Effects of High Concentrate-Induced Subacute Ruminal Acidosis Severity on Claw Health in First-Lactation Holstein Cows
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Housing
2.2. Feeding Regime
2.3. Measurement of Intraruminal pH and Classification of Cows Based on SARA Severity
2.4. Locomotion Scoring
2.5. Hoof Trimming Time Points and Documentation of Claw Lesions
2.6. Statistical Analyses
3. Results
3.1. Number and Percentage of SARA Days, and SARA Severity Groups
3.2. Lameness Incidence and Locomotion Scores (LCS)
3.3. Type and Prevalence of Claw Lesions
3.4. Cow Claw Scores
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Machado, V.S.; Caixeta, L.S.; McArt, J.A.A.; Bicalho, R.C. The effect of claw horn disruption lesions and body condition score at dry-off on survivability, reproductive performance, and milk production in the subsequent lactation. J. Dairy Sci. 2010, 93, 4071–4078. [Google Scholar] [CrossRef]
- Gundelach, Y.; Schulz, T.; Feldmann, M.; Hoedemaker, M. Effects of increased vigilance for locomotion disorders on lameness and production in dairy cows. Animals 2013, 3, 951–961. [Google Scholar] [CrossRef]
- Fuerst-Waltl, B.; Egger-Danner, C.; Guggenbichler, S.; Kofler, J. Impact of lameness on fertility traits in Austrian Fleckvieh cows—Results from the Efficient-Cow-project. Schweiz. Arch. Tierheilkd. 2021, 163, 721–736. [Google Scholar] [CrossRef]
- Murray, R.D.; Downham, D.Y.; Clarkson, M.J.; Faull, W.B.; Hughes, J.W.; Manson, F.J.; Merritt, J.B.; Russell, W.B.; Sutherst, J.E.; Ward, W.R. Epidemiology of lameness in dairy cattle: Description and analysis of foot lesions. Vet. Rec. 1996, 138, 586–591. [Google Scholar] [CrossRef]
- Tadich, N.; Flor, E.; Green, L. Associations between hoof lesions and locomotion score in 1098 unsound dairy cows. Vet. J. 2010, 184, 60–65. [Google Scholar] [CrossRef]
- Kofler, J.; Suntinger, M.; Mayerhofer, M.; Linke, K.; Maurer, L.; Hund, A.; Fiedler, A.; Duda, J.; Egger-Danner, C. Benchmarking based on regularly recorded claw health data of Austrian dairy cattle for implementation in the Cattle Data Network (RDV). Animals 2022, 12, 808. [Google Scholar] [CrossRef]
- Cook, N.B.; Nordlund, K.V.; Oetzel, G.R. Environmental influences on claw horn lesions associated with laminitis and subacute ruminal acidosis in dairy cows. J. Dairy Sci. 2004, 87, E36–E46. [Google Scholar] [CrossRef]
- Greenough, P.R. Bovine Laminitis and Lameness—A Hands on Approach; Saunders Elsevier: Philadelphia, PA, USA, 2007; pp. 8–304. [Google Scholar]
- Leach, K.A.; Logue, D.N.; Kempson, S.A.; Offer, J.E.; Ternent, H.E.; Randall, J.M. Claw lesions in dairy cattle—Development of sole and white line haemorrhages during the first lactation. Vet. J. 1997, 154, 215–225. [Google Scholar] [CrossRef]
- Bergsten, C. Causes, risk factors, and prevention of laminitis and related claw lesions. Acta Vet. Scand. Suppl. 2003, 98, 157–166. [Google Scholar] [CrossRef]
- Stone, W.C. Nutritional approaches to minimize subacute ruminal acidosis and laminitis in dairy cattle. J. Dairy Sci. 2004, 87, E13–E26. [Google Scholar] [CrossRef]
