. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Barbieri, D.; Duan, R.; Yuan, H.; Bruijn, J.D. Strontium-containing apatite/polylactide composites enhance bone formation in osteopenic rabbits. Acta Biomater. 2015, 26, 331–337. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Wu, T.; Li, S.; Wei, P.; Yan, Y.; Gu, W.; Wang, W.; Meng, Q. Combined transcriptomic/proteomic analysis of crucian carp Carassius auratus gibelio in cyprinid herpesvirus 2 infection. Fish Shellfish Immun. 2018, 82, 386–399. [Google Scholar] [CrossRef] [PubMed]
- Dai, W.; Chen, Q.; Wang, Q.; White, R.R.; Liu, J.; Liu, H. Complementary transcriptomic and proteomic analyses reveal regulatory mechanisms of milk protein production in dairy cows consuming different forages. Sci. Rep. 2017, 7, 44234. [Google Scholar] [CrossRef]
- Vogel, C.; Abreu, R.D.; Ko, D.J.; Le, S.Y.; Shapiro, B.A.; Burns, S.C.; Sandhu, D.; Boutz, D.R.; Marcotte, E.M.; Penalva, L.O. Sequence signatures and mRNA concentration can explain two-thirds of protein abundance variation in a human cell line. Mol. Syst. Biol. 2010, 6, 400. [Google Scholar] [CrossRef]
- Han, Y.; Zhao, X.Y.; Sun, Y.F.; Sui, Y.T.; Liu, J.G. Effects of FOSL1 silencing on osteosarcoma cell proliferation, invasion and migration through the ERK/AP-1 signaling pathway. J. Cell Physiol. 2019, 234, 3598–3612. [Google Scholar] [CrossRef]
- Matsuo, K.; Owens, J.M.; Tonko, M.; Elliott, C.; Chambers, T.J.; Wagner, E.F. Fosl1 is a transcriptional target of c-Fos during osteoclast differentiation. Nat. Genet. 2000, 24, 184–187. [Google Scholar] [CrossRef]
- Woods, S.; Humphreys, P.A.; Bates, N.; Richardson, S.A.; Kuba, S.Y.; Brooks, I.R.; Cain, S.A.; Kimber, S.J. Regulation of TGFβ Signalling by TRPV4 in Chondrocytes. Cells 2021, 10, 726. [Google Scholar] [CrossRef]
- Santibanez, J.F.; Quintanilla, M.; Bernabeu, C. TGF-beta/TGF-beta receptor system and its role in physiological and pathological conditions. Clin. Sci. 2011, 121, 233–251. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.B.; Lai, S.X.; Hou, X.Y.; Cao, W.; Zhang, Y.; Zhang, Z.Q. Protective effects of PI3K/Akt signal pathway induced cell autophagy in rat knee joint cartilage injury. Am. J. Transl. Res. 2018, 10, 762–770. [Google Scholar] [PubMed]
- Chen, Y.X.; Zhang, Z.X.; Jin, W.J.; Li, Z.N.; Bao, C.H.; He, C.X.; Guo, Y.Q.; Li, C.Z. Integrative analyses of antler cartilage transcriptome and proteome of gansu red deer (Cervus elaphus kansuensis) at different growth stages. Animals 2022, 12, 934. [Google Scholar] [CrossRef] [PubMed]
- Fournier, C.; Perrier, A.; Thomas, M.; Laroche, N.; Dumas, V.; Rattner, A.; Vico, L.; Guignandon, A. Reduction by strontium of the bone marrow adiposity in mice and repression of the adipogenic commitment of multipotent C3H10T1/2 cells. Bone 2012, 50, 499–509. [Google Scholar] [CrossRef] [PubMed]
- Frechette, D.M.; Krishnamoorthy, D.; Pamon, T.; Chan, M.E.; Patel, V.; Rubin, C.T. Mechanical signals protect stem cell lineage selection, preserving the bone and muscle phenotypes in obesity. Ann. N. Y. Acad. Sci. 2017, 1409, 33–50. [Google Scholar] [CrossRef]
