Barley, Triticale, or Rye? The Type of Grain Can Affect the Growth Performance and Meat Quality of Sustainable Raised Pigs
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Approval
2.2. Experimental Design, Animals, Housing, and Feeding
2.3. Tissue Collection
2.4. Ileal Digestibility
2.5. Meat and Fat Quality Analysis
2.6. Chemical Analysis
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Grela, E.R. Some aspects in pig nutrition at intensive or organic-farm management. Polish. J. Vet. Sci. 2008, 11, 405–409. [Google Scholar]
- Olssona, V.; Andersson, K.; Hansson, I.; Lundström, K. Differences in meat quality between organically and conventionally produced pigs. Meat Sci. 2003, 64, 287–297. [Google Scholar] [CrossRef] [PubMed]
- Blair, R. Nutrition and Feeding of Organic Pigs; CAB International, Cromwell Press: Trowbridge, UK, 2007; 330p, ISBN 978-1-84593-191-9. [Google Scholar]
- Wendy, M.R.; Rydhmer, L.; Kyriazakis, I.; Øverland, M.; Gilbert, H.; Dekkers, J.C.M.; Hermesch, S.; Bouquet, A.; Izquierdo, E.G.; Louveauj, I.; et al. Prospects for sustainability of pig production in relation to climate change and novel feed resources. Sci. Food Agric. 2020, 100, 3575–3586. [Google Scholar]
- NRC. Nutrient Requirements of Swine, 11th ed.; National Research Council of the National Academies, The National Academies Press: Washington, DC, USA, 2012. [Google Scholar]
- Nadeem, M.; Anjum, F.M.; Amir, R.M.; Khan, M.R.; Hussain, S.; Javed, M.S. An overview of anti-nutritional factors in cereal grains with special reference to wheat-A review. Pak. J. Food Sci. 2010, 20, 54–61. [Google Scholar]
- Samtiya, M.; Rotimi, E.A.; Dhewa, T. Plant food anti-nutritional factors and their reduction strategies: An overview. Food Prod. Proc. Nutr. 2020, 2, 6. [Google Scholar] [CrossRef] [Green Version]
- Ross, A.B.; Shepherd, M.J.; Schüpphaus, M.; Sinclair, V. Alkylresorcinols in Cereals and Cereal Products. J. Agric. Food Chem. 2003, 51, 4111–4118. [Google Scholar] [CrossRef]
- Habib, H.; Fazili, K.M. Plant protease inhibitors: A defense strategy in plants. Biotech. Mol. Biol. Rev. 2007, 2, 68–85. [Google Scholar]
- Wrigley, C.W.; Batey, I.L. Rye and triticale: Characteristics and quality requirements. Cereal Grains 2010, 112–140. [Google Scholar] [CrossRef]
- Schwarz, T.; Kuleta, W.; Turek, A.; Tuz, R.; Nowicki, J.; Rudzki, B.; Bartlewski, P.M. Assessing the efficiency of using a modern hybrid rye cultivar for pig fattening, with emphasis on production costs and carcass quality. Anim. Prod. Sci. 2014, 55, 467–473. [Google Scholar] [CrossRef] [Green Version]
- Sundrum, A.; Aragon, A.; Schulze-Langenhorst, C.; Bütfering, L.; Henning, M.; Stalljohann, G. Effects of feeding strategies, genotypes, sex, and birth weight on carcass and meat quality traits under organic pig production conditions. Wagen. J. Life Sci. 2011, 58, 163–172. [Google Scholar] [CrossRef] [Green Version]
- McGhee, M.L.; Stein, H.H. Inclusion of hybrid rye in diets for weanling pigs does not compromise daily gain, but may reduce diarrhea incidence despite pigs having preference for consuming corn over hybrid rye. Anim. Feed Sci. Technol. 2021, 281, 115113. [Google Scholar] [CrossRef]
- Chuppava, B.; Wilke, V.; Hartung, C.B.; El-Wahab, A.A.; Grone, R.; von Felde, A.; Kamphues, J.; Visscher, C. Effect of a high proportion of rye in compound feed for reduction of Salmonella typhimurium in experimentally infected young pigs. Microorganisms 2020, 8, 1629. [Google Scholar] [CrossRef] [PubMed]
