A Forage Allowance by Forage Type Interaction Impacts the Daily Milk Yield of Early Lactation Dairy Cows
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Statement
2.2. Experimental Site Description
2.3. Experimental Design and Procedures
2.4. Animals
2.5. Measurements
2.6. Statistical Analysis
3. Results
3.1. Botanical Composition and Nutritive Value
3.2. Milk Yield and Composition
3.3. Blood Metabolite Levels
3.4. Body Weight Change
3.5. Forage Intake and Selection Differentials
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wales, W.; Kolver, E. Challenges of feeding dairy cows in Australia and New Zealand. Anim. Prod. Sci. 2017, 57, 1366–1383. [Google Scholar] [CrossRef]
- Jacobs, J.; Woodward, S. Capturing the benefits of alternative forages for increased dairy farm profitability. In Proceedings of the 4th Australasian Dairy Science Symposium: Meeting the Challenges of Pasture-Based Dairying, Christchurch, New Zealand, 31 August–2 September 2010; pp. 292–304. [Google Scholar]
- Walsh, G.; Birrell, H. Seasonal variations in the chemical composition and nutritive value of five pasture species in south-western Victoria. Aust. J. Exp. Agric. 1987, 27, 807–816. [Google Scholar] [CrossRef]
- Cullen, B.; Eckard, R.; Callow, M.; Johnson, I.; Chapman, D.; Rawnsley, R.; Garcia, S.; White, T.; Snow, V. Simulating pasture growth rates in Australian and New Zealand grazing systems. Aust. J. Agric. Res. 2008, 59, 761–768. [Google Scholar] [CrossRef]
- Nie, Z.N.; Chapman, D.F.; Tharmaraj, J.; Clements, R. Effects of pasture species mixture, management, and environment on the productivity and persistence of dairy pastures in south-west Victoria. 1. Herbage accumulation and seasonal growth pattern. Aust. J. Agric. Res. 2004, 55, 625–636. [Google Scholar] [CrossRef]
- Taube, F. Growth characteristics of contrasting varieties of perennial ryegrass (Lolium perenne L.). J. Agron. Crop. Sci. 1990, 165, 159–170. [Google Scholar] [CrossRef]
- Waghorn, G.C.; Clark, D.A. Feeding value of pastures for ruminants. N. Z. Vet. J. 2004, 52, 320–331. [Google Scholar] [CrossRef]
- Irvine, L.; Freeman, M.; Rawnsley, R. The effect of grazing residual control methods on cow intake and milk production in late spring. In Proceedings of the 4th Australasian Dairy Science Symposium: Meeting the Challenges of Pasture-Based Dairying, Christchurch, New Zealand, 31 August–2 September 2010; pp. 195–198. [Google Scholar]
- Holmes, C.; Mathews, P. Feeding of conserved forage-implications to grassland management and production. In Proceedings of the XIX International Grassland Congress, Sao Pedro, Brazil, 11–21 February 2001; pp. 671–677. [Google Scholar]
- Kaiser, A.G.; Australia, D.; Wales, N.S. Successful Silage; Dairy Research and Development Corporation and NSW Agriculture: New South Wales, Australia, 2004. [Google Scholar]
- Thomas, G.W.; Mathews, G.L. Comparison of two management systems of dairy farmlets based on conservation of either hay or silage. Aust. J. Exp. Agric. 1991, 31, 195–203. [Google Scholar] [CrossRef]
- Moran, J. Forage Conservation: Making Quality Silage and Hay in Australia; Agmedia: Melbourne, Australia, 1996; pp. 1–245. [Google Scholar]
