Postmortem Collection of Gametes for the Conservation of Endangered Mammals: A Review of the Current State-of-the-Art
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods
3. Male Gametes
3.1. Anatomy
3.2. Handling and Transport of the Testes and Epididymides
3.3. Collection Methods and Sperm Quality
3.3.1. Equidae
3.3.2. Bovidae
3.3.3. Felidae
4. Female Gametes
4.1. Anatomy of the Ovaries
4.2. Collection Method
4.2.1. Equidae
4.2.2. Bovidae
4.2.3. Felidae
5. Artificial Reproduction Techniques (ARTs)
5.1. Artificial Insemination
5.2. In Vitro Embryo Production
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- IUCN. Red List Summary Statistics; IUCN: Gland, Switzerland, 2022. [Google Scholar]
- Pimm, S.L.; Jenkins, C.N.; Abell, R.; Brooks, T.M.; Gittleman, J.L.; Joppa, L.N.; Raven, P.H.; Roberts, C.M.; Sexton, J.O. The Biodiversity of Species and Their Rates of Extinction, Distribution, and Protection. Science 2014, 344, 6187. [Google Scholar] [CrossRef] [PubMed]
- Ceballos, G.; Ehrlich, P.R.; Raven, P.H. Vertebrates on the Brink as Indicators of Biological Annihilation and the Sixth Mass Extinction. Proc. Natl. Acad. Sci. USA 2020, 117, 13596–13602. [Google Scholar] [CrossRef] [PubMed]
- Shen, F.; Zhang, Z.; He, W.; Yue, B.; Zhang, A.; Zhang, L.; Hou, R.; Wang, C.; Watanabe, T. Microsatellite Variability Reveals the Necessity for Genetic Input from Wild Giant Pandas (Ailuropoda melanoleuca) into the Captive Population. Mol. Ecol. 2009, 18, 1061–1070. [Google Scholar] [CrossRef] [PubMed]
- San Diego Zoo Wildlife Alliance Frozen Zoo®. Available online: https://science.sandiegozoo.org/resources/frozen-zoo%C2%AE (accessed on 3 April 2023).
- EAZA. Vision Document for the EAZA Biobank; EAZA: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Bolton, R.L.; Mooney, A.; Pettit, M.T.; Bolton, A.E.; Morgan, L.; Drake, G.J.; Appeltant, R.; Walker, S.L.; Gillis, J.D.; Hvilsom, C. Resurrecting Biodiversity: Advanced Assisted Reproductive Technologies and Biobanking. Reprod. Fertil. 2022, 3, R121–R146. [Google Scholar] [CrossRef]
- Holt, W.V.; Comizzoli, P. Genome Resource Banking for Wildlife Conservation: Promises and Caveats. Cryo Lett. 2021, 42, 309–320. [Google Scholar]
- Swanson, W.F. The Challenge of Assisted Reproduction for Conservation of Wild Felids–A Reality Check. Theriogenology 2023, 197, 133–138. [Google Scholar] [CrossRef]
- Rodger, J.C.; Clulow, J. Resetting the Paradigm of Reproductive Science and Conservation. Anim. Reprod. Sci. 2022, 246, 106911. [Google Scholar] [CrossRef]
- Leon-Quinto, T.; Simon, M.A.; Cadenas, R.; Jones, J.; Martinez-Hernandez, F.J.; Moreno, J.M.; Vargas, A.; Martinez, F.; Soria, B. Developing Biological Resource Banks as a Supporting Tool for Wildlife Reproduction and Conservation. Anim. Reprod. Sci. 2009, 112, 347–361. [Google Scholar] [CrossRef]
- Bhat, G.R.; Sofi, K.A. Oocyte and Embryo Preservation in Wild Animals: An Update. Cryo Lett. 2021, 42, 251–260. [Google Scholar]
- Hrabar, H.; Kerley, G.I.H. Conservation Goals for the Cape Mountain Zebra Equus Zebra Zebra—Security in Numbers? Oryx 2013, 47, 403–409. [Google Scholar] [CrossRef] [Green Version]
- Breen, M.; Gill, J.J.B. The Chromosomes of Two Horse × Zebra Hybrids; E. Caballus × E. Grevyi and E. Burchelli. Hereditas 1991, 115, 169–175. [Google Scholar] [CrossRef] [Green Version]
- Rong, R.; Yang, X.; Cai, H.; Wei, J. Fertile Mule in China and Her Unusual Foal. J. R. Soc. Med. 1985, 78, 821–825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chandley, A.C.; Short, R.V.; Allen, W.R. Cytogenetic Studies of Three Equine Hybrids. J. Reprod. Fertil. Suppl. 1975, 356–370. [Google Scholar]
- Boyd, M.M. A Short Account of an Experiment in Crossing the American Bison with Domestic Cattle. J. Hered. 1908, 4, 324–331. [Google Scholar] [CrossRef] [Green Version]
- Krasińska, M. Bisoniana XXXIX. The Postnatal Development of F1 Hybrids of the European Bison and Domestic Cattle. Acta Theriol. 1969, 14, 69–117. [Google Scholar] [CrossRef] [Green Version]
- National Research Council. Little-Known Asian Animals with a Promising Economic Future; National Academies Press: Washington, DC, USA, 1983. [Google Scholar]
- Wood, S. LIOC Endangered Species Conservation Federation Newsletter. Felid Conserv. 1986, 30, 15. [Google Scholar]
- Weir, H. Our Cats and All. about Them: Their Varieties, Habits, and Management, and for Show, the Standard of Excellence and Beauty; Tunbridge Wells: Sevenoaks, UK, 1889. [Google Scholar]
- Cole, F.R.; Wilson, D.E. Felis margarita (Carnivora: Felidae). Mamm. Species 2015, 47, 63–77. [Google Scholar] [CrossRef] [Green Version]
- Dickman, C.R.; Legge, S.M.; Woinarski, J.C.Z. Assessing Risks to Wildlife from Free-Roaming Hybrid Cats: The Proposed Introduction of Pet Savannah Cats to Australia as a Case Study. Animals 2019, 9, 795. [Google Scholar] [CrossRef] [Green Version]
- Bredemeyer, K.R.; Seabury, C.M.; Stickney, M.J.; McCarrey, J.R.; vonHoldt, B.M.; Murphy, W.J. Rapid Macrosatellite Evolution Promotes X-Linked Hybrid Male Sterility in a Feline Interspecies Cross. Mol. Biol. Evol. 2021, 38, 5588–5609. [Google Scholar] [CrossRef]
- Kusminych, I.; Pawlowa, A. Ein Bastard von Karakal Hauskatze Im Moskauer Zoo. Zool. Gart. 1998, 68, 4. [Google Scholar]
- Lyons, L.A. Genetic Testing in Domestic Cats. Mol. Cell. Probes 2012, 26, 224–230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Werdelin, L.; Nilsonne, Å. The Evolution of the Scrotum and Testicular Descent in Mammals: A Phylogenetic View. J. Theor. Biol. 1999, 196, 61–72. [Google Scholar] [CrossRef] [PubMed]
- Testes and Scrotum|Veterian Key. Available online: https://veteriankey.com/testes-and-scrotum/ (accessed on 16 January 2023).
