Serum Metabolomics and Ionomics Analysis of Hoof-Deformed Cows Based on LC-MS/MS and ICP-OES/MS
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Experimental Design
2.2. Sample Collection
2.2.1. Blood Sample Collection
2.2.2. LC-MS/MS
2.2.3. Determination of Each Element by ICP-OES/MS with Hydrogen Peroxide-Purified Nitric Acid System Digestion
2.2.4. MRM Target Verification
2.3. Statistical Analysis of Data
2.3.1. LC-MS/MS Data Processing, Statistical Analysis, and Metabolic Pathway Analysis
2.3.2. ICP-OES/MS Data Processing and Statistical Analysis
2.3.3. MRM Data Processing
3. Results
3.1. LC-MS Metabolomics Results
3.1.1. Multivariate Statistical Analysis
3.1.2. Screening and Identification of Differential Metabolites
3.1.3. Hierarchical Clustering Analysis of Differential Metabolites
3.1.4. Metabolic Pathway Enrichment Analysis of Differential Metabolites
3.2. ICP-OES/MS Ionomics Results
3.3. Joint Analysis Results
3.4. MRM Validation Results
4. Discussion
4.1. Analysis of Differential Serum Metabolites in Cows with Hoof Deformities
4.2. Analysis of Differential Ions in Serum of Cows with Hoof Deformities
4.3. Combined Analysis of Differential Metabolites and Differential Ions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Blowey, R. Cattle Lameness and Hoof Care, an Illustrated Guide; 5m Books Ltd.: Great Easton, UK, 1993. [Google Scholar]
- van der Tol, P.P.; Metz, J.H.; Noordhuizen-Stassen, E.N.; Back, W.; Braam, C.R.; Weijs, W.A. Frictional forces required for unrestrained locomotion in dairy cattle. J. Dairy Sci. 2005, 88, 615–624. [Google Scholar] [CrossRef]
- Zheng, J.; Sun, L.; Shu, S.; Zhu, K.; Xu, C.; Wang, J.; Wang, H. Nuclear magnetic resonance-based serum metabolic profiling of dairy cows with footrot. J. Vet. Med. Sci. 2016, 78, 1421–1428. [Google Scholar] [CrossRef]
- Zheng, J.; Shu, S.; Xia, C.; Xu, C.; Zhang, H.; Wang, H. 2-DE-MS based proteomic investigation of dairy cows with footrot. J. Vet. Res. 2016, 60, 63–69. [Google Scholar] [CrossRef]
- Sun, D.; Zhang, H.; Guo, D.; Sun, A.; Wang, H. Shotgun proteomic analysis of plasma from dairy cattle suffering from footrot: Characterization of potential disease-associated factors. PLoS ONE 2013, 8, e55973. [Google Scholar] [CrossRef]
- Sun, L.; Yu, Y.; Huang, T.; An, P.; Yu, D.; Yu, Z.; Li, H.; Sheng, H.; Cai, L.; Xue, J.; et al. Associations between ionomic profile and metabolic abnormalities in human population. PLoS ONE 2012, 7, e38845. [Google Scholar] [CrossRef] [PubMed]
- Qi, C.M.; Yu, T.; Li, Z.Q. Color map of deformed hoof and hoof disease prevention and control in dairy cows. In Color Atlas of Diseases and Disorders of Cattle E-Book; Elsevier Health Sciences: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Aschenbach, J.R.; Kristensen, N.B.; Donkin, S.S.; Hammon, H.M.; Penner, G.B. Gluconeogenesis in dairy cows: The secret of making sweet milk from sour dough. IUBMB Life 2010, 62, 869–877. [Google Scholar] [CrossRef] [PubMed]