- Rawnsley, R.; Chapman, D.; Jacobs, J.; Garcia, S.; Callow, M.; Edwards, G.; Pembleton, K. Complementary forages–integration at a whole-farm level. Anim. Prod. Sci. 2013, 53, 976–987. [Google Scholar] [CrossRef]
- Pembleton, K.G.; Tozer, K.N.; Edwards, G.R.; Jacobs, J.L.; Turner, L.R. Simple versus diverse pastures: Opportunities and challenges in dairy systems. Anim. Prod. Sci. 2015, 55, 893–901. [Google Scholar] [CrossRef]
- Cranston, L.M.; Pembleton, K.G.; Burkitt, L.L.; Curtis, A.; Donaghy, D.J.; Gourley, C.J.; Harrington, K.C.; Hills, J.L.; Pembleton, L.W.; Rawnsley, R.P. The role of forage management in addressing challenges facing Australasian dairy farming. Anim. Prod. Sci. 2019, 60, 26–35. [Google Scholar] [CrossRef]
- Dodd, M.; Dalley, D.; Wims, C.; Elliott, D.; Griffin, A. A comparison of temperate pasture species mixtures selected to increase dairy cow production and reduce urinary nitrogen excretion. N. Z. J. Agric. Res. 2019, 62, 504–527. [Google Scholar] [CrossRef]
- Minneé, E.; Waghorn, G.; Lee, J.; Clark, C. Including chicory or plantain in a perennial ryegrass/white clover-based diet of dairy cattle in late lactation: Feed intake, milk production and rumen digestion. Anim. Feed Sci. Technol. 2017, 227, 52–61. [Google Scholar] [CrossRef]
- McCarthy, K.; Lynch, M.; Pierce, K.; Fahey, A.; Gath, V.; McDonald, M.; Boland, T.; Sheridan, H.; Markiewicz-Keszycka, M.; Mulligan, F. Rumen fermentation and forage degradability in dairy cows offered perennial ryegrass, perennial ryegrass and white clover, or a multispecies forage. Livest. Sci. 2023, 269, 105185. [Google Scholar] [CrossRef]
- Jonker, A.; Farrell, L.; Scobie, D.; Dynes, R.; Edwards, G.; Hague, H.; McAuliffe, R.; Taylor, A.; Knight, T.; Waghorn, G. Methane and carbon dioxide emissions from lactating dairy cows grazing mature ryegrass/white clover or a diverse pasture comprising ryegrass, legumes and herbs. Anim. Prod. Sci. 2019, 59, 1063–1069. [Google Scholar] [CrossRef]
- Pembleton, K.G.; Hills, J.L.; Freeman, M.J.; McLaren, D.K.; French, M.; Rawnsley, R.P. More milk from forage: Milk production, blood metabolites, and forage intake of dairy cows grazing pasture mixtures and spatially adjacent monocultures. J. Dairy Sci. 2016, 99, 3512–3528. [Google Scholar] [CrossRef]
- Totty, V.; Greenwood, S.; Bryant, R.; Edwards, G. Nitrogen partitioning and milk production of dairy cows grazing simple and diverse pastures. J. Dairy Sci. 2013, 96, 141–149. [Google Scholar] [CrossRef]
- Box, L.A.; Edwards, G.R.; Bryant, R.H. Milk production and urinary nitrogen excretion of dairy cows grazing plantain in early and late lactation. N. Z. J. Agric. Res. 2017, 60, 470–482. [Google Scholar] [CrossRef]
- Martin, K.; Edwards, G.; Bryant, R.; Hodge, M.; Moir, J.; Chapman, D.; Cameron, K. Herbage dry-matter yield and nitrogen concentration of grass, legume and herb species grown at different nitrogen-fertiliser rates under irrigation. Anim. Prod. Sci. 2017, 57, 1283–1288. [Google Scholar] [CrossRef]
- Pembleton, K.G. Plantain and chicory could potentially complement the perennial ryegrass dominant dairy feedbase. In Proceedings of the 17th Agronomy Society of Australia Conference, Hobart, TAS, Australia, 21–24 September 2015; pp. 1–4. [Google Scholar]