- McGhee, M.L.; Stein, H.H. The apparent ileal digestibility and the apparent total tract digestibility of carbohydrates and energy in hybrid rye are different from some other cereal grains when fed to growing pigs. J. Anim. Sci. 2020, 98, skaa218. [Google Scholar] [CrossRef]
- Van Zanten, H.H.E.; Van Ittersum, M.K.; De Boer, I.J.M. The role of farm animals in a circular food system. Glob. Food Secur. 2019, 21, 18–22. [Google Scholar] [CrossRef]
- Hansen, L.L.; Claudi-Magnussen, C.; Jensen, S.K.; Andersen, H.J. Effect of organic pig production systems on performance and meat quality. Meat Sci. 2006, 74, 605–615. [Google Scholar] [CrossRef] [Green Version]
- Lebret, B. Effects of feeding and rearing systems on growth, carcass composition and meat quality in pigs. Animal 2008, 2, 1548–1558. [Google Scholar] [CrossRef] [Green Version]
- Beyer, M.; Chudy, A.; Hoffmann, L.; Jentsch, W.; Laube, W.; Nehring, K.; Schiemann, R. Rostock Feed Evaluation System; Jentsch, W., Chudy, A., Beyer, M., Eds.; Plexus Verlag: Amorbach, Germany, 2003. [Google Scholar]
- AOAC. Official Methods of Analysis of the Association of Official Chemists International, 18th ed.; Revision 4; AOAC: Gaithersburg, MD, USA, 2011. [Google Scholar]
- Grela, E.R.; Świątkiewicz, M.; Kowalczuk-Vasilev, E.; Florek, M.; Kosior-Korzecka, U.; Skałecki, P. An attempt of implementation of immunocastration in swine production fed organic feedstuffs—Impact on meat physicochemical quality and boar taint compound concentration in meat of two native pig breeds. Livest. Sci. 2020, 232, 103905. [Google Scholar] [CrossRef]
- Ulbricht, T.L.V.; Southgate, D.A.T. Coronary disease seven dietary factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef]
- Fernández, M.; Ordóñez, J.A.; Cambero, I.; Santos, C.; Pin, C.; de la Hoz, L. Fatty acid compositions of selected varieties of Spanish dry ham related to their nutritional implications. Food Chem. 2007, 101, 107–112. [Google Scholar] [CrossRef]
- Davies, M.G.; Thomas, A.J. An investigation of hydrolytic techniques for the amino acid of foodstuffs. J. Sci. Food Agric. 1973, 24, 1525–1540. [Google Scholar] [CrossRef]
- Davies, N.T.; Reid, H. An evaluation of phytate zinc, copper, iron and manganese content of and availability from soya based textured vegetable protein meat substitutes of meat extruders. Brit. J. Nutr. 1979, 41, 579–588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swain, T.S.; Hillis, W.E. The phenolic constituents of Prunus domestica. I. The quantitative analysis of phenolic constituents. J. Sci. Food Agric. 1959, 10, 63–68. [Google Scholar] [CrossRef]
- Englyst, H.N.; Wiggins, H.S.; Cummings, J.H. Determination of the non-starch polysaccharides in plant foods by gas-liquid chromatography of constituent sugars as the alditol acetales. Analyst 1982, 107, 307–318. [Google Scholar] [CrossRef] [PubMed]
- Kozubek, A. Isolation of 5-n-alkyl, 5-n-alkenyl- and 5-n-alkdienyl-resorcinol homologs from rye grains. Acta Aliment. Pol. 1985, 9, 185–189. [Google Scholar]
- Folch, J.; Lees, M.; Stanley, G.H.S. A simple method for the isolation and purification of total lipids from animal tissue. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- Rhee, K.S.; Dutson, T.R.; Smith, G.C.; Hostetler, R.L.; Reiser, R. Cholesterol content of raw and cooked beef longissimus muscles with different degrees of marbling. J. Food Sci. 1982, 47, 716–719. [Google Scholar] [CrossRef]
- Statistica (Data Analysis Software System), Version 12; StatSoft Software Dell Inc.: Palo Alto, CA, USA, 2015.