- Griffiths, B.E.; Mahen, P.J.; Hall, R.; Kakatsidis, N.; Britten, N.; Long, K.; Robinson, L.; Tatham, H.; Jenkin, R.; Oikonomou, G. A prospective cohort study on the development of claw horn disruption lesions in dairy cattle—Furthering our understanding of the role of the digital cushion. Front. Vet. Sci. 2020, 7, 440. [Google Scholar] [CrossRef] [PubMed]
- Hansen, L.B. Consequences of selection for milk yield from a geneticist’s viewpoint. J. Dairy Sci. 2000, 83, 1145–1150. [Google Scholar] [CrossRef] [PubMed]
- Plaizier, J.C.; Krause, D.O.; Gozho, G.N.; McBride, B.W. Subacute ruminal acidosis in dairy cows: The physiological causes, incidence and consequences. Vet. J. 2008, 176, 21–31. [Google Scholar] [CrossRef] [PubMed]
- Zebeli, Q.; Ghareeb, K.; Humer, E.; Metzler-Zebeli, B.U.; Besenfelder, U. Nutrition, rumen health and inflammation in the transition period and their role on overall health and fertility in dairy cows. Res. Vet. Sci. 2015, 103, 126–136. [Google Scholar] [CrossRef] [PubMed]
- Khorrami, B.; Khiaosa-Ard, R.; Zebeli, Q. Models to predict the risk of subacute ruminal acidosis in dairy cows based on dietary and cow factors: A meta-analysis. J. Dairy Sci. 2021, 104, 7761–7780. [Google Scholar] [CrossRef]
- Kleen, J.L.; Upgang, L.; Rehage, J. Prevalence and consequences of subacute ruminal acidosis in German dairy herds. Acta Vet. Scand. 2013, 55, 48. [Google Scholar] [CrossRef]
- Lean, I.J.; Van Saun, R.; Degaris, P.J. Energy and protein nutrition management of transition dairy cows. Vet. Clin. Food Anim. 2013, 29, 337–366. [Google Scholar] [CrossRef] [PubMed]
- Lean, I.J.; Westwood, C.T.; Golder, H.M.; Vermunt, J.J. Impact of nutrition on lameness and claw health in cattle. Livestock Sci. 2013, 156, 71–87. [Google Scholar] [CrossRef]
- Oetzel, G.R. Diagnosis and management of subacute ruminal acidosis in dairy herds. Vet. Clin. Food Anim. 2017, 33, 463–480. [Google Scholar] [CrossRef]
- Humer, E.; Aschenbach, J.R.; Neubauer, V.; Kröger, I.; Khiaosa-Ard, R.; Baumgartner, W.; Zebeli, Q. Signals for identifying cows at risk of subacute ruminal acidosis in dairy veterinary practice. J. Anim. Physiol. Anim. Nutr. 2018, 102, 380–392. [Google Scholar] [CrossRef] [PubMed]
- Langova, L.; Novotna, I.; Nemcova, P.; Machacek, M.; Havlicek, Z.; Zemanova, M.; Chrast, V. Impact of nutrients on the hoof health in cattle. Animals 2020, 10, 1824. [Google Scholar] [CrossRef] [PubMed]
- Olsson, G.; Bergsten, C.; Wiktorsson, H. The influence of diet before and after calving on the food intake, production and health of primiparous cows, with special reference to sole haemorrhages. Anim. Sci. 1998, 66, 75–86. [Google Scholar] [CrossRef]
- Offer, J.E.; Leach, K.A.; Brocklehurst, S.; Logue, D.N. Effect of forage type on claw horn lesion development in dairy heifers. Vet. J. 2003, 165, 221–227. [Google Scholar] [CrossRef] [PubMed]
- Penner, G.B.; Beauchemin, K.A.; Mutsvangwa, T. Severity of ruminal acidosis in primiparous holstein cows during the periparturient period. J. Dairy Sci. 2007, 90, 365–375. [Google Scholar] [CrossRef]