- Langworthy, A.D.; Rawnsley, R.P.; Freeman, M.J.; Pembleton, K.G.; Corkrey, R.; Harrison, M.T.; Lane, P.A.; Henry, D.A. Potential of summer-active temperate (C3) perennial forages to mitigate the detrimental effects of supraoptimal temperatures on summer home-grown feed production in south-eastern Australian dairying regions. Crop. Pasture Sci. 2018, 69, 808–820. [Google Scholar] [CrossRef]
- Stewart, A.V. Plantain (Plantago lanceolata)—A potential pasture species. In Proceedings of the New Zealand Grassland Association, Oamaru, New Zealand, 21–24 October 1996; pp. 77–86. [Google Scholar]
- MinneÃ, E.; Clark, C.; Clark, D. Herbage production from five grazable forages. In Proceedings of the New Zealand Grassland Association; New Zealand Grassland Association: Tauranga, New Zealand, 2013; pp. 245–250. [Google Scholar]
- Moorhead, A.; Piggot, G. The performance of pasture mixes containing ‘Ceres Tonic’ plantain (Plantago lanceolata) in Northland. In Proceedings of the New Zealand Grassland Association, Waitangi, New Zealand, 3–5 November 2009; pp. 195–199. [Google Scholar]
- MinneÃ, E.M.; Kuhn-Sherlock, B.; Pinxterhuis, I.J.; Chapman, D.F. Meta-analyses comparing the nutritional composition of perennial ryegrass (Lolium perenne) and plantain (Plantago lanceolata) pastures. J. N. Z. Grassl. 2019, 81, 117–124. [Google Scholar] [CrossRef]
- Navarrete, S.; Horne, D.; Donaghy, D.; Kemp, P. Forage plantain (Plantago lanceolata L.): Meta-analysis quantifying the decrease in nitrogen excretion, the increase in milk production, and the changes in milk composition of dairy cows grazing pastures containing plantain. Anim. Feed Sci. Technol. 2022, 285, 115244. [Google Scholar] [CrossRef]
- Pirhofer-Walzl, K.; Soegaard, K.; Hogh-Jensen, H.; Eriksen, J.; Sanderson, M.A.; Rasmussen, J.; Rasmussen, J. Forage herbs improve mineral composition of grassland herbage. Grass Forage Sci. 2011, 66, 415–423. [Google Scholar] [CrossRef]
- Sanderson, M.A.; Labreveux, M.; Hall, M.H.; Elwinger, G.F. Nutritive value of chicory and English plantain forage. Crop. Sci. 2003, 43, 1797–1804. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Navarrete, S.; Horne, D.J.; Donaghy, D.J.; Kemp, P.D. Incorporating Plantain with Perennial Ryegrass-White Clover in a Dairy Grazing System: Dry Matter Yield, Botanical Composition, and Nutritive Value Response to Sowing Rate, Plantain Content and Season. Agronomy 2022, 12, 2789. [Google Scholar] [CrossRef]
- Pembleton, K.; Hill, B.; Rawnsley, R. Response of the DCAD of plantain to potassium fertilisation. In Proceedings of the 17th Australian Society of Agronomy Conference, Hobart, Australia, 21–24 September 2015; pp. 1–4. [Google Scholar]
- Hill, B. Investigating the Dietary Cation-Anion Difference (DCAD) of Plantago lanceolata and Its Potential as a Pre-Calving Forage for Dairy Cows. BAgrSci (Hons) Thesis, University of Tasmania, Hobart, Australia, 2014. [Google Scholar]
- Carlton, A.J.; Cameron, K.C.; Di, H.J.; Edwards, G.R.; Clough, T.J. Nitrate leaching losses are lower from ryegrass/white clover forages containing plantain than from ryegrass/white clover forages under different irrigation. N. Z. J. Agric. Res. 2019, 62, 150–172. [Google Scholar] [CrossRef]
- Ulyatt, M.J. The feeding value of herbage: Can it be improved? N. Z. J. Agric. Sci. 1981, 15, 200–205. [Google Scholar]