- Mohamed, A. Glycohistochemical, Immunohistochemical and Ultrastructural Studies of the Bovine Epididymis. Ph.D. Thesis, Ludwig-Maximilians-Universität, München, Germany, 2005. [Google Scholar]
- Lodhi, L.A.; Lqbal Qureshi, Z.; Ali, F. The Bovine Testis—I: Pre and Post Natal Development. Pak. J. Biol. Sci. 2000, 3, 1691–1696. [Google Scholar] [CrossRef]
- Thomas, J. Reproductive Anatomy and Physiology of the Bull. Available online: https://extension.missouri.edu/publications/g2016 (accessed on 27 March 2023).
- National Research Council (US) Subcommittee on Reproductive and Neurodevelopmental Toxicology. Biologic Markers of Epididymal Structure and Function; National Academies Press: Washington, DC, USA, 1989. [Google Scholar]
- Naden, J.; Amann, R.P.; Squires, E.L. Testicular Growth, Hormone Concentrations, Seminal Characteristics and Sexual Behaviour in Stallions. Reproduction 1990, 88, 167–176. [Google Scholar] [CrossRef] [PubMed]
- Podico, G.; Canisso, I.F. Retrograde Flushing Followed by Slicing Float-Up as an Approach to Optimize Epididymal Sperm Recovery for the Purpose of Cryopreservation in Equids. Animals 2022, 12, 1802. [Google Scholar] [CrossRef] [PubMed]
- Masoud, S.R.; Kishta, A.A.; Canisso, I.F.; Abdel-Megeid, N.S.; Fathalla, S.I.; Shawky, S.M.; Abdoon, A.S.S. Age-related Changes in Testicular Morphometry and Function in Egyptian Donkeys. Reprod. Domest. Anim. 2022, 57, 1319–1326. [Google Scholar] [CrossRef]
- Killian, G.J.; Amann, R.P. Reproductive Capacity of Dairy Bulls. IX. Changes in Reproductive Organ Weights and Semen Characteristics of Holstein Bulls During the First Thirty Weeks After Puberty. J. Dairy. Sci. 1972, 55, 1631–1635. [Google Scholar] [CrossRef]
- Coulter, G.H.; Kozub, G.C. Testicular Development, Epididymal Sperm Reserves and Seminal Quality in Two-Year-Old Hereford and Angus Bulls: Effects of Two Levels of Dietary Energy. J. Anim. Sci. 1984, 59, 432–440. [Google Scholar] [CrossRef]
- Kaabi, M.; Paz, P.; Alvarez, M.; Anel, E.; Boixo, J.C.; Rouissi, H.; Herraez, P.; Anel, L. Effect of Epididymis Handling Conditions on the Quality of Ram Spermatozoa Recovered Post-Mortem. Theriogenology 2003, 60, 1249–1259. [Google Scholar] [CrossRef]
- Abu, A.H.; Kisani, A.I.; Ahemen, T. Evaluation of Sperm Recovered after Slaughter from Cauda Epididymides of Red Sokoto Bucks. Vet. World 2016, 9, 1440–1444. [Google Scholar] [CrossRef] [Green Version]
- Gemeda, A.E.; Workalemahu, K. Body Weight and Scrotal-Testicular Biometry in Three Indigenous Breeds of Bucks in Arid and Semiarid Agroecologies, Ethiopia. J. Vet. Med. 2017, 2017, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Pintus, E.; Kadlec, M.; Karlasová, B.; Popelka, M.; Ros-Santaella, J.L. Spermatogenic Activity and Sperm Traits in Post-Pubertal and Adult Tomcats (Felis catus): Implication of Intra-Male Variation in Sperm Size. Cells 2021, 10, 624. [Google Scholar] [CrossRef] [PubMed]
- Bertol, M.A.F.; Weiss, R.R.; Thomaz-Soccol, V.; Kozicki, L.E.; Fujita, A.S.; de Abreu, R.A.; Green, K.T. Viability of Bull Spermatozoa Collected from the Epididymis Stored at 18–20 °C. Braz. Arch. Biol. Technol. 2013, 56, 777–783. [Google Scholar] [CrossRef] [Green Version]
- Martinez-Pastor, F.; Garcia-Macias, V.; Alvarez, M.; Chamorro, C.; Herraez, P.; de Paz, P.; Anel, L. Comparison of Two Methods for Obtaining Spermatozoa from the Cauda Epididymis of Iberian Red Deer. Theriogenology 2006, 65, 471–485. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, G.A.; Guasti, P.N.; Rocha, A.S.; Martin, I.; Sancler-Silva, Y.F.R.; Freitas Dell’Aqua, C.P.; Dell’Aqua, J.A.; Papa, F.O. Effect of Storage Time and Temperature of Equine Epididymis on the Viability, Motion Parameters, and Freezability of Epididymal Sperm. J. Equine Vet. Sci. 2013, 33, 169–173. [Google Scholar] [CrossRef] [Green Version]
- Álvarez-Rodriguez, M.; Álvarez, M.; Anel-López, L.; Guerra, C.; Chamorro, C.A.; Anel, L.; de Paz, P.; Martínez-Pastor, F. Effect of Length of Time Post-Mortem on Quality and Freezing Capacity of Cantabric Chamois (Rupicapra Pyrenaica Parva) Epididymal Spermatozoa. Anim. Reprod. Sci. 2018, 198, 184–192. [Google Scholar] [CrossRef] [PubMed]
- Tarín, J.J.; García-Pérez, M.A.; Cano, A. It Is Premature to Use Postmortem Sperm for Reproductive Purposes: A Data-Driven Opinion. Reprod. Sci. 2022, 29, 3387–3393. [Google Scholar] [CrossRef]
- Thuwanut, P.; Srisuwatanasagul, S.; Wongbandue, G.; Tanpradit, N.; Thongpakdee, A.; Tongthainan, D.; Manee-in, S.; Chatdarong, K. Sperm Quality and the Morphology of Cryopreserved Testicular Tissues Recovered Post-Mortem from Diverse Wild Species. Cryobiology 2013, 67, 244–247. [Google Scholar] [CrossRef] [PubMed]
- Saragusty, J.; Gacitua, H.; King, R.; Arav, A. Post-Mortem Semen Cryopreservation and Characterization in Two Different Endangered Gazelle Species (Gazella gazella and Gazella dorcas) and One Subspecies (Gazella gazelle acaiae). Theriogenology 2006, 66, 775–784. [Google Scholar] [CrossRef]
- Strand, J.; Ragborg, M.M.; Pedersen, H.S.; Kristensen, T.N.; Pertoldi, C.; Callesen, H. Effects of Post-Mortem Storage Conditions of Bovine Epididymides on Sperm Characteristics: Investigating a Tool for Preservation of Sperm from Endangered Species. Conserv. Physiol. 2016, 4, cow069. [Google Scholar] [CrossRef] [Green Version]