- Zollitsch, W. Challenges in the nutrition of organic pigs. J. Sci. Food Agric. 2007, 87, 2747–2750. [Google Scholar] [CrossRef]
- Dzienis, G. Winter rye—A species undervalued in Poland. A review. Agron. Sci. 2018, 73, 19–28. [Google Scholar] [CrossRef]
- Carr, S.N.; Rincker, P.J.; Killefer, J.; Baker, D.H.; Ellis, M.; McKeith, F.K. Effects of different cereal grains and ractopamine hydrochloride on performance, carcass characteristics, and fat quality in late-finishing pigs. J. Anim. Sci. 2005, 83, 223–230. [Google Scholar] [CrossRef]
- Sobotka, W.; Denaburski, J.; Jabłońska, A. The effect of grain species and feed enzymes on production results, slaughter value and meat quality in pigs. Pol. J. Nat. Sci. 2011, 26, 37–46. [Google Scholar]
- Rosenfelder-Kuon, P.; Strang, E.J.P.; Spindler, H.K.; Eklund, M.; Mosenthin, R. Ileal starch digestibility of different cereal grains fed to growing pigs. J. Anim. Sci. 2017, 95, 2711–2717. [Google Scholar] [CrossRef]
- Li, Q.; Patience, J.F. Factors involved in the regulation of feed and energy intake of pigs. Anim. Feed Sci. Technol. 2017, 233, 22–33. [Google Scholar] [CrossRef]
- Beaulieu, A.D.; Williams, N.H.; Patience, J.F. Response to dietary digestible energy concentration in growing pigs fed cereal grain-based diets. J. Anim. Sci. 2009, 87, 965–976. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Batorek-Lukač, N.; Čandek-Potokar, M.; Škrlep, M.; Kubale, V.; Labussièr, E. Effect of Changes in Dietary Net Energy Concentration on Growth Performance, Fat Deposition, Skatole Production, and Intestinal Morphology in Immunocastrated Male Pigs. Front. Vet. Sci. 2021, 8, 1481. [Google Scholar] [CrossRef]
- Yacout, M.H.M. Anti-nutritional factors & its roles in animal nutrition. J. Dairy Vet. Anim. Res. 2016, 4, 237–239. [Google Scholar] [CrossRef] [Green Version]
- Grone, R. Zur Bedeutung Physiko-Chemischer Eigenschaften von Futtergetreide (Weizen, Roggen, Gerste) für die Herstellung und Verwendung in Mischfuttermitteln für Schweine. Ph.D. Thesis, University of Veterinary Medicine Hannover, Hanover, Germany, 2018. [Google Scholar]
- Wilke, V. Effects of Increasing Rye or Rye and Rapeseed Meal (Extracted) Levels in Diets for Young Pigs Regarding Digestibility and Performance as Well as Diverse Properties (Milieu/Substrate) of the Digesta in the Alimentary Tract. Ph.D. Thesis, University of Veterinary Medicine Hannover, Hanover, Germany, 2020. [Google Scholar]