- Bramley, E.; Lean, I.J.; Fulkerson, W.J.; Stevenson, M.A.; Rabiee, A.R.; Costa, N.D. The definition of acidosis in dairy herds predominantly fed on pasture and concentrates. J. Dairy Sci. 2008, 91, 308–321. [Google Scholar] [CrossRef]
- Humer, E.; Khol-Parasini, A.; Gruber, L.; Gasteiner, J.; Abdel-Raheem, S.M.; Zebeli, Q. Long-term reticuloruminal pH dynamics and markers of liver health in early-lactating cows of various parities fed diets differing in grain processing. J. Dairy Sci. 2015, 98, 6433–6448. [Google Scholar] [CrossRef]
- Zebeli, Q.; Dijkstra, J.; Tafaj, M.; Steingass, H.; Ametaj, B.N.; Drochner, W. Modeling the adequacy of dietary fiber in dairy cows based on the responses of ruminal pH and milk fat production to composition of the diet. J. Dairy Sci. 2008, 91, 2046–2066. [Google Scholar] [CrossRef]
- Nasrollahi, S.M.; Zali, A.; Ghorbani, G.R.; Moradi Shahrbabak, M.; Heydari Soltan Abadi, M. Variability in susceptibility to acidosis among high producing mid-lactation dairy cows is associated with rumen pH, fermentation, feed intake, sorting activity, and milk fat percentage. Anim. Feed Sci. Technol. 2017, 228, 72–82. [Google Scholar] [CrossRef]
- Ossent, P.; Lischer, C. Bovine laminitis: The lesions and their pathogenesis. Practice 1998, 20, 415–427. [Google Scholar] [CrossRef]
- Danscher, A.M.; Toelboell, T.H.; Wattle, O. Biomechanics and histology of bovine claw suspensory tissue in early acute laminitis. J. Dairy Sci. 2010, 93, 53–62. [Google Scholar] [CrossRef]
- Mülling, C.K.W. Biomechanics of the Bovine Foot. In Proceedings of the 20th International Symposium of Lameness in Ruminants, Tokyo, Japan, 10–13 March 2019; pp. 32–49. [Google Scholar]
- GfE. Empfehlungen zur Energie- und Nährstoffversorgung der Milchkühe und Aufzuchtrinder; DLG-Verlags-GmbH: Frankfurt, Germany, 2001; p. 135. [Google Scholar]
- Sprecher, D.J.; Hostetler, D.E.; Kaneene, J.B. A lameness scoring system that uses posture and gait to predict dairy cattle reproductive performance. Theriogenology 1997, 47, 1179–1187. [Google Scholar] [CrossRef] [PubMed]
- Kofler, J.; Hangl, A.; Pesenhofer, R.; Landl, G. Evaluation of claw health in heifers in seven dairy farms using a digital claw trimming protocol and claw data analysis system. Berlin. Munch. Tierarztl. Wochenschr. 2011, 124, 10–19. [Google Scholar]
- Kofler, J. Computerised claw trimming database programs as the basis for monitoring hoof health in dairy herds. Vet. J. 2013, 198, 358–361. [Google Scholar] [CrossRef] [PubMed]
- Egger-Danner, C.; Nielsen, P.; Fiedler, A.; Müller, K.E.; Fjeldaas, T.; Döpfer, D.; Daniel, V.; Bergsten, C.; Cramer, G.; Christen, A.-M.; et al. ICAR Claw Health Atlas; ICAR Online Publication: Rome, Italy, 2015; pp. 9–43. Available online: https://www.icar.org/ICAR_Claw_Health_Atlas.pdf (accessed on 14 February 2023).
- Kofler, J.; Fiedler, A.; Charfeddine, N.; Capion, N.; Fjeldaas, T.; Cramer, G.; Bell, N.; Müller, K.; Christen, A.; Thomas, G.; et al. ICAR Claw Health Atlas—Appendix 1—Digital Dermatitis Stages (M-Stages); ICAR Online-Publication: Rome, Italy, 2020; Available online: https://www.icar.org/Documents/ICAR-Claw-Health-Atlas-Appendix-1-DD-stages-M-stages.pdf (accessed on 14 February 2023).