- Lone, F.A.; Islam, R.; Khan, M.Z.; Sofi, K.A. Effect of Transportation Temperature on the Quality of Cauda Epididymal Spermatozoa of Ram. Anim. Reprod. Sci. 2011, 123, 54–59. [Google Scholar] [CrossRef] [PubMed]
- Tamayo-Canul, J.; Alvarez, M.; López-Urueña, E.; Nicolas, M.; Martinez-Pastor, F.; Anel, E.; Anel, L.; de Paz, P. Undiluted or Extended Storage of Ram Epididymal Spermatozoa as Alternatives to Refrigerating the Whole Epididymes. Anim. Reprod. Sci. 2011, 126, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Bertol, M.A.F. Cryopreservation of Epididymal Sperm. In Cryopreservation in Eukaryotes; InTech: London, UK, 2016. [Google Scholar]
- Lamglait, B. Longevity of Sperm Cells Retrieved by Post-Mortem Epididymal Aspiration in Wild Bovids in Zoo Conditions. J. Zoo. Aquar. Res. 2014, 2, 92–100. [Google Scholar] [CrossRef]
- Chatdarong, K.; Thuwanut, P.; Morrell, J.M. Single-Layer Centrifugation through Colloid Selects Improved Quality of Epididymal Cat Sperm. Theriogenology 2010, 73, 1284–1292. [Google Scholar] [CrossRef] [PubMed]
- Prochowska, S.; Niżański, W.; Partyka, A. Low Levels of Apoptotic-like Changes in Fresh and Cryopreserved Feline Spermatozoa Collected from the Urethra and Epididymis. Theriogenology 2017, 88, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Hori, T.; Atago, T.; Kobayashi, M.; Kawakami, E. Influence of Different Methods of Collection from the Canine Epididymides on Post-Thaw Caudal Epididymal Sperm Quality. J. Vet. Med. Sci. 2015, 77, 625–630. [Google Scholar] [CrossRef] [Green Version]
- Bedford, J.M. The Functions—Or Not—Of Seminal Plasma? Biol. Reprod. 2015, 92, 1–3. [Google Scholar] [CrossRef]
- Nichi, M.; Rijsselaere, T.; Losano, J.; Angrimani, D.; Kawai, G.; Goovaerts, I.; van Soom, A.; Barnabe, V.; de Clercq, J.; Bols, P. Evaluation of Epididymis Storage Temperature and Cryopreservation Conditions for Improved Mitochondrial Membrane Potential, Membrane Integrity, Sperm Motility and In Vitro Fertilization in Bovine Epididymal Sperm. Reprod. Domest. Anim. 2017, 52, 257–263. [Google Scholar] [CrossRef]
- Roels, K.; Leemans, B.; Ververs, C.; Govaere, J.; Hoogewijs, M.; van Soom, A. Collection and Freezing of Equine Epididymal Spermatozoa. Vlaams Diergeneeskd. Tijdschr. 2014, 83, 321–325. [Google Scholar] [CrossRef]
- Zambelli, D.; Cunto, M. Semen Collection in Cats: Techniques and Analysis. Theriogenology 2006, 66, 159–165. [Google Scholar] [CrossRef]
- Vieira, L.A.; Gadea, J.; García-Vázquez, F.A.; Avilés-López, K.; Matás, C. Equine Spermatozoa Stored in the Epididymis for up to 96 h at 4 °C Can Be Successfully Cryopreserved and Maintain Their Fertilization Capacity. Anim. Reprod. Sci. 2013, 136, 280–288. [Google Scholar] [CrossRef] [PubMed]
- Gerits, I.; Angel-Velez, D.; Ververs, C.; Govaere, J.; Van Soom, A.; Smits, K. First Blastocyst Production after ICSI with Zebra Semen. J. Equine Vet. Sci. 2020, 89, 103053. [Google Scholar] [CrossRef]
- Gambini, A.; Duque Rodríguez, M.; Rodríguez, M.B.; Briski, O.; Flores Bragulat, A.P.; Demergassi, N.; Losinno, L.; Salamone, D.F. Horse Ooplasm Supports in Vitro Preimplantation Development of Zebra ICSI and SCNT Embryos without Compromising YAP1 and SOX2 Expression Pattern. PLoS ONE 2020, 15, e0238948. [Google Scholar] [CrossRef] [PubMed]
- Bruemmer, J.E. Collection and Freezing of Epididymal Stallion Sperm. Vet. Clin. North Am. Equine Pract. 2006, 22, 677–682. [Google Scholar] [CrossRef]
- Neuhauser, S.; Gösele, P.; Handler, J. Geburt Eines Fohlens Nach Besamung Mit Tiefgefrorenen Nebenhodenspermien Und Zeitgleicher Intrauteriner Verabreichung von Homologem Seminalplasma. Tierärztliche Prax. Ausg. G Großtiere/Nutztiere 2019, 47, 256–262. [Google Scholar] [CrossRef]
- Goovaerts, I.G.F.; Hoflack, G.G.; van Soom, A.; Dewulf, J.; Nichi, M.; de Kruif, A.; Bols, P.E.J. Evaluation of Epididymal Semen Quality Using the Hamilton–Thorne Analyser Indicates Variation between the Two Caudae Epididymides of the Same Bull. Theriogenology 2006, 66, 323–330. [Google Scholar] [CrossRef]
- Stout, M.A. Comparison of Epididymal and Ejaculated Sperm Collected from the Same Holstein Bulls. Doctoral Dissertation, Louisiana State University, Baton Rouge, LA, USA, 2012. [Google Scholar]
- Filliers, M.; Rijsselaere, T.; Bossaert, P.; Zambelli, D.; Anastasi, P.; Hoogewijs, M.; van Soom, A. In Vitro Evaluation of Fresh Sperm Quality in Tomcats: A Comparison of Two Collection Techniques. Theriogenology 2010, 74, 31–39. [Google Scholar] [CrossRef]
- Vernocchi, V.; Morselli, M.G.; Varesi, S.; Nonnis, S.; Maffioli, E.; Negri, A.; Tedeschi, G.; Luvoni, G.C. Sperm Ubiquitination in Epididymal Feline Semen. Theriogenology 2014, 82, 636–642. [Google Scholar] [CrossRef]
- Malo, A.F.; Martinez-Pastor, F.; Olivier, F.; Spies, T.; Roldan, E.R.S.; Bartels, P. Effect of Refrigeration and Cryopreservation on the Quality of Lion Epididymal Spermatozoa. Reprod. Fertil. Dev. 2004, 16, 225. [Google Scholar] [CrossRef] [Green Version]