- Harris, S.; Clark, D.; Auldist, M.; Waugh, C.; Laboyrie, P. Optimum white clover content for dairy pastures. In Proceedings of the New Zealand Grassland Association; New Zealand Grassland Association: Auckland, New Zealand, 1997; pp. 29–33. [Google Scholar]
- Dineen, M.; Delaby, L.; Gilliland, T.; McCarthy, B. Meta-analysis of the effect of white clover inclusion in perennial ryegrass swards on milk production. J. Dairy Sci. 2018, 101, 1804–1816. [Google Scholar] [CrossRef]
- McClearn, B.; Gilliland, T.; Guy, C.; Dineen, M.; Coughlan, F.; McCarthy, B. The effect of perennial ryegrass ploidy and white clover inclusion on milk production of dairy cows. Anim. Prod. Sci. 2019, 60, 143–147. [Google Scholar] [CrossRef]
- Ledgard, S.; Sprosen, M.; Penno, J.; Rajendram, G. Nitrogen fixation by white clover in pastures grazed by dairy cows: Temporal variation and effects of nitrogen fertilization. Plant Soil 2001, 229, 177–187. [Google Scholar] [CrossRef]
- Ledgard, S.; Steele, K. Biological nitrogen fixation in mixed legume/grass pastures. Plant Soil 1992, 141, 137–153. [Google Scholar] [CrossRef]
- Herron, J.; Hennessy, D.; Curran, T.P.; Moloney, A.; O’Brien, D. The simulated environmental impact of incorporating white clover into pasture-based dairy production systems. J. Dairy Sci. 2021, 104, 7902–7918. [Google Scholar] [CrossRef]
- Wolfe, E.; Lazenby, A. Bloat incidence and liveweight gain in beef cattle on pastures containing different proportions of white clover (Trifolium repens). Aust. J. Exp. Agric. 1972, 12, 119–125. [Google Scholar] [CrossRef]
- Picasso, V.D.; Brummer, E.C.; Liebman, M.; Dixon, P.M.; Wilsey, B.J. Diverse perennial crop mixtures sustain higher productivity over time based on ecological complementarity. Renew. Agric. Food Syst. 2011, 26, 317–327. [Google Scholar] [CrossRef]
- Sanderson, M.; Soder, K.; Muller, L.; Klement, K.; Skinner, R.; Goslee, S. Forage mixture productivity and botanical composition in pastures grazed by dairy cattle. Agron. J. 2005, 97, 1465–1471. [Google Scholar] [CrossRef]
- Soil Survey Staff. Keys to Soil Taxonomy, 4th ed.; Soil Survey Staff: Blacksburg, VA, USA, 1990. [Google Scholar]
- Isbell, R.F. The Australian Soil Classification; CSIRO Publishing: Collingwood, VIC, Australia, 2002. [Google Scholar]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum Associates: Hillsdale, NJ, USA, 1988. [Google Scholar]
- Champely, S. “pwr” Package; R Foundation for Statistical Computing: Lyons, France, 2007. [Google Scholar]
- McLaren, D.K.; Pembleton, K.G. Comparing within paddock yield variability of perennial ryegrass monocultures and perennial ryegrass, white cover and plantain mixtures using yield mapping. In Proceedings of the 17th Agronomy Society of Australia Conference, Hobart, TAS, Australia, 21–24 September 2015; pp. 123–126. [Google Scholar]
- Earle, D.; McGowan, A. Evaluation and calibration of an automated rising plate meter for estimating dry matter yield of pasture. Aust. J. Exp. Agric. 1979, 19, 337–343. [Google Scholar] [CrossRef]
- CSIRO. Nutrient Requirements of Domesticated Ruminants; CSIRO Publishing: Melbourne, Australia, 2007. [Google Scholar]
- ANKOM Technology Corporation. ANKOM Technology Method 3—In Vitro Digestibility Using the DAISYII Incubator. Available online: https://www.ankom.com/sites/default/files/document-files/Method_3_Invitro_D200_D200I.pdf (accessed on 30 March 2023).