- Kofler, J.; Fiedler, A.; Charfeddine, N.; Capion, N.; Fjeldaas, T.; Cramer, G.; Bell, N.J.; Müller, K.E.; Christen, A.-M.; Thomas, G.; et al. ICAR Claw Health Atlas—Appendix 2—Digital Dermatitis-Associated Claw Horn Lesions; ICAR Online-Publication: Rome, Italy, 2020; Available online: https://www.icar.org/Documents/ICAR-Claw-Health-Atlas-Appendix-2-DD-associated-Claw-Horn-Lesions.pdf (accessed on 14 February 2023).
- Leach, K.A.; Logue, D.N.; Randall, J.M.; Kempson, S.A. Claw lesions in dairy cattle: Methods or assessment of sole and white line lesions. Vet. J. 1998, 155, 91–102. [Google Scholar] [CrossRef]
- Smilie, R.H.; Hoblet, K.H.; Eastridge, M.L.; Weiss, W.P.; Schnitkey, G.L.; Moeschberger, M.L. Subclinical laminitis in dairy cows: Use of severity of hoof lesions to rank and evaluate herds. Vet. Rec. 1999, 144, 17–21. [Google Scholar] [CrossRef]
- Nocek, J.E. Bovine acidosis: Implications on laminitis. J. Dairy Sci. 1997, 80, 1005–1028. [Google Scholar] [CrossRef]
- Nordlund, K.V.; Cook, N.B.; Oetzel, G.R. Investigation strategies for laminitis problem herds. J. Dairy Sci. 2004, 87, E27–E35. [Google Scholar] [CrossRef]
- Shaver, R.D. Feeding to Minimize Acidosis and Laminitis in Dairy Cattle; Dairy Cattle Extension Publication: 2019. Available online: https://dairy-cattle.extension.org/feeding-to-minimize-acidosis-and-laminitis-in-dairy-cattle/ (accessed on 14 February 2023).
- Schneider, K.; Gasteiner, J.; Guggenberger, T.; Urdl, M.; Steiner, S.; Neidl, A.; Linhart, N.; Baumgartner, W. Comparative measurements on ruminal pH-value in cattle. Berlin. Munch. Tierarztl. Wochenschr. 2010, 123, 406–412. [Google Scholar]
- Dijkstra, J.; Van Gastelen, S.; Dieho, K.; Nichols, K.; Bannink, A. Rumen sensors: Data and interpretation for key rumen metabolic processes. Animal 2020, 14 (Suppl. 1), s176–s186. [Google Scholar] [CrossRef]
- Kleen, J.L.; Hooijer, G.A.; Rehage, J.; Noordhuizen, J.P.T.M. Subacute ruminal acidosis in Dutch dairy herds. Vet. Rec. 2009, 164, 681–683. [Google Scholar] [CrossRef]
- Neubauer, V.; Humer, E.; Kröger, I.; Braid, T.; Wagner, M.; Zebeli, Q. Differences between pH of indwelling sensors and the pH of fluid and solid phase in the rumen of dairy cows fed varying concentrate levels. J. Anim. Physiol. Anim. Nutr. 2018, 102, 343–349. [Google Scholar] [CrossRef] [PubMed]
- Offner, A.; Bach, A.; Sauvant, D. Quantitative review of in situ starch degradation in the rumen. Anim. Feed Sci. Technol. 2003, 106, 81–93. [Google Scholar] [CrossRef]
- Benninghoff, J.; Paschke-Beese, M.; Südekum, K.-H. In situ and in vitro ruminal degradation of maize grain and untreated or xylose-treated wheat, barley and rye grains. Anim. Feed Sci. Technol. 2015, 210, 86–93. [Google Scholar] [CrossRef]
- Drendel, T.R.; Hoffman, P.C.; St Pierre, N.; Socha, M.T.; Tomlinson, D.J.; Ward, T.L. Effects of feeding Zinc, Manganese, and Copper-Amino-Acid-Complexes and Cobalt-Glucoheptonate to dairy replacement heifers on claw disorders. Prof. Anim. Sci. 2005, 21, 217–224. [Google Scholar] [CrossRef]
- Leach, K.A.; Tisdall, D.A.; Bell, N.J.; Main, D.C.J.; Green, L.E. The effects of early treatment for hindlimb lameness in dairy cows on four commercial UK farms. Vet. J. 2012, 193, 626–632. [Google Scholar] [CrossRef]
- Randall, L.V.; Green, M.J.; Chagunda, M.G.G.; Mason, C.; Green, L.E.; Huxley, J.N. Lameness in dairy heifers; impacts of hoof lesions present around first calving on future lameness, milk yield and culling risk. Prev. Vet. Med. 2016, 133, 52–63. [Google Scholar] [CrossRef]
- Christen, A.M.; Egger-Danner, C.; Capion, N.; Charfeddine, N.; Cole, J.; Cramer, G.; De Jong, G.; Fiedler, A.; Fjeldaas, T.; Gengler, N.; et al. Lameness in dairy cattle. In Section 7—Bovine Functional Traits: Guidelines for Health, Female Fertility, Udder Health, Claw Health Traits and Lameness in Bovine; ICAR Online-Publication: Rome, Italy, 2020; pp. 84–151. Available online: https://www.icar.org/Guidelines/07-Bovine-Functional-Traits.pdf (accessed on 14 February 2023).