- Jimenez Gonzalez, S.; Howard, J.G.; Brown, J.; Grajales, H.; Pinzón, J.; Monsalve, H.; Moreno, M.A.; Jimenez Escobar, C. Reproductive Analysis of Male and Female Captive Jaguars (Panthera onca) in a Colombian Zoological Park. Theriogenology 2017, 89, 192–200. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Santos, M.R.; Soler, A.J.; Ramón, M.; Ros-Santaella, J.L.; Maroto-Morales, A.; García-Álvarez, O.; Bisbal, A.; Garde, J.J.; Coloma, M.A.; Santiago-Moreno, J. Effect of Post-Mortem Time on Post-Thaw Characteristics of Spanish Ibex (Capra pyrenaica) Spermatozoa. Anim. Reprod. Sci. 2011, 129, 56–66. [Google Scholar] [CrossRef] [PubMed]
- Santiago-Moreno, J.; Toledano-Díaz, A.; Pulido-Pastor, A.; Gómez-Brunet, A.; López-Sebastián, A. Birth of Live Spanish Ibex (Capra pyrenaica hispanica) Derived from Artificial Insemination with Epididymal Spermatozoa Retrieved after Death. Theriogenology 2006, 66, 283–291. [Google Scholar] [CrossRef] [PubMed]
- López-Saucedo, J.; Paramio, M.T.; Fierro, R.; Izquierdo, D.; Catalá, M.G.; Coloma, M.A.; Toledano-Díaz, A.; López-Sebastián, A.; Santiago-Moreno, J. Sperm Characteristics and Heterologous in Vitro Fertilisation Capacity of Iberian Ibex (Capra pyrenaica) Epididymal Sperm, Frozen in the Presence of the Enzymatic Antioxidant Catalase. Cryobiology 2014, 68, 389–394. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Pastor, F.; Álvarez, M.; Guerra, C.; Chamorro, C.A.; Anel-López, L.; de Paz, P.; Anel, L.; Álvarez-Rodríguez, M. Extender Osmolality, Glycerol and Egg Yolk on the Cryopreservation of Epididymal Spermatozoa for Gamete Banking of the cantabric chamois (Rupicapra pyrenaica parva). Theriogenology 2019, 125, 109–114. [Google Scholar] [CrossRef] [PubMed]
- Kozdrowski, R.; Niżański, W.; Dubiel, A.; Olech, W. Possibilities of Using the European Bison (Bison bonasus) Epididymal Spermatozoa Collected Post-Mortem for Cryopreservation and Artificial Insemination: A Pilot Study. Reprod. Biol. Endocrinol. 2011, 9, 31. [Google Scholar] [CrossRef] [Green Version]
- Koziorowski, M.; Seremak, B.; Gilun, P.; Kozioł, K. Season Controlled Reproduction of Undomesticated Animals. Reprod. Biol. 2006, 6, 137–149. [Google Scholar]
- Duszewska, A.M.; Baraniewicz-Kołek, M.; Wojdan, J.; Barłowska, K.; Bielecki, W.; Gręda, P.; Niżański, W.; Olech, W. Establishment of a Wisent (Bison bonasus) Germplasm Bank. Animals 2022, 12, 1239. [Google Scholar] [CrossRef]
- Bóveda, P.; Esteso, M.C.; Castaño, C.; Toledano-Díaz, A.; López-Sebastián, A.; Muñiz, A.; Prieto, P.; Mejía, O.; Ungerfeld, R.; Santiago-Moreno, J. Slow and Ultra-Rapid Freezing Protocols for Cryopreserving Mouflon (Ovis musimon) and Fallow Deer (Dama dama) Epididymal Sperm. Anim. Reprod. Sci. 2018, 192, 193–199. [Google Scholar] [CrossRef]
- Chatiza, F.P.; Pieterse, G.M.; Bartels, P.; Nedambale, T.L. Characterization of Epididymal Spermatozoa Motility Rate, Morphology and Longevity of Springbok (Antidorcas marsupialis), Impala (Aepyceros melampus) and Blesbok (Damaliscus dorcus phillipsi): Pre- and Post-Cryopreservation in South Africa. Anim. Reprod. Sci. 2011, 126, 234–244. [Google Scholar] [CrossRef]
- Mahesh, Y.; Rao, B.; Suman, K.; Lakshmikantan, U.; Charan, K.; Gibence, H.; Shivaji, S. In Vitro Maturation and Fertilization in the Nilgai (Boselaphus tragocamelus) Using Oocytes and Spermatozoa Recovered Post-Mortem from Animals That Had Died Because of Foot and Mouth Disease Outbreak. Reprod. Domest. Anim. 2011, 46, 832–839. [Google Scholar] [CrossRef]
- Segundo Salinas, M.B.; Lertwichaikul, T.; Khunkaew, C.; Boonyayatra, S.; Sringarm, K.; Chuammitri, P.; Sathanawongs, A. Freezability Biomarkers in the Epididymal Spermatozoa of Swamp Buffalo. Cryobiology 2022, 106, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Cocchia, N.; Ciani, F.; El-Rass, R.; Russo, M.; Borzacchiello, G.; Esposito, V.; Montagnaro, S.; Avallone, L.; Tortora, G.; Lorizio, R. Cryopreservation of Feline Epididymal Spermatozoa from Dead and Alive Animals and Its Use in Assisted Reproduction. Zygote 2010, 18, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Jewgenow, K.; Blottner, S.; Lengwinat, T.; Meyer, H.H. New Methods for Gamete Rescue from Gonads of Nondomestic Felids. J. Reprod. Fertil. Suppl. 1997, 51, 33–39. [Google Scholar]
- Huffmeyer, A.A.; Sikich, J.A.; Vickers, T.W.; Riley, S.P.D.; Wayne, R.K. First Reproductive Signs of Inbreeding Depression in Southern California Male Mountain Lions (Puma concolor). Theriogenology 2022, 177, 157–164. [Google Scholar] [CrossRef]
- Ovary|Animal and Human|Britannica. Available online: https://www.britannica.com/science/ovary-animal-and-human (accessed on 17 January 2023).
- Ovarium|Definition of Ovarium by Medical Dictionary. Available online: https://medical-dictionary.thefreedictionary.com/ovarium (accessed on 17 January 2023).
- Ovaries and Uterus|Veterian Key. Available online: https://veteriankey.com/ovaries-and-uterus/ (accessed on 17 January 2023).
- Purohit, G.N. Anatomy of Female Reproductive Organs in Domestic Animals. Available online: https://www.basu.org.in/wp-content/uploads/2020/04/ANATOMY-OF-FEMALE-REPRODUCTIVE-ORGANS-IN-DOMESTIC-ANIMALS-1.pdf (accessed on 17 January 2023).