- Goering, H.K.; Van Soest, P.J. Forage Fiber Analyses (Apparatus, Reagents, Procedures, and Some Applications); US Agricultural Research Service: Washington, DC, USA, 1970; p. 20. [Google Scholar]
- Jacobs, J.; McKenzie, F.; Ward, G. Changes in the botanical composition and nutritive characteristics of pasture, and nutrient selection by dairy cows grazing rainfed pastures in western Victoria. Aust. J. Exp. Agric. 1999, 39, 419–428. [Google Scholar] [CrossRef]
- Adewuyi, A.; Gruys, E.; Van Eerdenburg, F. Non esterified fatty acids (NEFA) in dairy cattle. A review. Vet. Q. 2005, 27, 117–126. [Google Scholar] [CrossRef]
- Miller, L.; Moorby, J.M.; Davies, D.R.; Humphreys, M.O.; Scollan, N.D.; MacRae, J.C.; Theodorou, M.K. Increased concentration of water-soluble carbohydrate in perennial ryegrass (Lolium perenne L.): Milk production from late-lactation dairy cows. Grass Forage Sci. 2001, 56, 383–394. [Google Scholar] [CrossRef]
- Edwards, G.R.; Parsons, A.; Rasmussen, S.; Bryant, R.H. High sugar ryegrasses for livestock systems in New Zealand. In Proceedings of the New Zealand Grassland Association, Wairakei, New Zealand, 13–15 November 2007; pp. 161–171. [Google Scholar]
- Parsons, A.; Edwards, G.; Newton, P.; Chapman, D.; Caradus, J.; Rasmussen, S.; Rowarth, J. Past lessons and future prospects: Plant breeding for yield and persistence in cool-temperate pastures. Grass Forage Sci. 2011, 66, 153–172. [Google Scholar] [CrossRef]
- Goh, K.; Bruce, G. Comparison of biomass production and biological nitrogen fixation of multi-species pastures (mixed herb leys) with perennial ryegrass-white clover pasture with and without irrigation in Canterbury, New Zealand. Agric. Ecosyst. Environ. 2005, 110, 230–240. [Google Scholar] [CrossRef]
- Reid, M.; O’Donovan, M.; Elliott, C.; Bailey, J.; Watson, C.; Lalor, S.; Corrigan, B.; Fenelon, M.; Lewis, E. The effect of dietary crude protein and phosphorus on grass-fed dairy cow production, nutrient status, and milk heat stability. J. Dairy Sci. 2015, 98, 517–531. [Google Scholar] [CrossRef] [PubMed]
- Baker, L.; Ferguson, J.; Chalupa, W. Responses in urea and true protein of milk to different protein feeding schemes for dairy cows. J. Dairy Sci. 1995, 78, 2424–2434. [Google Scholar] [CrossRef] [PubMed]
- Roseler, D.; Ferguson, J.; Sniffen, C.; Herrema, J. Dietary protein degradability effects on plasma and milk urea nitrogen and milk nonprotein nitrogen in Holstein cows. J. Dairy Sci. 1993, 76, 525–534. [Google Scholar] [CrossRef]
- Gustafsson, A.; Palmquist, D. Diurnal variation of rumen ammonia, serum urea, and milk urea in dairy cows at high and low yields. J. Dairy Sci. 1993, 76, 475–484. [Google Scholar] [CrossRef] [PubMed]
- Gehman, A.M.; Bertrand, J.; Jenkins, T.; Pinkerton, B. The effect of carbohydrate source on nitrogen capture in dairy cows on pasture. J. Dairy Sci. 2006, 89, 2659–2667. [Google Scholar] [CrossRef]
- Riaz, M.; Südekum, K.-H.; Clauss, M.; Jayanegara, A. Voluntary feed intake and digestibility of four domestic ruminant species as influenced by dietary constituents: A meta-analysis. Livest. Sci. 2014, 162, 76–85. [Google Scholar] [CrossRef]
- Allen, M.S. Physical constraints on voluntary intake of forages by ruminants. J. Anim. Sci. 1996, 74, 3063–3075. [Google Scholar] [CrossRef]