- Rezaei, R.; Wu, Z.; Hou, Y.; Bazer, F.W.; Wu, G. Amino acids and mammary gland development: Nutritional implications for milk production and neonatal growth. J. Anim. Sci. Biotechnol. 2016, 7, 20. [Google Scholar] [CrossRef]
- Belay, T.K.; Svendsen, M.; Kowalski, Z.M.; Ådnøy, T. Genetic parameters of blood β-hydroxybutyrate predicted from milk infrared spectra and clinical ketosis, and their associations with milk production traits in Norwegian Red cows. J. Dairy Sci. 2017, 100, 6298–6311. [Google Scholar] [CrossRef]
- von Soosten, D.; Meyer, U.; Piechotta, M.; Flachowsky, G.; Dänicke, S. Effect of conjugated linoleic acid supplementation on body composition, body fat mobilization, protein accretion, and energy utilization in early lactation dairy cows. J. Dairy Sci. 2012, 95, 1222–1239. [Google Scholar] [CrossRef]
- Tsukano, K.; Suzuki, K. Plasma amino acid abnormalities in calves with diarrhea. J. Vet. Med. Sci. 2019, 81, 517–521. [Google Scholar] [CrossRef]
- Hultquist, K.M.; Casper, D.P. Effects of feeding rumen-degradable valine on milk production in late-lactating dairy cows. J. Dairy Sci. 2016, 99, 1201–1215. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Zeng, X.; Ren, M.; Mao, X.; Qiao, S. Novel metabolic and physiological functions of branched chain amino acids: A review. J. Anim. Sci. Biotechnol. 2017, 8, 10. [Google Scholar] [CrossRef] [PubMed]
- Cetica, P.; Pintos, L.; Dalvit, G.; Beconi, M. Involvement of enzymes of amino acid metabolism and tricarboxylic acid cycle in bovine oocyte maturation in vitro. Reproduction 2003, 126, 753–763. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, J.R.; Ratamess, N.A.; Faigenbaum, A.D.; Ross, R.; Kang, J.; Stout, J.R.; Wise, J.A. Short-duration beta-alanine supplementation increases training volume and reduces subjective feelings of fatigue in college football players. Nutr. Res. 2008, 28, 31–35. [Google Scholar] [CrossRef]
- Braeunlich, K.; Zintzen, H. [Vitamin B1 in animal nutrition [poultry, pigs, ruminants, horses, poissons; thiamin]]. [French]; Hoffmann-La Roche: Neuilly-sur-Seine, France, 1981. [Google Scholar]
- Zhao, X.J.; Wang, X.Y.; Wang, J.H.; Wang, Z.Y.; Wang, L.; Wang, Z.H. Oxidative stress and imbalance of mineral metabolism contribute to lameness in dairy cows. Biol. Trace Elem. Res. 2015, 164, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Hidiroglou, M.; Williams, C.J. Mineral and amino acid composition of beef cattle hooves. Am. J. Vet. Res. 1986, 47, 301–303. [Google Scholar]
- Jelinski, M.; Waldner, C.; Penner, G. Case-control study of mineral concentrations of hoof horn tissue derived from feedlot cattle with toe tip necrosis syndrome (toe necrosis). Can. Vet. J. 2018, 59, 254–260. [Google Scholar]
- Zhao, X.J.; Li, Z.P.; Wang, J.H.; Xing, X.M.; Wang, Z.Y.; Wang, L.; Wang, Z.H. Effects of chelated Zn/Cu/Mn on redox status, immune responses and hoof health in lactating Holstein cows. J. Vet. Sci. 2015, 16, 439–446. [Google Scholar] [CrossRef]