- Espejo, L.A.; Endres, M.I.; Salfer, J.A. Prevalence of lameness in high-producing Holstein cows housed in freestall barns in Minnesota. J. Dairy Sci. 2006, 89, 3052–3058. [Google Scholar] [CrossRef]
- Fiore, E.; Perillo, L.; Marchesini, G.; Piccione, G.; Giudice, E.; Zumbo, A.; Armato, L.; Fabbri, G.; Gianesella, M. Effect of parity on claw horn lesions in Holstein dairy cows—Clinical and radiological study. Ann. Anim. Sci. 2019, 19, 147–158. [Google Scholar] [CrossRef]
- Jewell, M.T.; Cameron, M.; Spears, J.; McKenna, S.L.; Cockram, M.S.; Sanchez, J.; Keefe, G.P. Prevalence of lameness and associated risk factors on dairy farms in the Maritime Provinces of Canada. J. Dairy Sci. 2019, 102, 3392–3405. [Google Scholar] [CrossRef]
- EFSA. Scientific opinion on welfare of dairy cows in relation to leg and locomotion problems based on a risk assessment with special reference to the impact of housing, feeding, management and genetic selection. EFSA J. 2009, 1142, 1–57. Available online: https://www.efsa.europa.eu/de/efsajournal/pub/1142 (accessed on 14 February 2023).
- Huber, S.; Bernhard, J.; Syring, C.; Steiner, A. Erarbeitung von Kennzahlen und Grenzwerten zur Klauengesundheit beim Schweizer Rindvieh. Schweiz. Arch. Tierheilkd. 2021, 163, 139–152. [Google Scholar] [CrossRef] [PubMed]
- Shearer, J.; Van Amstel, S. Manual of Foot Care in Cattle, 2nd ed.; W.D. Hoard & Sons Company: Fort Atkinson, WI, USA, 2013; pp. 5–60. [Google Scholar]
- Sadiq, M.B.; Ramanoon, S.Z.; Mansor, R.; Syed-Hussain, S.S.; Shaik Mossadeq, W.M. Claw trimming as a lameness management practice and the association with welfare and production in dairy cows. Animals 2020, 10, 1515. [Google Scholar] [CrossRef] [PubMed]
- Capion, N.; Cannings, E.S.; Krogh, M.A. Comparison of claw horn disruption lesions in four dairy herds using two different trimming techniques: A case study. Vet. J. 2022, 287, 105886. [Google Scholar] [CrossRef] [PubMed]
- Van der Tol, P.P.J.; Van der Beek, S.S.; Metz, J.H.M.; Noordhuizen-Stassen, E.N.; Back, W.; Braam, C.R.; Weijs, W.A. The effect of preventive trimming on weight bearing and force balance on the claws of dairy cattle. J. Dairy Sci. 2004, 87, 1732–1738. [Google Scholar] [CrossRef]
- Maxwell, O.J.; Hudson, C.D.; Huxley, J.N. Effect of early lactation foot trimming in lame and non-lame dairy heifers: A randomised controlled trial. Vet. Rec. 2015, 177, 100. [Google Scholar] [CrossRef]
- Charfeddine, N.; Alsaaod, M.; Burgstaller, J.; Christen, A.-M.; De Jong, G.; Egger-Danner, C.; Fiedler, A.; Heringstad, B.; Holzhauer, M.; Kofler, J.; et al. Guidelines for the validation and use of claw health data. In Proceedings of the ICAR Technical Series no. 21, 40th ICAR Biennial Session, Puerto Varas, Chile, 24–28 October 2016; pp. 157–162. Available online: https://www.icar.org/Documents/technical_series/ICAR-Technical-Series-no-21-Puerto-Varas/Charfeddine.pdf (accessed on 14 February 2023).