- Moore, K.J.; Jung, H.-J.G. Lignin and fiber digestion. J. Range Manag. 2001, 54, 420–430. [Google Scholar] [CrossRef]
- Van Soest, P.; Robertson, J.; Lewis, B. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Soder, K. Influence of rumen inoculum source on in vitro dry matter digestibility of pasture. Prof. Anim. Sci. 2005, 21, 45–49. [Google Scholar] [CrossRef]
- Ribeiro Filho, H.; Delagarde, R.; Peyraud, J. Inclusion of white clover in strip-grazed perennial ryegrass swards: Herbage intake and milk yield of dairy cows at different ages of sward regrowth. Anim. Sci. 2003, 77, 499–510. [Google Scholar] [CrossRef]
- Le Du, Y.; Penning, P. Animal Based Techniques for Estimating Herbage Intake; British Grassland Society: Hurley, UK, 1982; pp. 37–75. [Google Scholar]
- Moate, P.; Dalley, D.; Roche, J.; Grainger, C. Dry matter intake, nutrient selection and milk production of dairy cows grazing rainfed perennial pastures at different herbage allowances in spring. Aust. J. Exp. Agric. 1999, 39, 923–931. [Google Scholar] [CrossRef]
- Peyraud, J.; Comeron, E.; Wade, M.; Lemaire, G. The effect of daily herbage allowance, herbage mass and animal factors upon herbage intake by grazing dairy cows. Ann. Zootech 1996, 45, 201–217. [Google Scholar] [CrossRef]
- Minson, D.J. Forage in Ruminant Nutrition; Academic Press: San Diego, CA, USA, 1990; p. 483. [Google Scholar]
- Decruyenaere, V.; Buldgen, A.; Stilmant, D. Factors affecting intake by grazing ruminants and related quantification methods: A review. Biotechnol. Agron. Soc. Environ. 2009, 13, 559–573. [Google Scholar]
Parameter | Experiment | Long-Term Mean |
---|---|---|
Mean daily ambient temperature (°C) | 11.2 | 9.4 |
Mean daily maximum ambient temperature (°C) | 14.9 | 13.2 |
Mean daily minimum ambient temperature (°C) | 7.4 | 5.4 |
Mean daily relative humidity (%) | 81.5 | 80.7 |
Mean daily maximum relative humidity (%) | 94.6 | 96.9 |
Mean daily minimum relative humidity (%) | 68.5 | 64.6 |
Mean daily wind speed (m/s) | 1.65 | 1.98 |
Number of rain days (d) | 10 | 9 |
Total rain received (mm) | 52.2 | 55.7 |
Item | PRG | RCPM | SAM | ||
---|---|---|---|---|---|
Perennial Ryegrass | White Clover | Plantain | |||
Species | |||||
Perennial ryegrass (%) | 98.7 ± 0.9 | 67.9 ± 6.1 | 97.7 ± 1.5 | 0.0 ± 0.0 | 4.0 ± 1.4 |
White clover (%) | 0.0 ± 0.0 | 1.6 ± 2.2 | 0.0 ± 0.0 | 47.7 ± 19.2 | 0.8 ± 2.4 |
Plantain (%) | 0.0 ± 0.0 | 26.5 ± 5.5 | 0.0 ± 0.0 | 0.0 ± 0.0 | 77.8 ± 4.1 |
Weeds (%) | 1.3 ± 0.9 | 4.1 ± 3.0 | 2.3 ± 1.5 | 52.3 ± 6.1 | 17.4 ± 3.4 |
DM content (%) | 17.3 ± 0.7 | 14.7 ± 0.5 | 16.9 ± 0.6 | 13.2 ± 0.7 | 12.2 ± 0.4 |
Nutritive value | |||||
Crude protein (%) | 16.5 ± 0.5 | 18.2 ± 0.4 | 16.9 ± 0.5 | 25.3 ± 0.5 | 18.4 ± 0.6 |
Available protein (%) | 15.8 ± 0.5 | 16.4 ± 0.5 | 16.1 ± 0.5 | 23.1 ± 0.4 | 15.3 ± 0.5 |
ADICP (%) | 0.8 ± 0.2 | 1.7 ± 0.3 | 0.8 ± 0.2 | 2.2 ± 0.3 | 3.2 ± 0.4 |
Soluble protein (% of CP) | 31 ± 0.8 | 29.1 ± 0.7 | 31 ± 0.7 | 32.2 ± 0.8 | 25.5 ± 0.7 |
Acid detergent fibre (%) | 27.2 ± 0.5 | 27.2 ± 0.5 | 27.3 ± 0.5 | 23.9 ± 0.6 | 26.1 ± 0.6 |
Neutral detergent fibre (%) | 45.6 ± 0.5 | 40.6 ± 0.5 | 45.7 ± 0.4 | 31.6 ± 0.8 | 33.8 ± 0.8 |
Lignin (%) | 2.5 ± 0.3 | 4.3 ± 0.4 | 2.6 ± 0.3 | 5.0 ± 0.6 | 7.2 ± 0.4 |