- Denholm, S.J.; Sneddon, A.A.; McNeilly, T.N.; Bashir, S.; Mitchell, M.C.; Wall, E. Phenotypic and genetic analysis of milk and serum element concentrations in dairy cows. J. Dairy Sci. 2019, 102, 11180–11192. [Google Scholar] [CrossRef]
- Siciliano-Jones, J.L.; Socha, M.T.; Tomlinson, D.J.; DeFrain, J.M. Effect of trace mineral source on lactation performance, claw integrity, and fertility of dairy cattle. J. Dairy Sci. 2008, 91, 1985–1995. [Google Scholar] [CrossRef]
- Murín, R.; Mohammadi, G.; Leibfritz, D.; Hamprecht, B. Glial metabolism of valine. Neurochem. Res. 2009, 34, 1195–1203. [Google Scholar] [CrossRef] [PubMed]
- Bishop, C.A.; Schulze, M.B.; Klaus, S.; Weitkunat, K. The branched-chain amino acids valine and leucine have differential effects on hepatic lipid metabolism. FASEB J. 2020, 34, 9727–9739. [Google Scholar] [CrossRef]
- Poulsen, S.B.; Fenton, R.A.; Rieg, T. Sodium-glucose cotransport. Curr. Opin. Nephrol. Hypertens. 2015, 24, 463–469. [Google Scholar] [CrossRef]
- Holeček, M. The role of skeletal muscle in the pathogenesis of altered concentrations of branched-chain amino acids (valine, leucine, and isoleucine) in liver cirrhosis, diabetes, and other diseases. Physiol. Res. 2021, 70, 293–305. [Google Scholar] [CrossRef]
- Kim, E.; Tam, M.; Siems, W.F.; Kang, C. Effects of drugs with muscle-related side effects and affinity for calsequestrin on the calcium regulatory function of sarcoplasmic reticulum microsomes. Mol. Pharmacol. 2005, 68, 1708–1715. [Google Scholar] [CrossRef]
- Weisshof, R.; Chermesh, I. Micronutrient deficiencies in inflammatory bowel disease. Curr. Opin. Clin. Nutr. Metab. Care 2015, 18, 576–581. [Google Scholar] [CrossRef] [PubMed]
- Israelsen, W.J.; Vander Heiden, M.G. Pyruvate kinase: Function, regulation and role in cancer. Semin. Cell Dev. Biol. 2015, 43, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Kapoor, R.; Venkitasubramanian, T.A. Glucose 6-phosphate activation of pyruvate kinase from Mycobacterium smegmatis. Biochem. J. 1981, 193, 435–440. [Google Scholar] [CrossRef]
- Li, H.; Gao, J.; Wang, L.; Li, X.; Jiang, Y.; Hu, M.; Li, S.; Zhai, Q. Promotion of activity and thermal stability of chloroperoxidase by trace amount of metal ions (M2+/M3+). Appl. Biochem. Biotechnol. 2014, 172, 2338–2347. [Google Scholar] [CrossRef]
- Lad, P.M.; Glovsky, M.M.; Richards, J.H.; Smiley, P.A.; Backstrom, B. Regulation of human neutrophil guanylate cyclase by metal ions, free radicals and the muscarinic cholinergic receptor. Mol. Immunol. 1985, 22, 731–739. [Google Scholar] [CrossRef]
- Nowak, T.; Suelter, C. Pyruvate kinase: Activation by and catalytic role of the monovalent and divalent cations. Mol. Cell Biochem. 1981, 35, 65–75. [Google Scholar] [CrossRef] [PubMed]
Number | MS2 Name | VIP | p-Value | Trend |
---|---|---|---|---|
1 | D-Pipecolic acid | 2.668699 | 0.000349 | ↑ |
2 | PI(18:1(9Z)/18:1(9Z)) | 2.654024 | 0.000005 | ↑ |
3 | PI(20:2(11Z,14Z)/16:0) | 2.597098 | 0.000009 | ↑ |