- Turyk, Z.; Osek, M.; Janocha, A. Feeding diets based on barley or triticale during fattening of high-meat PIC pigs: Effects on carcass characteristics and meat quality parameters. Acta Vet. 2011, 61, 1. [Google Scholar] [CrossRef]
- Sullivan, Z.M.; Honeyman, M.S.; Gibson, L.R.; Prusa, K.J. Effects of triticale-based diets on fishing pig performance and pork quality in deep-bedded hoop barns. Meat Sci. 2007, 76, 428–437. [Google Scholar] [CrossRef] [Green Version]
- Burbach, K.; Strang, E.J.P.; Mosenthin, R.; Camarinha-Silva, A.; Seifert, J. Porcine intestinal microbiota is shaped by diet composition based on rye or triticale. J. Appl. Microb. 2017, 123, 1571–1583. [Google Scholar] [CrossRef] [PubMed]
- Le Gall, M.; Serena, A.; Jorgensen, H.; Theil, P.K.; Bach Knudsen, K.E. The role of whole-wheat grain and wheat and rye ingredients on the digestion and fermentation processes in the gut–a model experiment with pigs. Br. J. Nutr. 2009, 102, 1590–1600. [Google Scholar] [CrossRef] [Green Version]
- Strang, E.J.P.; Eklund, M.; Rosenfelder, P.; Sauer, N.; Htoo, J.K.; Mosenthin, R. Chemical composition and standardized ileal amino acid digestibility of eight genotypes of rye fed to growing pigs. J. Anim. Sci. 2016, 94, 3805–3816. [Google Scholar] [CrossRef]
- Strang, E.J.P.; Eklund, M.; Rosenfelder, P.; Htoo, J.K.; Mosenthin, R. Variations in the chemical composition and standardized ileal digestibility of amino acids in eight genotypes of triticale fed to growing pigs. J. Anim. Sci. 2017, 95, 1614–1625. [Google Scholar] [PubMed]
- Bach Knudsen, K.E.; Serena, A.; Kjaer, A.K.; Jorgensen, H.; Engberg, R. Rye bread enhances the production and plasma concentration of butyrate but not the plasma concentrations of glucose and insulin in pigs. J. Nutr. 2005, 135, 1696–1704. [Google Scholar] [CrossRef] [Green Version]
- Thacker, P.; Campbell, G.; Scoles, G. Performance of young growing pigs (17–34 kg) fed rye-based diets selected for reduced viscosity. J. Anim. Feed Sci. 2009, 8, 549–556. [Google Scholar] [CrossRef] [Green Version]
- Bussières, D. Impact of hybrid rye (Brasetto) on finisher pig performance, carcass and meat quality. J. Anim. Sci. 2018, 96 (Suppl. S2), 140. [Google Scholar] [CrossRef]
- McGhee, M.L.; Harsh, B.N.; Stein, H.H. High inclusion rates of hybrid rye instead of corn in diets for growing-finishing pigs do not influence the overall growth performance and most carcass traits are not influenced by hybrid rye. J. Anim. Sci. 2021, 99, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Kristensen, M.; Jensen, M.G. Dietary fibres in the regulation of appetite and food intake. Importance of viscosity. Appetite 2011, 56, 65–70. [Google Scholar] [CrossRef]