- Murakami, M.; Dong, Y.J.; Suzuki, T.; Taniguchi, M.; Kaedei, Y.; Sato, Y.; Tanihara, F.; Otoi, T. Development and Subsequent Cryotolerance of Domestic Cat Embryos Cultured in Serum-Free and Serum-Containing Media. Cryobiology 2011, 63, 170–174. [Google Scholar] [CrossRef] [PubMed]
- Naoi, H.; Otoi, T.; Shimamura, T.; Karja, N.W.K.; Agung, B.; Shimizu, R.; Taniguchi, M.; Nagai, T. Developmental Competence of Cat Oocytes from Ovaries Stored at Various Temperature for 24 h. J. Reprod. Dev. 2007, 53, 271–277. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez, C.; Anel, L.; Alvarez, M.; Anel, E.; Boixo, J.; Chamorro, C.; Paz, P. Ovum Pick-up in Sheep: A Comparison between Different Aspiration Devices for Optimal Oocyte Retrieval. Reprod. Domest. Anim. 2006, 41, 106–113. [Google Scholar] [CrossRef]
- Alm, H.; Torner, H.; Kanitz, W.; Becker, F.; Hinrichs, K. Comparison of Different Methods for the Recovery of Horse Oocytes. Equine Vet. J. 2010, 29, 47–50. [Google Scholar] [CrossRef]
- Kauffold, J.; Amer, H.A.H.; Bergfeld, U.; Weber, W.; Sobiraj, A. The In Vitro Developmental Competence of Oocytes from Juvenile Calves Is Related to Follicular Diameter. J. Reprod. Dev. 2005, 51, 325–332. [Google Scholar] [CrossRef] [Green Version]
- Rao, B.S.; Mahesh, Y.U.; Suman, K.; Charan, K.V.; Nath, R.; Rao, K.R. Meiotic Maturation of Oocytes Recovered from the Ovaries of Indian Big Cats at Postmortem. Vitr. Cell Dev. Biol. Anim. 2015, 51, 19–25. [Google Scholar] [CrossRef]
- González, S.M.; da Silva, C.B.; Lindquist, A.G.; Búfalo, I.; Machado, F.Z.; Bueno, J.V.R.; Scarpin, L.C.; Bergamo, L.Z.; Silva-Santos, K.C.; Marinho, L.S.R.; et al. Recovery of Equine Oocytes by Scraping of the Follicular Wall with Different Specifications of Needles and Morphological Analysis of Cumulus oophorus. Semin. Cienc. Agrar. 2015, 36, 4333. [Google Scholar] [CrossRef] [Green Version]
- Hinrichs, K. The Relationship of Follicle Atresia to Follicle Size, Oocyte Recovery Rate on Aspiration, and Oocyte Morphology in the Mare. Theriogenology 1991, 36, 157–168. [Google Scholar] [CrossRef] [PubMed]
- Hinrichs, K. Production of Embryos by Assisted Reproduction in the Horse. Theriogenology 1998, 49, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.H.; Love, L.B.; Varner, D.D.; Hinrichs, K. Holding Immature Equine Oocytes in the Absence of Meiotic Inhibitors: Effect on Germinal Vesicle Chromatin and Blastocyst Development after Intracytoplasmic Sperm Injection. Theriogenology 2006, 66, 955–963. [Google Scholar] [CrossRef] [PubMed]
- Diaw, M.; Salgado, R.M.; Canesin, H.S.; Gridley, N.; Hinrichs, K. Effect of Different Shipping Temperatures (∼22 °C vs. ∼7 °C) and Holding Media on Blastocyst Development after Overnight Holding of Immature Equine Cumulus-Oocyte Complexes. Theriogenology 2018, 111, 62–68. [Google Scholar] [CrossRef] [PubMed]
- Pascottini, O.B.; Catteeuw, M.; van Soom, A.; Opsomer, G. Holding Immature Bovine Oocytes in a Commercial Embryo Holding Medium: High Developmental Competence for up to 10 h at Room Temperature. Theriogenology 2018, 107, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Azari-Dolatabad, N.; Benedetti, C.; Velez, D.A.; Montoro, A.F.; Sadeghi, H.; Residiwati, G.; Leroy, J.L.M.R.; van Soom, A.; Pascottini, O.B. Oocyte Developmental Capacity Is Influenced by Intrinsic Ovarian Factors in a Bovine Model for Individual Embryo Production. Anim. Reprod. Sci. 2023, 249, 107185. [Google Scholar] [CrossRef]
- Karja, N.W.K.; Otoi, T.; Murakami, M.; Fahrudin, M.; Suzuki, T. In Vitro Maturation, Fertilization and Development of Domestic Cat Oocytes Recovered from Ovaries Collected at Three Stages of the Reproductive Cycle. Theriogenology 2002, 57, 2289–2298. [Google Scholar] [CrossRef]
- Benham, H.M.; McCollum, M.P.; Nol, P.; Frey, R.K.; Clarke, P.R.; Rhyan, J.C.; Barfield, J.P. Production of Embryos and a Live Offspring Using Post Mortem Reproductive Material from Bison (Bison Bison Bison) Originating in Yellowstone National Park, USA. Theriogenology 2021, 160, 33–39. [Google Scholar] [CrossRef]
- Zahmel, J.; Jänsch, S.; Jewgenow, K.; Sandgreen, D.-M.; Skalborg Simonsen, K.; Colombo, M. Maturation and Fertilization of African Lion (Panthera leo) Oocytes after Vitrification. Cryobiology 2021, 98, 146–151. [Google Scholar] [CrossRef]
- Kochan, J.; Nowak, A.; Młodawska, W.; Prochowska, S.; Partyka, A.; Skotnicki, J.; Niżański, W. Comparison of the Morphology and Developmental Potential of Oocytes Obtained from Prepubertal and Adult Domestic and Wild Cats. Animals 2020, 11, 20. [Google Scholar] [CrossRef] [PubMed]
- Comizzoli, P.; Mermillod, P.; Mauget, R. Reproductive Biotechnologies for Endangered Mammalian Species. Reprod. Nutr. Dev. 2000, 40, 493–504. [Google Scholar] [CrossRef] [PubMed]
- Hermes, R.; Göritz, F.; Saragusty, J.; Sós, E.; Molnar, V.; Reid, C.E.; Schwarzenberger, F.; Hildebrandt, T.B. First Successful Artificial Insemination with Frozen-Thawed Semen in Rhinoceros. Theriogenology 2009, 71, 393–399. [Google Scholar] [CrossRef] [PubMed]
- Callealta, I.; Ganswindt, A.; Malan, M.; Lueders, I. Non-Surgical Artificial Insemination Using a GnRH Analogue for Ovulation Induction during Natural Oestrus in African Lions (Panthera leo). Theriogenology 2019, 139, 28–35. [Google Scholar] [CrossRef] [PubMed]
- Conforti, V.A.; Bateman, H.L.; Schook, M.W.; Newsom, J.; Lyons, L.A.; Grahn, R.A.; Deddens, J.A.; Swanson, W.F. Laparoscopic Oviductal Artificial Insemination Improves Pregnancy Success in Exogenous Gonadotropin-Treated Domestic Cats as a Model for Endangered Felids1. Biol. Reprod. 2013, 89, 1–9. [Google Scholar] [CrossRef]