4 | (+)-2,3-Dihydro-3-methyl-1H-pyrrole | 2.477785 | 0.000858 | ↑ |
5 | 2-Pyrocatechuic acid | 2.445668 | 0.000505 | ↑ |
6 | PC(16:0/16:0) | 2.408921 | 0.000161 | ↑ |
7 | Tetradecanedioic acid | 2.339200 | 0.000255 | ↑ |
8 | PC(18:0/18:2(9Z,12Z)) | 2.332310 | 0.000042 | ↑ |
9 | L-Pipecolic acid | 2.300073 | 0.000196 | ↑ |
10 | SM(d18:1/16:0) | 2.242649 | 0.000440 | ↑ |
11 | N6-Methyladenosine | 2.238746 | 0.000207 | ↑ |
12 | Phenylalanyl-Tryptophan | 2.232094 | 0.000812 | ↑ |
13 | SM(d18:0/18:1(9Z)) | 2.228645 | 0.005772 | ↑ |
14 | PE(16:0/18:2(9Z,12Z)) | 2.220292 | 0.003756 | ↑ |
15 | Pyro-L-glutaminyl-L-glutamine | 2.217429 | 0.003785 | ↑ |
16 | PI(20:3(5Z,8Z,11Z)/16:0) | 2.199342 | 0.000667 | ↑ |
17 | Salicyluric acid | 2.197370 | 0.003655 | ↑ |
18 | L-alpha-Amino-1H-pyrrole-1-hexanoic acid | 2.175090 | 0.002922 | ↑ |
19 | p-Aminobenzoic acid | 2.145768 | 0.003594 | ↑ |
20 | 1,2,5,6-Tetrahydro-4H-pyrrolo [3,2,1-ij] quinolin-4-one | 2.122660 | 0.012241 | ↑ |
21 | Caffeine | 2.109282 | 0.000178 | ↑ |
22 | MG(0:0/18:3(6Z,9Z,12Z)/0:0) | 2.101451 | 0.018738 | ↑ |
23 | Polyoxyethylene (600) monoricinoleate | 2.093821 | 0.001234 | ↑ |
24 | PC(16:0/P-16:0) | 2.051576 | 0.001384 | ↑ |
25 | Isolithocholic acid | 2.016556 | 0.016698 | ↑ |
26 | 2-Acetyl-3-ethylpyrazine | 1.947635 | 0.002446 | ↑ |
27 | Glyceraldehyde | 1.908274 | 0.006012 | ↑ |
28 | L-Targinine | 1.854960 | 0.011832 | ↑ |
29 | SM(d16:1/24:1(15Z)) | 1.849228 | 0.012706 | ↑ |
30 | 9,10-DHOME | 1.836305 | 0.005436 | ↑ |
31 | 5-Aminopentanal | 1.829376 | 0.011143 | ↑ |
32 | PC(20:2(11Z,14Z)/14:0) | 1.808546 | 0.008800 | ↑ |
33 | PC(18:2(9Z,12Z)/18:0) | 1.781874 | 0.001949 | ↑ |
34 | Gamma-Aminobutyric acid | 1.768406 | 0.008607 | ↑ |
35 | Cholesta-4,6-dien-3-one | 1.750652 | 0.012313 | ↑ |
36 | Thiamine | 1.724694 | 0.013492 | ↑ |
37 | LysoPE(20:4(8Z,11Z,14Z,17Z)/0:0) | 1.718007 | 0.010184 | ↑ |
38 | SM(d17:1/24:1(15Z)) | 1.716706 | 0.010800 | ↑ |
39 | Gamma-Linolenic acid | 1.713555 | 0.029126 | ↑ |
40 | L-cis-4-(Hydroxymethyl)-2-pyrrolidinecarboxylic acid | 1.708745 | 0.019724 | ↑ |
41 | Allantoin | 1.707810 | 0.021897 | ↑ |
42 | Alpha-D-Glucose | 1.678138 | 0.021855 | ↑ |
43 | D-Proline | 1.677953 | 0.020564 | ↑ |
44 | PC(20:2(11Z,14Z)/22:0) | 1.673556 | 0.017954 | ↑ |
45 | N-methylvaline | 1.672496 | 0.008310 | ↑ |
46 | Gyromitrin | 1.625696 | 0.008534 | ↑ |
47 | Deoxyadenosine | 1.620021 | 0.012983 | ↑ |
48 | Histidinyl-Tryptophan | 1.604395 | 0.027128 | ↑ |
49 | Norvaline | 1.603496 | 0.012239 | ↑ |
50 | Dihydrouracil | 1.588725 | 0.017140 | ↑ |
51 | L-Proline | 1.573870 | 0.039936 | ↑ |
52 | Isoliquiritigenin | 1.569349 | 0.024356 | ↑ |
53 | PC(18:0/14:0) | 1.569301 | 0.022090 | ↑ |
54 | 4-Acetylimidazo [4,5-c]pyridine | 1.561847 | 0.011886 | ↑ |
55 | LysoPC(10:0) | 1.548761 | 0.028694 | ↑ |
56 | L-Norleucine | 1.546556 | 0.016193 | ↑ |
57 | LysoPE(18:2(9Z,12Z)/0:0) | 1.545948 | 0.025037 | ↑ |
58 | Benzaldehyde | 1.540118 | 0.026410 | ↑ |