- Kim, B.G.; Wulf, D.M.; Maddock, R.J.; Peters, D.N.; Pedersen, C.; Liu, Y.; Stein, H.H. Effects of dietary barley on growth performance, carcass traits and pork quality of finishing pigs. J. Rev. Colomb. De Cienc. Pecuarias 2014, 27, 102–113. [Google Scholar]
- Burnett, D.D.; Legako, J.F.; Phelps, K.J.; Gonzalez, J.M. Biology, strategies, and fresh meat consequences of manipulating the fatty acid composition of meat. J. Anim. Sci. 2020, 98, skaa033. [Google Scholar] [CrossRef]
- Janiszewski, P.; Lisiak, D.; Borzuta, K.; Grześkowiak, E.; Schwarz, T.; Siekierko, U.; Andres, K.; Świątkiewicz, S. The effect of feeding chicken and geese broilers with different cereals on the fatty acids profile in meat. Foods 2021, 10, 2879. [Google Scholar] [CrossRef]
- Turyk, Z.; Osek, M.; Milczarek, A.; Janocha, A. Meat chemical composition and blood serum lipids of pigs fed mixtures containing barley or triticale. Sci. Ann. Pol. Soc. Anim. Prod. 2015, 11, 71–79. [Google Scholar]
- Frankel, E.N. Review. Recent advances in lipid oxidation. J. Sci. Food Agric. 1991, 54, 495–511. [Google Scholar] [CrossRef]
Feeding Period | Starter (35 Days) | Grower (35 Days) | Finisher (30 Days) | ||||||
---|---|---|---|---|---|---|---|---|---|
Groups | I Barley | II Triticale | III Rye | I Barley | II Triticale | III Rye | I Barley | II Triticale | III Rye |
Wheat (Astoria) | 19.16 | 19.86 | 19.16 | 10.0 | 10.0 | 10.0 | 0 | 0 | 0 |
Barley (Basic) | 60.0 | 0 | 0 | 67.0 | 0 | 0 | 80.0 | 0 | 0 |
Triticale (Tulus) | 0 | 60.0 | 0 | 0 | 67.0 | 0 | 0 | 80.0 | 0 |
Rye (Tur) | 0 | 0 | 60.0 | 0 | 0 | 67.0 | 0 | 0 | 80.0 |
Soybean extruded (Mavka) | 4.2 | 4.0 | 4.2 | 3.0 | 3.0 | 3.0 | 2.0 | 2.0 | 2.0 |
Wheat bran | 0 | 0 | 0 | 10.11 | 10.41 | 10.11 | 14.35 | 14.55 | 14.35 |
Yellow lupine (Perkoz) | 4.0 | 3.8 | 4.0 | 4.0 | 3.8 | 4.0 | 0 | 0 | 0 |
Calcium carbonate | 1.2 | 1.2 | 1.2 | 1.2 | 1.2 | 1.2 | 1.2 | 1.2 | 1.2 |
Dicalcium phosphate | 0.8 | 0.7 | 0.8 | 0.1 | 0.1 | 0.1 | 0 | 0 | 0 |
Sodium chloride | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 |
Complementary mix 1 | 1.2 | 1.2 | 1.2 | 1.05 | 1.05 | 1.05 | 0.9 | 0.9 | 0.9 |
Yeast | 8.8 | 8.6 | 8.8 | 3.0 | 2.9 | 3.0 | 1.0 | 0.8 | 1.0 |
Lysine | 0.2 | 0.2 | 0.2 | 0.12 | 0.12 | 0.12 | 0.15 | 0.15 | 0.15 |
DL-methionine | 0.04 | 0.04 | 0.04 | 0.02 | 0.02 | 0.02 | 0 | 0 | 0 |
Content in 1 kg: | |||||||||
ME, MJ/kg | 13.08 | 13.37 | 13.14 | 12.79 | 12.84 | 12.72 | 12.49 | 12.54 | 12.48 |