- Swanson, W.F. Laparoscopic Oviductal Embryo Transfer and Artificial Insemination in Felids--Challenges, Strategies and Successes. Reprod. Domest. Anim. 2012, 47 (Suppl. S6), 136–140. [Google Scholar] [CrossRef]
- Samper, J.C. Management and Fertility of Mares Bred with Frozen Semen. Anim. Reprod. Sci. 2001, 68, 219–228. [Google Scholar] [CrossRef]
- Diskin, M.G. Review: Semen Handling, Time of Insemination and Insemination Technique in Cattle. Animal 2018, 12, s75–s84. [Google Scholar] [CrossRef]
- Tsutsui, T. Artificial Insemination in Domestic Cats (Felis catus). Theriogenology 2006, 66, 122–125. [Google Scholar] [CrossRef]
- Trasorras, V.L.; Carretero, M.I.; Neild, D.M.; Chaves, M.G.; Giuliano, S.M.; Miragaya, M.H. Production, Preservation, and Transfer of South American Camelid Embryos. Front. Vet. Sci. 2017, 4, 190. [Google Scholar] [CrossRef] [Green Version]
- Fernandez-Gonzalez, L.; Hribal, R.; Stagegaard, J.; Zahmel, J.; Jewgenow, K. Production of Lion (Panthera Leo) Blastocysts after in Vitro Maturation of Oocytes and Intracytoplasmic Sperm Injection. Theriogenology 2015, 83, 995–999. [Google Scholar] [CrossRef] [PubMed]
- Berg, D.K.; Thongphakdee, A. In Vitro Culture of Deer Embryos. Methods Mol. Biol. 2019, 2006, 191–207. [Google Scholar] [PubMed]
- Brom-de-Luna, J.G.; Salgado, R.M.; Canesin, H.S.; Diaw, M.; Hinrichs, K. Equine Blastocyst Production under Different Incubation Temperatures and Different CO2 Concentrations during Early Cleavage. Reprod. Fertil. Dev. 2019, 31, 1823. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez Andueza, S.; Azari-Dolatabad, N.; Benedetti, C.; Fernandez, A.; Angel-Velez, D.; Sadeghi, H.; Malledevarahalli, S.; Opsomer, G.; van Soom, A.; Pascottini, O.B. Lycopene Supplementation to Serum-free Embryo Culture Medium and Its Effect on Development and Quality of Bovine Blastocysts Produced in Vitro. Reprod. Domest. Anim. 2022, 57, 1277–1279. [Google Scholar] [CrossRef]
- Piras, A.R.; Ariu, F.; Zedda, M.-T.; Paramio, M.-T.; Bogliolo, L. Selection of Immature Cat Oocytes with Brilliant Cresyl Blue Stain Improves In Vitro Embryo Production during Non-Breeding Season. Animals 2020, 10, 1496. [Google Scholar] [CrossRef]
- Snoeck, F. Semen and Oocyte Cryopreservation in the Domestic Cat: The First Steps in the Establishment of a Frozen Zoo for Wild Felids. Ph.D. Thesis, Ghent University, Ghent, Belgium, 2019. [Google Scholar]
- Jacobson, C.C.; Choi, Y.-H.; Hayden, S.S.; Hinrichs, K. Recovery of Mare Oocytes on a Fixed Biweekly Schedule, and Resulting Blastocyst Formation after Intracytoplasmic Sperm Injection. Theriogenology 2010, 73, 1116–1126. [Google Scholar] [CrossRef]
- Claes, A.; Stout, T.A.E. Success Rate in a Clinical Equine in Vitro Embryo Production Program. Theriogenology 2022, 187, 215–218. [Google Scholar] [CrossRef]
- Palmer, E.; Bézard, J.; Magistrini, M.; Duchamp, G. In Vitro Fertilization in the Horse. A Retrospective Study. J. Reprod. Fertil. Suppl. 1991, 44, 375–384. [Google Scholar]
- Felix, M.R.; Turner, R.M.; Dobbie, T.; Hinrichs, K. Successful in Vitro Fertilization in the Horse: Production of Blastocysts and Birth of Foals after Prolonged Sperm Incubation for Capacitation. Biol. Reprod. 2022, 107, 1551–1564. [Google Scholar] [CrossRef]
- Mermillod, P. Gamete and Embryo Technology|In Vitro Fertilization. In Encyclopedia of Dairy Sciences; Elsevier: Amsterdam, The Netherlands, 2002; pp. 1176–1181. [Google Scholar]
- Veraguas, D.; Saez, S.; Aguilera, C.; Echeverry, D.; Gallegos, P.F.; Saez-Ruiz, D.; Castro, F.O.; Rodriguez-Alvarez, L. In Vitro and in Vivo Development of Domestic Cat Embryos Generated by in Vitro Fertilization after ECG Priming and Oocyte in Vitro Maturation. Theriogenology 2020, 146, 94–103. [Google Scholar] [CrossRef]
- Hatzel, J.N.; Stokes, J. Intracytoplasmic Sperm Injection. In Equine Reproductive Procedures; Wiley: Hoboken, NJ, USA, 2021; pp. 187–189. [Google Scholar]
- Hinrichs, K. Update on Equine ICSI and Cloning. Theriogenology 2005, 64, 535–541. [Google Scholar] [CrossRef] [PubMed]
- Salamone, D.F.; Canel, N.G.; Rodríguez, M.B. Intracytoplasmic Sperm Injection in Domestic and Wild Mammals. Reproduction 2017, 154, F111–F124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hinrichs, K. In Vitro Production of Equine Embryos: State of the Art. Reprod. Domest. Anim. 2010, 45, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Angel-Velez, D.; de Coster, T.; Hedia, M.; Gerits, I.; Peere, S.; Papas, M.; van den Branden, E.; Govaere, J.; van Soom, A.; Smits, K. Holding Effect in a Commercial OPU-ICSI Program: A Retrospective Study. J. Equine Vet. Sci. 2022, 113, 103984. [Google Scholar] [CrossRef]
- Magata, F.; Tsuchiya, K.; Okubo, H.; Ideta, A. Application of Intracytoplasmic Sperm Injection to the Embryo Production in Aged Cows. J. Vet. Med. Sci. 2019, 81, 84–90. [Google Scholar] [CrossRef] [Green Version]
- Pope, C.E. Thirty Years of Assisted Reproductive Technology in the Domestic Cat: A Selected Summary. In Proceedings of the XXXIII Congress of the Brazilian Society of Animal Reproduction, Gramado, Brazil, 15–18 August 2019. [Google Scholar]
- Lonergan, P.; Fair, T. Maturation of Oocytes in Vitro. Annu. Rev. Anim. Biosci. 2016, 4, 255–268. [Google Scholar] [CrossRef]
- Artificial Insemination—Elephant Encyclopedia and Database. Available online: https://www.elephant.se/index.php?id=226. (accessed on 1 April 2023).