Water soluble carbohydrates (%) | 9.0 ± 0.4 | 11.1 ± 0.5 | 8.9 ± 0.4 | 9.0 ± 0.4 | 12.7 ± 0.4 |
Crude fat (%) | 3.2 ± 0.2 | 3.1 ± 0.2 | 3.1 ± 0.4 | 2.8 ± 0.2 | 2.8 ± 0.2 |
Ash (%) | 9.9 ± 0.3 | 10.7 ± 0.3 | 10.3 ± 0.3 | 10.7 ± 0.3 | 11.8 ± 0.3 |
In vitro DM digestibility (%) | 76.3 ± 0.5 | 75.6 ± 0.6 | 74.0 ± 0.8 | 77.4 ± 0.6 | 72.9 ± 0.6 |
Estimated ME (MJ/kg of DM) | 11.3 ± 0.2 | 11.2 ± 0.2 | 10.9 ± 0.3 | 11.5 ± 0.3 | 10.7 ± 0.2 |
Forage Allowance (kg of DM/cow per Day) | Regression | Overall R2 | ||||||
---|---|---|---|---|---|---|---|---|
12 | 14 | 16 | 18 | 20 | 25 | |||
Forage type | Daily body weight change (kg/cow per day) | |||||||
PRG | −0.4 | −0.6 | −0.7 | −0.5 | 0.2 | 0.1 | y = 0.06x − 1.33 | 0.76 |
RCPM | 0.7 | 0.1 | 0.6 | 0.1 | 0.5 | 0.5 | y = 0.06x − 0.62 | |
SAM | 1.1 | 1.5 | 2.5 | 1.2 | 2.1 | 2.4 | y = 0.06x + 0.63 |
Forage Allowance (kg of DM/Cow per Day) | |||||||
---|---|---|---|---|---|---|---|
12 | 14 | 16 | 18 | 20 | 25 | Mean | |
Pre-grazing forage biomass | |||||||
Forage type | |||||||
PRG | 2867 | 2953 | 2940 | 3058 | 3077 | 3028 | 2987 b |
RCPM | 3156 | 3073 | 3174 | 3030 | 3046 | 3023 | 3084 b |
SAM Ryegrass | 2847 | 2806 | 2812 | 2838 | 2991 | 2932 | 2871 b |
White clover | 2040 | 2111 | 2211 | 2113 | 2260 | 2233 | 2161 a |
Plantain | 2838 | 2867 | 2894 | 2872 | 3081 | 2955 | 2918 b |
Mean | 2750 | 2762 | 2806 | 2782 | 2891 | 2834 | |
Effects: | Forage type: | p < 0.01 | SED: | 206 | |||
Forage allowance: | p > 0.05 | SED: | 46 | ||||
Interaction: | p > 0.05 | SED (Within forage type): | 104 | ||||
SED (Between forage types): | 227 | ||||||
Post-grazing forage biomass | |||||||
Forage type | |||||||
PRG | 1590 | 1593 | 1659 | 1765 | 1950 | 1999 | 1759 c |
RCPM | 1731 | 1592 | 1658 | 1776 | 1799 | 1966 | 1754 c |
SAM Ryegrass | 1505 | 1571 | 1647 | 1632 | 1618 | 1786 | 1627 c |
White clover | 1178 | 1133 | 1080 | 1214 | 1328 | 1392 | 1221 a |
Plantain | 1245 | 1273 | 1273 | 1397 | 1579 | 1639 | 1401 b |
Mean | 1450 a | 1432 a | 1463 a | 1557 b | 1655 c | 1756 c | |
Effects: | Forage type: | p < 0.001 | SED: | 73 | |||
Forage allowance: | p < 0.001 | SED: | 37 | ||||
Interaction: | p > 0.05 | SED (Within forage type): | 84 | ||||
SED (Between forage types): | 105 |
Forage Allowance (kg of DM/Cow per Day) | 12 | 14 | 16 | 18 | 20 | 25 | Mean |
---|---|---|---|---|---|---|---|
Perennial Ryegrass | |||||||
Forage type | |||||||
PRG | 1.03 | 1.00 | 0.87 | 0.99 | 0.95 | 0.99 | 0.97 |
RCPM | 0.79 | 0.72 | 0.70 | 1.13 | 1.15 | 1.57 | 1.01 |
SAM | 1.31 | 1.10 | 0.82 | 1.20 | 1.36 | 1.26 | 1.17 |
Average | 1.04 abc | 0.94 ab | 0.79 a | 1.11 bc | 1.15 bc | 1.27 c | |
Effects | Forage type: | p > 0.05 | SED: | 0.086 | |||
Forage allowance: | p < 0.05 | SED: | 0.141 | ||||
Interaction: | p > 0.05 | SED (Within forage treatment): | 0.245 | ||||
SED (Between forage treatment): | 0.239 | ||||||
White Clover | |||||||
Forage type | |||||||
PRG | NA | NA | NA | NA | NA | NA | NA |
RCPM | 1.57 | 0.99 | 1.60 | 0.78 | 1.55 | 1.37 | 1.31 |
SAM | 1.94 | 1.64 | 2.03 | 1.72 | 2.04 | 1.65 | 1.84 |
Average | 1.77 | 1.31 | 1.81 | 1.25 | 1.80 | 1.51 | |
Effects: | Forage type: | p > 0.05 | SED: | 0.232 | |||
Forage allowance: | p > 0.05 | SED: | 0.253 | ||||
Interaction: | p > 0.05 | SED (Within forage treatment): | 0.438 | ||||