- Chen, Q.C.; Pu, Y.L.; Bi, J.; Zhang, Y. Protective effects of berberine on senile osteoporosis in mice. J. Bone Miner. Metab. 2021, 39, 748–756. [Google Scholar] [CrossRef]
- Cai, Z.; Li, Y.; Song, W.; He, Y.; Li, H.; Liu, X. Anti-inflammatory and prochondrogenic in situ-formed injectable hydrogel crosslinked by strontium-doped bioglass for cartilage regeneration. ACS Appl. Mater. Inter. 2021, 13, 59772–59786. [Google Scholar] [CrossRef]
- Han, W.; Fan, S.; Bai, X.; Ding, C. Strontium ranelate, a promising disease modifying osteoarthritis drug. Expert Opin. Inv. Drug. 2017, 26, 375–380. [Google Scholar] [CrossRef]
Pathway ID | Pathway | Candidate Genes with Pathway Annotation | Candidate Proteins with Pathway Annotation | Gene Value | Pro-Value |
---|---|---|---|---|---|
ko04975 | Fat digestion and absorption | 0 | 1 | 1.000 | 0.028 |
ko04977 | Vitamin digestion and absorption | 0 | 1 | 1.000 | 0.028 |
ko05143 | African trypanosomiasis | 1 | 1 | 0.686 | 0.029 |
ko03320 | PPAR signaling pathway | 0 | 1 | 1.000 | 0.038 |
ko04979 | Cholesterol metabolism | 0 | 1 | 1.000 | 0.038 |
ko04512 | ECM–receptor interaction | 1 | 1 | 0.686 | 0.038 |
ko04610 | Complement and coagulation cascades | 2 | 1 | 0.686 | 0.038 |
ko04510 | Focal adhesion | 1 | 1 | 0.717 | 0.094 |
ko05205 | Proteoglycans in cancer | 0 | 1 | 1.000 | 0.094 |
ko05165 | Human papillomavirus infection | 2 | 1 | 0.712 | 0.097 |
ko04151 | PI3K-Akt signaling pathway | 2 | 1 | 0.717 | 0.097 |
ko04210 | Apoptosis | 5 | 0 | 0.188 | 1.000 |
ko04212 | Longevity regulating pathway worm | 3 | 0 | 0.188 | 1.000 |
ko03410 | Base excision repair | 3 | 0 | 0.302 | 1.000 |
ko05215 | Prostate cancer | 3 | 0 | 0.410 | 1.000 |
ko04350 | TGF-β signaling pathway | 3 | 0 | 0.410 | 1.000 |
ko04620 | Toll-like receptor signaling pathway | 3 | 0 | 0.410 | 1.000 |
ko04380 | Osteoclast differentiation | 3 | 0 | 0.508 | 1.000 |
ko00260 | Glycine, serine, and threonine metabolism | 2 | 0 | 0.508 | 1.000 |
ko04658 | Th1 and Th2 cell differentiation | 2 | 0 | 0.686 | 1.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, F.; Li, L.; Yang, J.; Liu, S.; Yuan, Y.; Zhao, C.; Wang, J. Transcriptomic and Proteomic Analyses Reveal New Insights into Regulatory Mechanisms of Strontium in Bovine Chondrocytes. Animals 2023, 13, 1301. https://doi.org/10.3390/ani13081301
Zeng F, Li L, Yang J, Liu S, Yuan Y, Zhao C, Wang J. Transcriptomic and Proteomic Analyses Reveal New Insights into Regulatory Mechanisms of Strontium in Bovine Chondrocytes. Animals. 2023; 13(8):1301. https://doi.org/10.3390/ani13081301
Chicago/Turabian StyleZeng, Fangyuan, Lan Li, Jiaqi Yang, Siqi Liu, Yang Yuan, Chenxu Zhao, and Jianguo Wang. 2023. "Transcriptomic and Proteomic Analyses Reveal New Insights into Regulatory Mechanisms of Strontium in Bovine Chondrocytes" Animals 13, no. 8: 1301. https://doi.org/10.3390/ani13081301
APA StyleZeng, F., Li, L., Yang, J., Liu, S., Yuan, Y., Zhao, C., & Wang, J. (2023). Transcriptomic and Proteomic Analyses Reveal New Insights into Regulatory Mechanisms of Strontium in Bovine Chondrocytes. Animals, 13(8), 1301. https://doi.org/10.3390/ani13081301