- Martin-Wintle, M.S.; Kersey, D.C.; Wintle, N.J.P.; Aitken-Palmer, C.; Owen, M.A.; Swaisgood, R.R. Comprehensive Breeding Techniques for the Giant Panda. Adv. Exp. Med. Biol. 2019, 1200, 275–308. [Google Scholar]
- Howard, J.G.; Lynch, C.; Santymire, R.M.; Marinari, P.E.; Wildt, D.E. Recovery of Gene Diversity Using Long-Term Cryopreserved Spermatozoa and Artificial Insemination in the Endangered Black-Footed Ferret. Anim. Conserv. 2016, 19, 102–111. [Google Scholar] [CrossRef]
- Howell, L.G.; Johnston, S.D.; O’Brien, J.K.; Frankham, R.; Rodger, J.C.; Ryan, S.A.; Beranek, C.T.; Clulow, J.; Hudson, D.S.; Witt, R.R. Modelling Genetic Benefits and Financial Costs of Integrating Biobanking into the Captive Management of Koalas. Animals 2022, 12, 990. [Google Scholar] [CrossRef]
- Lueders, I.; Ludwig, C.; Schroeder, M.; Mueller, K.; Zahmel, J.; Dehnhard, M. Successful Nonsurgical Artificial Insemination and Hormonal Monitoring in an Asiatic Golden Cat (Catopuma temmincki). J. Zoo. Wildl. Med. 2014, 45, 372–379. [Google Scholar] [CrossRef]
- Cortez, J.; Hardwicke, K.; Cuervo-Arango, J.; Grupen, C. Oocytes Obtained by Ovum Pick-up from Live Mares as an Alternative to Abattoir-Derived Oocytes for the Development of Equine Embryos Produced by Somatic Cell Nuclear Transfer. J. Equine Vet. Sci. 2022, 113, 103971. [Google Scholar] [CrossRef]
Domestic Animal | Family | Wildlife Animal | Reference |
---|---|---|---|
Domestic horse (Equus caballus) | Equidae | Mountain zebra (Equus zebra) | [13] |
Plains zebra (Equus quagga) | [14] | ||
Grévy’s zebra (Equus grevyi) | [14] | ||
Donkey (Equus asinus) | [15] | ||
Przewalski’s horse (Equus przewalskii) | [16] | ||
Domestic cattle (Bos taurus) | Bovidae | American bison (Bison bison) | [17] |
European bison (Bison bonasus) | [18] | ||
Banteng (Bos javanicus) | [19] | ||
Wild yak (Bos mutus) | [19] | ||
Domestic cat (Felis catus) | Felidae | Serval (Leptailurus serval) | [20] |
Leopard cat (Prionailurus bengalensis) | [21] | ||
Sand cat (Felis margarita) | [22] | ||
Fishing cat (Prionailurus viverrinus) | [23] | ||
Scottish wildcat (Felis silvestris) | [24] | ||
Caracal (Caracal caracal) | [25] | ||
Jungle cat (Felis chaus) | [26] |
Family | Species | Testis Weight (Grams) | Epididymal Weight (Grams) | Total Sperm Output | Reference |
---|---|---|---|---|---|
Equidae | Horse | 103.0 ± 6.3 | 18.5−21.5 | 1.9–7.5 × 109 | [33] |
Donkey | - | 14.2 ± 2.3 | 6.4–14.8 × 109 | [34] | |
Egyptian donkey | 91.92 ± 4.66 | 2.52 ± 0.12 | - | [35] | |
Bovidae | Cattle | 272 ± 11 | 23 ± 1 | 13.3 ± 0.7 × 109 | [36] |
Awassi sheep | 157.6 | 22.5 ± 1.1 | 55.8 × 109 | [37] | |
Moufflon | 191.11 ± 4.9 | 34.36 ± 0.7 | - | [38] | |
Red Sokoto goat | 56.3 | 6.97 | - | [39] | |
Afar goat | 67.6 ± 3.49 | 10.7 ± 1.20 | - | [40] | |
Long-eared Somali goat | 74.8 ± 5.81 | 11.1 ± 1.44 | - | [40] | |
Woyto-Guji goat | 67.6 ± 3.97 | 7.92 ± 1.06 | - | [40] | |
Felidae | Domestic cat | 1.49 ± 0.52 | 0.31 ± 0.06 | - | [41] |
Family | Species | Technique | Transportation Temperature | Semen ConcentrationmL−1 | Motility | Production of Embryo or Offspring | Reference |
---|---|---|---|---|---|---|---|
Equidae | Plains zebra (Equus quagga) | No data | No data | No data | No data | + | [63] |
Retrograde flushing | No data | No data | No data | + | [62] | ||
Bovidae | Spanish ibex (Capra pyrenaica) | Epididymal mincing | 12 °C | No data | 87.1% | - | [72] |
Epididymal mincing | 12 °C | No data | 78.1% | + | [73] | ||
Retrograde flushing | 9–11 °C | No data | 83.7% | + | [74] | ||
Sumatran serows (Capricorns sumatraensis sumatraensis) | Testicular mincing | 4–5 °C | No data | No data | - | [47] | |
Cantabric chamois (Rupicapra pyrenaica parva) | Epididymal mincing | 4–5 °C | 3.8 × 109 | 85.0% | - | [45] | |
Epididymal mincing | Refrigerated | No data | 68.7% | - | [75] | ||
Mountain gazelle (Gazella gazella) | Epididymal mincing | Ambient temperature | No data | 60–80% | - | [48] | |
Dorcas gazelle (Gazella dorcas) | Epididymal mincing | Ambient temperature | No data | 75% | - | [48] | |
European bison (Bison bonasus) | Epididymal mincing | 15 °C | 3.2 × 107 | 60–90% | + | [76] | |
Epididymal mincing | No data | 1.90 × 109 | No data | - | [77] | ||
Epididymal mincing | No data | No data | No data | + | [78] | ||
Moufflon (Ovis musimon) | Epididymal mincing | 22 °C | 3.7 × 109 | 80.3% | + | [38] | |
Retrograde flushing | No data | No data | 61.3% | - | [79] | ||
Retrograde flushing | 4 °C | No data | No data | - | [53] | ||
Barbary sheep (Ammotragus lervia) | Retrograde flushing | 4 °C | No data | No data | - | [53] | |
Springbok (Antidorcas marsupialis) | Retrograde flushing | 4–5 °C | No data | 86.2% | - | [80] | |
Retrograde flushing | 4 °C | No data | No data | - | [53] | ||
Gemsbok (Oryx gazella) | Retrograde flushing | 4 °C | No data | No data | - | [53] | |
Southern lechwe (Kobus leche) | Retrograde flushing | 4 °C | No data | No data | - | [53] | |
Defassa waterbuck (Kobus ellipsiprymnus) | Retrograde flushing | 4 °C | No data | No data | - | [53] | |
Impala (Aepyceros melampus) | Retrograde flushing | 4–5 °C | No data | 82.9% | - | [80] | |
Retrograde flushing | 4 °C | No data | No data | - | [53] | ||
Blesbok (Damaliscus pygargus phillipsi) | Retrograde flushing | 4–5 °C | No data | 85.8% | - | [80] | |
Retrograde flushing | 4 °C | No data | No data | - | [53] | ||