SED (Between forage treatment): | 0.462 | ||||||
Plantain | |||||||
Forage type | |||||||
PRG | NA | NA | NA | NA | NA | NA | NA |
RCPM | 2.13 | 1.93 | 2.01 | 1.58 | 1.27 | 1.14 | 1.68 |
SAM | 1.65 | 2.00 | 2.06 | 1.32 | 1.12 | 1.07 | 1.54 |
Average | 1.89 b | 1.97 b | 2.03 b | 1.45 ab | 1.20 a | 1.10 a | |
Effects: | Forage type: | p > 0.05 | SED: | 0.394 | |||
Forage allowance: | p < 0.05 | SED: | 0.316 | ||||
Interaction: | p > 0.05 | SED (Within forage treatment): | 0.447 | ||||
SED (Between forage treatment): | 0.567 |
Forage Allowance (kg of DM/Cow per Day) | 12 | 14 | 16 | 18 | 20 | 25 | Mean |
---|---|---|---|---|---|---|---|
Crude protein | |||||||
Forage type | |||||||
PRG | 1.14 | 1.29 | 1.07 | 0.99 | 0.94 | 1.10 | 1.09 |
RCPM | 1.08 | 0.97 | 1.01 | 1.06 | 1.22 | 1.10 | 1.07 |
SAM | 1.04 | 1.04 | 0.99 | 1.01 | 0.97 | 1.01 | 1.01 |
Mean | 1.09 | 1.10 | 1.02 | 1.02 | 1.04 | 1.07 | |
Effects: | Forage type: | p > 0.05 | SED: | 0.098 | |||
Forage allowance: | p > 0.05 | SED: | 0.057 | ||||
Interaction: | p > 0.05 | SED (Within forage type): | 0.099 | ||||
SED (Between forage types): | 0.133 | ||||||
Neutral detergent fiber | |||||||
Forage type | |||||||
PRG | 0.96 | 1.03 | 1.05 | 1.08 | 1.05 | 1.10 | 1.04 b |
RCPM | 0.82 | 0.87 | 0.89 | 0.82 | 0.90 | 0.84 | 0.85 ab |
SAM | 0.73 | 0.84 | 0.77 | 0.82 | 0.73 | 0.78 | 0.78 a |
Mean | 0.84 | 0.91 | 0.90 | 0.90 | 0.89 | 0.91 | |
Effects: | Forage type: | p < 0.05 | SED: | 0.078 | |||
Forage allowance: | p > 0.05 | SED: | 0.045 | ||||
Interaction: | p > 0.05 | SED (Within forage type): | 0.078 | ||||
SED (Between forage types): | 0.106 | ||||||
Acid detergent fiber | |||||||
Forage type | |||||||
PRG | 0.91 Bab | 0.98 ab | 0.84 a | 0.95 ab | 0.97 Bab | 1.02 Bb | 0.94 b |
RCPM | 0.87 Bb | 0.91b | 0.89 b | 0.82 b | 0.81 Ab | 0.64 Aa | 0.82 a |
SAM | 0.72 A | 0.81 | 0.84 | 0.81 | 0.80 A | 0.78 A | 0.79 a |
Mean | 0.83 | 0.90 | 0.86 | 0.86 | 0.86 | 0.81 | |
Effects: | Forage type: | p < 0.01 | SED: | 0.021 | |||
Forage allowance: | p > 0.05 | SED: | 0.044 | ||||
Interaction: | p < 0.05 | SED (Within forage type): | 0.077 | ||||
SED (Between forage types): | 0.073 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Langworthy, A.D.; Freeman, M.J.; Hills, J.L.; McLaren, D.K.; Rawnsley, R.P.; Pembleton, K.G. A Forage Allowance by Forage Type Interaction Impacts the Daily Milk Yield of Early Lactation Dairy Cows. Animals 2023, 13, 1406. https://doi.org/10.3390/ani13081406
Langworthy AD, Freeman MJ, Hills JL, McLaren DK, Rawnsley RP, Pembleton KG. A Forage Allowance by Forage Type Interaction Impacts the Daily Milk Yield of Early Lactation Dairy Cows. Animals. 2023; 13(8):1406. https://doi.org/10.3390/ani13081406
Chicago/Turabian StyleLangworthy, Adam D., Mark J. Freeman, James L. Hills, David K. McLaren, Richard P. Rawnsley, and Keith G. Pembleton. 2023. "A Forage Allowance by Forage Type Interaction Impacts the Daily Milk Yield of Early Lactation Dairy Cows" Animals 13, no. 8: 1406. https://doi.org/10.3390/ani13081406
APA StyleLangworthy, A. D., Freeman, M. J., Hills, J. L., McLaren, D. K., Rawnsley, R. P., & Pembleton, K. G. (2023). A Forage Allowance by Forage Type Interaction Impacts the Daily Milk Yield of Early Lactation Dairy Cows. Animals, 13(8), 1406. https://doi.org/10.3390/ani13081406