- Vermunt, J.J.; Greenough, P.R. Sole haemorrhages in dairy heifers managed under different underfoot and environmental conditions. Br. Vet. J. 1996, 152, 57–73. [Google Scholar] [CrossRef]
- Somers, J.G.C.J.; Frankena, K.; Noordhuizen-Stassen, E.N.; Metz, J.H.M. Prevalence of claw disorders in Dutch dairy cows exposed to several floor systems. J. Dairy Sci. 2003, 86, 2082–2093. [Google Scholar] [CrossRef]
- Cook, N.B.; Mentink, R.L.; Bennett, T.B.; Burgi, K. The effect of heat stress and lameness on time budgets of lactating dairy cows. J. Dairy Sci. 2007, 90, 1674–1682. [Google Scholar] [CrossRef]
- Telezhenko, E.; Lidfors, L.; Bergsten, C. Dairy cow preferences for soft or hard flooring when standing or walking. J. Dairy Sci. 2007, 90, 3716–3724. [Google Scholar] [CrossRef]
- Grant, R.J.; Albright, J.L. Effect of animal grouping on feeding behavior and intake of dairy cattle. J. Dairy Sci. 2001, 84, E156–E163. [Google Scholar] [CrossRef]
- Sogstad, Å.M.; Fjeldaas, T.; Østerås, O.; Plym Forshell, K. Prevalence of claw lesions in Norwegian dairy cattle housed in tie stalls and free stalls. Prev. Vet. Med. 2005, 70, 191–209. [Google Scholar] [CrossRef] [PubMed]
- Kujala, M.; Dohoo, I.R.; Soveri, T. White-line disease and haemorrhages in hooves of Finnish dairy cattle. Prev. Vet. Med. 2010, 94, 18–27. [Google Scholar] [CrossRef] [PubMed]
- Somers, J.G.C.J.; Frankena, K.; Noordhuizen-Stassen, E.N.; Metz, J.H.M. Risk factors for interdigital dermatitis and heel erosion in dairy cows kept in cubicle houses in The Netherlands. Prev. Vet. Med. 2005, 71, 23–34. [Google Scholar] [CrossRef] [PubMed]
- Capion, N.; Boye, M.; Ekstrøm, C.T.; Jensen, T.K. Infection dynamics of digital dermatitis in first-lactation Holstein cows in an infected herd. J. Dairy Sci. 2012, 95, 6457–6464. [Google Scholar] [CrossRef] [PubMed]
- Plummer, P.J.; Krull, A. Clinical perspectives of digital dermatitis in dairy and beef cattle. Vet. Clin. Food Anim. 2017, 33, 165–181. [Google Scholar] [CrossRef]
- Burgstaller, J.; Raith, J.; Kuchling, S.; Mandl, V.; Hund, A.; Kofler, J. Claw health and prevalence of lameness in cows from compost bedded and cubicle freestall dairy barns in Austria. Vet. J. 2016, 216, 81–86. [Google Scholar] [CrossRef]
- Kleen, J.L.; Cannizzo, C. Incidence, prevalence and impact of SARA in dairy herds. Anim. Feed Sci. Technol. 2012, 172, 4–8. [Google Scholar] [CrossRef]
Components (% of DM Unless Stated) | Close-Up Ration | SARA Ration | Post-SARA Ration |