Nilgai (Boselaphus tragocamelus) | Epididymal mincing | No data | No data | 50–60% | + | [81] | |
Blue wildebeest (Connochaetes taurinus) | Retrograde flushing | 4 °C | No data | No data | - | [53] | |
Cape eland (Taurotragus oryx) | Retrograde flushing | 4 °C | No data | No data | - | [53] | |
Greater kudu (Tragelaphus strepsiceros) | Retrograde flushing | 4 °C | No data | No data | - | [53] | |
Sitatunga (Tragelaphus spekii) | Retrograde flushing | 4 °C | No data | No data | - | [53] | |
Dwarf forest buffalo (Syncerus caffer nanus) | Retrograde flushing | 4 °C | No data | No data | - | [53] | |
Swamp buffalo (Bubalus bubalis) | Epididymal mincing | On ice | 2.1 × 108 | 66% | - | [82] | |
Felidae | Jungle cat (Felis chaus) | Testicular mincing | 4–5 °C | No data | No data | - | [47] |
Tiger (Panthera tigris) | Epididymal mincing | 20–24 °C | 5.2 × 107 | 38.3% | - | [83] | |
Lion (Panthera leo) | Testicular mincing | 4–5 °C | No data | No data | - | [47] | |
Epididymal mincing | No data | No data | No data | + | [84] | ||
Leopard (Panthera pardus) | Testicular mincing | 4–5 °C | No data | No data | - | [47] | |
Epididymal mincing | No data | No data | No data | + | [84] | ||
Puma (Felis concolor) | Epididymal mincing | No data | No data | No data | + | [84] | |
Epididymal mincing | 4 °C | No data | No data | - | [85] | ||
Jaguar (Panthera onca) | Epididymal mincing | No data | No data | No data | + | [84] |
Family | Species | Technique | Transportation Temperature | Number of Oocytes | % IVM | Production of Embryo or Offspring | Reference |
---|---|---|---|---|---|---|---|
Bovidae | American Bison (Bison bison) | Aspiration | 25–28 °C | 9836 | No data | + | [104] |
European bison (Bison bonansus) | Aspiration | 30 °C | 50 | 84.3% * | + | [78] | |
Nilgai (Boselaphus tragocamelus) | Cutting | 38.5 °C | 517 | 63.6% | + | [81] | |
Felidae | Lion (Panthera leo) | Sieving | No data | 66 | 69.7% | - | [84] |
Cutting | Immediately processed | 119 ** | 52.1% ** | + | [105] | ||
Cutting | 37 °C | 33 | 53.8% | - | [95] | ||
Tiger (Panthera tigris) | Sieving | No data | 63 | 54.0% | - | [84] | |
Cutting | 37 °C | 22 | 56.3% | - | [95] | ||
Leopard (Panthera pardus) | Sieving | No data | 9 | 55.6% | - | [84] | |
Cutting | 37 °C | 64 | 58.7% | - | [95] | ||
Eurasian lynx (Lynx lynx) | Cutting | 4 °C | 47 | 48.0% * | - | [106] | |
Serval (Leptailurus serval) | Cutting | 4 °C | 30 | No data | - | [106] | |
Pallas’s cat (Felis manul) | Cutting | 4 °C | 104 | 50.0% * | - | [106] | |
Puma (Felis concolor) | Sieving | No data | 25 | 80.0% | - | [84] |
Family | Species | PM Gamete | Technique | Results | Reference |
---|---|---|---|---|---|
Equidae | Plains zebra (Equus quagga) | Sperm | ICSI with horse oocyte | 6.12%, day 11 blastocyst rate No embryo transfer | [63] |
Sperm | ICSI with horse oocyte | 7% blastocyst rate No embryo transfer | [62] | ||
Bovidae | European bison (Bison bonasus) | Sperm | AI | 2/30 (6.7%) gave birth to hybrid calves | [76] |
Sperm and Oocyte | IVF | 10.7% morula plus early blastocyst rate 3/5 (60%) pregnant after interspecies embryo transfer No offspring | [78] | ||
American bison (Bison bison) | Oocyte | IVF | 8.3% blastocyst rate 1/10 (10%) gave birth | [104] | |
Nilgai (Boselaphus tragocamelus) | Sperm and Oocyte | IVF | 42% cleaved 0% blastocyst rate | [81] | |
Spanish ibex (Capra pyrenaica) | Sperm | AI | 1/6 (16.7%) gave birth | [73] | |
Sperm and Oocyte | IVF with domestic goat oocyte | 21.2% blastocyst rate No embryo transfer | [74] | ||
Moufflon (Ovis musimon) | Sperm | IVF | 53% cleaved No embryo transfer | [38] | |
Felidae | Lion (Panthera leo) | Sperm and Oocyte | IVF of lion oocyte with lion semen + domestic cat semen | 31.6% embryos > 8 cells with lion semen 0% embryos > 8 cells with domestic cat semen No embryo transfer | [84] |
Oocyte | ICSI | 24.1% cleaved 0% blastocyst rate | [105] | ||
Tiger (Panthera tigris) | Sperm and Oocyte | IVF with domestic cat semen | 0% embryos > 8 cells | [84] | |
Leopard (Panthera pardus) | Sperm and Oocyte | IVF with domestic cat semen | 22.2% embryos > 8 cells No embryo transfer | [84] | |
Sperm | IVF with domestic cat oocyte | 19.5% embryos > 8 cells No embryo transfer | [84] | ||
Puma (Felis concolor) | Sperm and Oocyte | IVF | 20% embryos > 8 cells No embryo transfer | [84] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huijsmans, T.E.R.G.; Hassan, H.A.; Smits, K.; Van Soom, A. Postmortem Collection of Gametes for the Conservation of Endangered Mammals: A Review of the Current State-of-the-Art. Animals 2023, 13, 1360. https://doi.org/10.3390/ani13081360
Huijsmans TERG, Hassan HA, Smits K, Van Soom A. Postmortem Collection of Gametes for the Conservation of Endangered Mammals: A Review of the Current State-of-the-Art. Animals. 2023; 13(8):1360. https://doi.org/10.3390/ani13081360
Chicago/Turabian StyleHuijsmans, Tim E. R. G., Hiba Ali Hassan, Katrien Smits, and Ann Van Soom. 2023. "Postmortem Collection of Gametes for the Conservation of Endangered Mammals: A Review of the Current State-of-the-Art" Animals 13, no. 8: 1360. https://doi.org/10.3390/ani13081360
APA StyleHuijsmans, T. E. R. G., Hassan, H. A., Smits, K., & Van Soom, A. (2023). Postmortem Collection of Gametes for the Conservation of Endangered Mammals: A Review of the Current State-of-the-Art. Animals, 13(8), 1360. https://doi.org/10.3390/ani13081360