Dry matter, g | 892.4 | 891.6 | 892.1 | 889.7 | 891.2 | 888.9 | 889.6 | 890.4 | 891.2 |
Crude ash, g | 44.5 | 42.8 | 43.1 | 43.6 | 41.9 | 41.4 | 41.6 | 40.8 | 40.7 |
Crude protein, g | 171.1 | 171.8 | 170.2 | 151.6 | 152.4 | 150.5 | 130.1 | 133.2 | 130.8 |
Crude fiber, g | 41.5 | 39.8 | 38.9 | 44.5 | 43.8 | 43.3 | 46.7 | 46.3 | 45.7 |
NDF, g | 222.4 | 219.4 | 218.2 | 185.7 | 183.5 | 179.5 | 200.4 | 194.2 | 187.8 |
ADF, g | 63.3 | 59.6 | 58.8 | 64.8 | 62.2 | 61.8 | 73.3 | 72.3 | 71.8 |
Ether extract, g | 38.5 | 38.4 | 38.9 | 36.4 | 35.8 | 35.9 | 32.7 | 34.1 | 31.5 |
Total Lys, g | 8.02 | 7.98 | 8.01 | 7.01 | 6.92 | 7.02 | 6.06 | 6.08 | 6.05 |
Total Met, g | 2.74 | 2.76 | 2.71 | 2.33 | 2.28 | 2.26 | 1.91 | 1.92 | 1.89 |
Ca, g | 6.60 | 6.61 | 6.69 | 5.53 | 5.48 | 5.49 | 4.82 | 4.81 | 4.83 |
P, g | 5.38 | 5.37 | 5.41 | 4.79 | 4.73 | 4.69 | 4.41 | 4.38 | 4.32 |
Item | Barley | Triticale | Rye |
---|---|---|---|
Basic Chemical Composition | |||
Dry matter | 884.2 | 883.8 | 881.6 |
Crude ash | 27.4 | 19.8 | 18.7 |
Crude protein | 116.2 | 129.5 | 112.7 |
Ether extract | 20.8 | 21.3 | 19.5 |
Crude fiber | 44.7 | 28.1 | 25.6 |
NDF 1 | 182.7 | 129.4 | 138.2 |
ADF 2 | 55.7 | 32.1 | 37.6 |
Lysine | 3.78 | 3.95 | 3.54 |
Methionine + cysteine | 4.13 | 4.34 | 3.87 |
Palmitic acid (16:0) | 2.93 | 1.12 | 2.58 |
Stearic acid (18:0) | 0.21 | 0.11 | 0.28 |
Oleic acid (18:1) | 2.65 | 1.73 | 1.77 |
Linoleic acid (C18:2) | 7.59 | 8.27 | 4.92 |
Linolenic acid (C18:3) | 0.76 | 0.65 | 0.62 |
Anti-nutritional factors | |||
NSP 3 | 162.6 | 124.7 | 148.2 |
Alkylresorcinols | 0.102 | 0.523 | 1.121 |
Tannins | 1.58 | 1.41 | 1.87 |
Phytate | 109.4 | 89.5 | 96.3 |
Item | Groups/Cereal | SEM | p Value | ||
---|---|---|---|---|---|
I—Barley | II—Triticale | III—Rye | |||
Initial body weight, kg | 30.2 | 30.1 | 30.2 | 0.11 | 0.321 |
Body weight at 35 d, kg | 55.8 | 55.3 | 54.4 | 1.25 | 0.102 |
Body weight at 70 d, kg | 87.6 ab | 89.2 a | 86.5 b | 2.26 | 0.041 |
Body weight at 100 d, kg | 112.5 ab | 115.2 a | 110.8 b | 1.64 | 0.042 |
Average daily weight gains (ADG), g | |||||
Starter period | 731 a | 720 a | 691 b | 34.5 | 0.043 |
Grower period | 909 b | 969 a | 917 b | 78.3 | 0.014 |
Finisher period | 830 b | 867 a | 810 b | 59.6 | 0.038 |
Whole period | 823 ab | 851 a | 806 b | 58.7 | 0.034 |
Average daily feed intake (DFI), kg | |||||
Starter period | 2.02 | 2.05 | 1.94 | 0.02 | 0.102 |
Grower period | 2.62 | 2.66 | 2.56 | 0.07 | 0.109 |
Finisher period | 2.98 | 2.95 | 2.82 | 0.09 | 0.063 |
Whole period | 2.52 | 2.53 | 2.42 | 0.08 | 0.059 |