---|---|---|---|
Grass silage | 38.0 | 24.0 | 37.0 |
Corn silage | 30.0 | 16.0 | 20.9 |
Meadow hay | 0.0 | 0.0 | 4.3 |
Wheat straw | 0.0 | 0.0 | 1.6 |
Concentrate mixture 2 | 32.0 | 60.0 | 0.0 |
Grain mixture with premix 3 | 0.0 | 0.0 | 9.8 |
Protein supplement 4 | 0.0 | 0.0 | 5.5 |
Dairy concentrate 5 | 0.0 | 0.0 | 20.9 |
Estimated composition | |||
Dry matter (% as is) | 40.3 | 43.3 | 38.8 |
Crude protein | 14.3 | 17.0 | 14.8 |
Starch and sugars | 27.9 | 35.1 | 21.1 |
Neutral detergent fiber | 39.2 | 29.6 | 45.2 |
Net energy of lactation (MJ/kg DM) | 6.5 | 7.2 | 6.4 |
Term of Claw Lesion | Lesion Code | Severity Score | * Geometric Severity Score |
---|---|---|---|
Asymmetric claw | AC | 1 | 0 |
Concave dorsal wall | CD | 1 | 5 |
2 | 10 | ||
3 | 20 | ||
Corkscrew claw | CC | 1 | 4 |
Digital dermatitis M1 | DD-M1 | 1 | 16 |
Digital dermatitis M2 | DD-M2 | 3 | 64 |
Digital dermatitis M3 | DD-M3 | 1 | 16 |
Digital dermatitis M4 | DD-M4 | 1 | 8 |
Digital dermatitis M4.1 | DD-M4.1 | 2 | 32 |
Interdigital dermatitis | ID | 1 | 8 |
Double sole | DS | 1 | 4 |
2 | 8 | ||
3 | 32 | ||
Heel horn erosion | HHE | 1 | 2 |
2 | 4 | ||
3 | 16 | ||
Horn fissure vertical | HFV (HFA, HFD) | 1 | 8 |
(axial, dorsal) | 2 | 16 | |
3 | 64 | ||
Horn fissure horizontal | HFH | 1 | 8 |
2 | 16 | ||
3 | 64 | ||
Interdigital hyperplasia | IH | 1 | 8 |
2 | 16 | ||
3 | 64 | ||
Interdigital phlegmon (foot rot) | IP | 1 | 64 |
2 | 96 | ||
3 | 128 | ||
Scissor claws | SC | 1 | 0 |
Swelling of coronet and/or bulb | SW | 1 | 16 |
2 | 32 | ||
3 | 64 | ||
Sole hemorrhage (circumscribed/ | SH | 1 | 4 |
diffuse) | 2 | 8 | |
3 | 16 | ||
Sole ulcer | SU | 1 | 32 |
2 | 64 | ||
3 | 128 | ||
Bulb ulcer | BU | 1 | 32 |
2 | 64 | ||
3 | 128 | ||
Toe ulcer | TU | 1 | 32 |
2 | 64 | ||
3 | 128 | ||
Toe necrosis | TN | 3 | 128 |
Thin sole | TS | 2 | 24 |
White line lesion (separation) | WLL | 1 | 16 |
White line abscess | WLA | 2 | 64 |
WLA | 3 | 128 | |
DD-associated bulb ulcer | DD-BU | 3 | 128 |
DD-associated horn fissure | DD-HF | 3 | 128 |
DD-associated interdigital hyperplasia | DD-IH | 3 | 128 |
DD-associated sole ulcer | DD-SU | 3 | 128 |
DD-associated toe ulcer | DD-TU | 3 | 128 |
DD-associated toe necrosis | DD-TN | 3 | 128 |
DD-associated white line abscess | DD-WLA | 3 | 128 |
SARA Group 1 | LCS Mean | SD | Min/Max |
---|---|---|---|
Light | 1.03 | 0.18 | 1/2 |
Moderate | 1.07 | 0.32 | 1/3 |
Severe | 1.14 | 0.35 | 1/2 |
Claw Lesion Type (Code) | SARA Group 1 | Before Calving | At 70 DIM | At 160 DIM |