Feed conversion ratio (FCR), kg/kg | |||||
Starter period | 2.76 | 2.85 | 2.81 | 0.05 | 0.097 |
Grower period | 2.88 | 2.75 | 2.79 | 0.05 | 0.105 |
Finisher period | 3.59 | 3.40 | 3.48 | 0.07 | 0.123 |
Whole period | 3.07 | 2.97 | 3.00 | 0.06 | 0.092 |
Ingredients | Groups/Cereal | SEM | p Value | ||
---|---|---|---|---|---|
I—Barley | II—Triticale | III—Rye | |||
Dry matter (DM) | 76.5 | 76.8 | 74.8 | 0.25 | 0.098 |
Crude protein (CP) | 77.5 a | 78.1 a | 73.8 b | 0.43 | 0.035 |
Ether extract (EE) | 81.1 ab | 82.3 a | 79.9 b | 1.21 | 0.041 |
Nitrogen-free extracts (NfE) | 91.5 a | 92.1 a | 89.3 b | 0.98 | 0.047 |
Crude fiber (CF) | 31.3 | 32.7 | 29.3 | 0.81 | 0.066 |
Non-starch polysaccharides (NSP) | 21.4 a | 21.9 a | 18.2 b | 0.52 | 0.035 |
Item | Groups/Cereal | SEM | p Value | ||
---|---|---|---|---|---|
I—Barley | II—Triticale | III—Rye | |||
Cold dressing yield, % | 78.8 | 78.9 | 79.5 | 0.25 | 0.098 |
Meat of ham, % | 78.4 | 80.2 | 79.5 | 0.39 | 0.063 |
Loin eye area, cm2 | 52.4 | 52.9 | 52.5 | 0,55 | 0.115 |
Meatiness of carcass, % | 55.3 | 55.9 | 55.2 | 0.28 | 0.147 |
Average backfat thickness from 5 measurements, cm | 1.97 ab | 1.94 b | 2.05 a | 0.12 | 0.046 |
Item | Groups/Cereal | SEM | p Value | ||
---|---|---|---|---|---|
I—Barley | II—Triticale | III—Rye | |||
Meat (Longissimus lumborum m.) | 0.66 a | 0.64 a | 0.52 b | 0.04 | 0.044 |
Adipose tissue (backfat) | 1.19 a | 1.15 a | 1.03 b | 0.07 | 0.048 |
Organ tissue (liver) | 3.31 a | 3.18 ab | 3.07 b | 0.14 | 0.032 |
Item | Groups/Cereal | SEM | p Value | ||
---|---|---|---|---|---|
I—Barley | II—Triticale | III—Rye | |||
pH1 45 min after slaughter | 6.27 | 6.25 | 6.28 | 0.08 | 0.196 |
pH2 24 h after slaughter | 5.54 | 5.55 | 5.56 | 0.07 | 0.217 |
Electrical conductivity mS/cm | 18.3 | 18.8 | 18.5 | 0.38 | 0.131 |
Meat color CIE: | |||||
lightness (L) | 53.78 ab | 52.14 b | 55.51 a | 1.25 | 0.037 |
redness (a) | 19.24 | 19.83 | 19.07 | 0.36 | 0.101 |
yellowness (b) | 1.43 b | 1.64 a | 1.42 b | 0.18 | 0.044 |
Chroma (C) | 19.54 | 19.77 | 19.52 | 0.41 | 0.148 |
Hue angle (H°) | 4.7 | 4.8 | 4.6 | 0.66 | 0.131 |
Water holding capacity: | |||||
G-H, cm2 | 7.96 a | 7.93 a | 7.37 b | 0.27 | 0.045 |
G-H, mg | 76.73 a | 76.69 b | 70.16 b | 3.14 | 0.041 |
M/T ×100 | 23.11 ab | 21.35 b | 25.14 a | 1.84 | 0.039 |
Fatty Acid | Groups/Cereal | SEM | p Value | ||
---|---|---|---|---|---|
I—Barley | II—Triticale | III—Rye | |||
SFA | 41.46 ab | 39.93 b | 43.43 a | 1.42 | 0.036 |
C 16:0 | 24.97 ab | 24.16 b | 26.45 a | 0.11 | 0.042 |
C 18:0 | 14.74 | 14.05 | 15.21 | 0.45 | 0.054 |
MUFA | 52.13 ab | 53.27 a | 50.32 b | 1.53 | 0.029 |
C 18:1 n9 | 44.02 a | 45.02 a | 42.34 b | 1.32 | 0.032 |
C 18:1 n7 | 3.89 | 3.95 | 3.83 | 0.15 | 0.238 |
PUFA | 6.22 b | 6.61 a | 6.11 b | 0.17 | 0.042 |
C 18:2 n6 | 4.61 | 4.72 | 4.56 | 0.39 | 0.081 |
C 18:3 n3 | 0.91 | 0.98 | 0.87 | 0.12 | 0.098 |
C 20:4 n6 | 0.51 b | 0.72 a | 0.49 b | 0.11 | 0.032 |
PUFA n6/n3 | 5.84 b | 5.74 b | 6.02 a | 0.21 | 0.044 |
AI 1 | 0.52 ab | 0.49 b | 0.57 a | 0.02 | 0.041 |
TI 2 | 1.30 ab | 1.21 b | 1.41 a | 0.05 | 0.045 |
h/H 3 | 2.05 ab | 2.17 a | 1.87 b | 0.07 | 0.039 |
Fatty Acid | Groups/Cereal | SEM | p Value | ||
---|---|---|---|---|---|
I—Barley | II—Triticale | III—Rye | |||
SFA | 44.99 ab | 43.47 b | 45.74 a | 1.32 | 0.031 |
C 16:0 | 26.37 a | 24.97 b | 26.93 a | 0.82 | 0.042 |
C 18:0 | 16.63 | 16.54 | 16.72 | 0.44 | 0.108 |
MUFA | 41.39 ab | 42.54 a | 40.72 b | 1.21 | 0.038 |
C 18:1 n9 | 36.03 ab | 37.12 a | 35.42 b | 0.47 | 0.036 |
C 18:1 n7 | 2.14 | 2.16 | 2.12 | 0.05 | 0.364 |
PUFA | 13.27 | 13.61 | 13.13 | 0.23 | 0.117 |
C 18:2 n6 | 12.23 | 12.51 | 12.15 | 0.31 | 0.099 |
C 18:3 n3 | 0.78 | 0.81 | 0.75 | 0.03 | 0.139 |
C 20:4 n6 | 0.19 | 0.21 | 0.17 | 0.01 | 0.178 |
PUFA n6/n3 | 16.01 | 15.80 | 16.51 | 0.37 | 0.074 |
AI 1 | 0.59 | 0.55 | 0.62 | 0.04 | 0.057 |
TI 2 | 1.52 | 1.42 | 1.57 | 0.17 | 0.053 |
h/H 3 | 1.84 | 2.00 | 1.78 | 0.08 | 0.061 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grela, E.R.; Kowalczuk-Vasilev, E.; Świątkiewicz, M.; Skiba, G. Barley, Triticale, or Rye? The Type of Grain Can Affect the Growth Performance and Meat Quality of Sustainable Raised Pigs. Animals 2023, 13, 1331. https://doi.org/10.3390/ani13081331
Grela ER, Kowalczuk-Vasilev E, Świątkiewicz M, Skiba G. Barley, Triticale, or Rye? The Type of Grain Can Affect the Growth Performance and Meat Quality of Sustainable Raised Pigs. Animals. 2023; 13(8):1331. https://doi.org/10.3390/ani13081331
Chicago/Turabian StyleGrela, Eugeniusz R., Edyta Kowalczuk-Vasilev, Małgorzata Świątkiewicz, and Grzegorz Skiba. 2023. "Barley, Triticale, or Rye? The Type of Grain Can Affect the Growth Performance and Meat Quality of Sustainable Raised Pigs" Animals 13, no. 8: 1331. https://doi.org/10.3390/ani13081331
APA StyleGrela, E. R., Kowalczuk-Vasilev, E., Świątkiewicz, M., & Skiba, G. (2023). Barley, Triticale, or Rye? The Type of Grain Can Affect the Growth Performance and Meat Quality of Sustainable Raised Pigs. Animals, 13(8), 1331. https://doi.org/10.3390/ani13081331