---|---|---|---|---|
Interdigital hyperplasia (IH) | L | 0.0 | 0.0 | 0.0 |
M | 0.0 | 0.0 | 0.0 | |
S | 0.0 | 1.6 | 0.0 | |
Sole ulcer (SU) | L | 0.0 | 0.0 | 0.0 |
M | 0.0 | 0.0 | 0.0 | |
S | 1.6 | 0.0 | 0.0 | |
Horn fissure (HF) | L | 0.0 | 0.0 | 0.0 |
M | 0.0 | 0.0 | 0.0 | |
S | 3.1 | 0.0 | 0.0 | |
Digital dermatitis (DD-M2) | L | 0.0 | 3.1 | 0.0 |
M | 3.1 | 0.0 | 0.0 | |
S | 0.0 | 1.6 | 1.6 | |
Corkscrew claw (CC) | L | 0.0 | 6.2 | 6.2 |
M | 0.0 | 0.0 | 0.0 | |
S | 0.0 | 0.0 | 0.0 | |
Sole hemorrhage (SH) | L | 3.6 | 3.1 | 0.0 |
M | 0.0 | 1.6 | 4.7 | |
S | 0.0 | 6.2 | 7.8 | |
Double sole (DS) | L | 0.0 | 6.2 | 12.5 * |
M | 1.6 | 0.0 | 0.0 | |
S | 1.6 | 0.0 | 0.0 | |
Concave dorsal wall (CD) | L | 0.0 | 3.1 | 25.0 * |
M | 0.0 | 3.1 | 23.4 * | |
S | 0.0 | 3.1 | 28.1 * | |
White line lesion (WLL) | L | 8.9 | 9.4 | 12.5 |
M | 14.1 | 6.2 | 18.7 | |
S | 12.5 | 3.1 | 18.7 * | |
Heel horn erosion (HHE) | L | 28.7 | 71.9 | 59.4 |
M | 62.5 | 68.7 | 84.4 * | |
S | 37.5 | 87.5 * | 84.4 * |
SARA Group 1 | Before Calving | At 70 DIM | At 160 DIM |
---|---|---|---|
Light | 13.0 (9.0) | 36.8 (19.2) | 49.0 (29.7) |
Moderate | 28.6 (18.5) | 26.2 (8.2) | 61.7 (34.9) |
Severe | 25.5 (19.5) | 37.2 (9.2) | 66.7 (39.7) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kofler, J.; Hoefler, M.; Hartinger, T.; Castillo-Lopez, E.; Huber, J.; Tichy, A.; Reisinger, N.; Zebeli, Q. Effects of High Concentrate-Induced Subacute Ruminal Acidosis Severity on Claw Health in First-Lactation Holstein Cows. Animals 2023, 13, 1418. https://doi.org/10.3390/ani13081418
Kofler J, Hoefler M, Hartinger T, Castillo-Lopez E, Huber J, Tichy A, Reisinger N, Zebeli Q. Effects of High Concentrate-Induced Subacute Ruminal Acidosis Severity on Claw Health in First-Lactation Holstein Cows. Animals. 2023; 13(8):1418. https://doi.org/10.3390/ani13081418
Chicago/Turabian StyleKofler, Johann, Michael Hoefler, Thomas Hartinger, Ezequias Castillo-Lopez, Johann Huber, Alexander Tichy, Nicole Reisinger, and Qendrim Zebeli. 2023. "Effects of High Concentrate-Induced Subacute Ruminal Acidosis Severity on Claw Health in First-Lactation Holstein Cows" Animals 13, no. 8: 1418. https://doi.org/10.3390/ani13081418
APA StyleKofler, J., Hoefler, M., Hartinger, T., Castillo-Lopez, E., Huber, J., Tichy, A., Reisinger, N., & Zebeli, Q. (2023). Effects of High Concentrate-Induced Subacute Ruminal Acidosis Severity on Claw Health in First-Lactation Holstein Cows. Animals, 13(8), 1418. https://doi.org/10.3390/ani13081418