59 | PC(18:0/P-18:1(11Z)) | 1.533916 | 0.031740 | ↑ |
60 | PC(22:2(13Z,16Z)/15:0) | 1.527947 | 0.023486 | ↑ |
61 | Histidinyl-Serine | 1.524589 | 0.036587 | ↑ |
62 | 3,3,5-triiodo-L-thyronine-beta-D-glucuronoside | 1.510032 | 0.024113 | ↑ |
63 | L-Tyrosine | 1.509295 | 0.015867 | ↑ |
64 | Sorbitol | 1.508294 | 0.028089 | ↑ |
65 | Arborinine | 1.505868 | 0.023651 | ↑ |
66 | Phenol glucuronide | 1.471716 | 0.030701 | ↑ |
67 | L-Phenylalanine | 1.437564 | 0.035461 | ↑ |
68 | PC-M6 | 1.428780 | 0.020437 | ↑ |
69 | 3-Amino-2-piperidone | 1.427910 | 0.022974 | ↑ |
70 | Glutaric acid | 1.426541 | 0.037374 | ↑ |
71 | 1-Pyrroline-5-carboxylic acid | 1.421023 | 0.040679 | ↑ |
72 | PC(22:1(13Z)/15:0) | 1.395801 | 0.042589 | ↑ |
73 | Oxoglutaric acid | 1.394322 | 0.048040 | ↑ |
74 | Dimethyl dialkyl ammonium chloride | 1.374757 | 0.042075 | ↑ |
75 | Pyruvic acid | 1.374220 | 0.037639 | ↑ |
76 | Indole-3-propionic acid | 1.369619 | 0.040906 | ↑ |
77 | p-Isopropylphenol | 1.366147 | 0.035698 | ↑ |
78 | 1H-Indole-3-acetamide | 1.349611 | 0.044769 | ↑ |
79 | 6-Chloro-N-(1-methylethyl)-1,3,5-triazine-2,4-diamine | 1.278744 | 0.021874 | ↑ |
80 | (±)-Tryptophan | 1.238873 | 0.026068 | ↑ |
81 | Polyethylene, oxidized | 1.172357 | 0.019404 | ↑ |
82 | o-Cresol | 1.807837 | 0.014683 | ↓ |
83 | (9S,10E,12Z,15Z)-9-Hydroxy-10,12,15-octadecatrienoic acid | 1.339107 | 0.038038 | ↓ |
84 | Docosatrienoic acid | 1.352341 | 0.011775 | ↓ |
85 | PC(22:5(7Z,10Z,13Z,16Z,19Z)/20:4(5Z,8Z,11Z,14Z)) | 1.359588 | 0.037668 | ↓ |
86 | PC(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/18:1(11Z)) | 1.396304 | 0.042004 | ↓ |
87 | 1,3-Dimethyluric acid | 1.451010 | 0.006453 | ↓ |
88 | PC(18:3(6Z,9Z,12Z)/P-18:1(11Z)) | 1.461901 | 0.049885 | ↓ |
89 | PC(18:1(11Z)/14:0) | 1.497574 | 0.013564 | ↓ |
90 | Epinephrine | 1.506148 | 0.025789 | ↓ |
91 | L-Valine | 1.545543 | 0.032929 | ↓ |
92 | Squamolone | 1.548931 | 0.035178 | ↓ |
93 | 6-Hydroxy-5-methoxyindole glucuronide | 1.564298 | 0.037996 | ↓ |
94 | 2-Piperidinone | 1.569621 | 0.021916 | ↓ |
95 | Gentisic acid | 1.584450 | 0.025065 | ↓ |
96 | 3-Hydroxyisovaleric acid | 1.614573 | 0.014063 | ↓ |
97 | Hippuric acid | 1.635571 | 0.019059 | ↓ |
98 | Pentadecanoic acid | 1.644352 | 0.014762 | ↓ |
99 | (10E,12Z)-(9S)-9-Hydroperoxyoctadeca-10,12-dienoic acid | 1.647604 | 0.015996 | ↓ |
100 | Creatinine | 1.702533 | 0.018042 | ↓ |
101 | Succinic acid semialdehyde | 1.712312 | 0.024760 | ↓ |
102 | Benzyl acetate | 1.798529 | 0.015313 | ↓ |
103 | 12-Methyltridecanoic acid | 1.831773 | 0.021880 | ↓ |
104 | Ethyl dodecanoate | 1.836277 | 0.025608 | ↓ |
105 | PC(22:5(7Z,10Z,13Z,16Z,19Z)/18:3(6Z,9Z,12Z)) | 1.838133 | 0.005631 | ↓ |
106 | LysoPE(0:0/22:4(7Z,10Z,13Z,16Z)) | 1.855091 | 0.007737 | ↓ |
107 | LysoPC(18:1(9Z)) | 1.873862 | 0.004356 | ↓ |
108 | €-3-Hydroxybutyric acid | 1.898526 | 0.005329 | ↓ |
109 | 2-Hydroxy-3-methylbutyric acid | 1.901942 | 0.005243 | ↓ |
110 | PC(18:4(6Z,9Z,12Z,15Z)/P-18:1(11Z)) | 1.920975 | 0.001968 | ↓ |
111 | Methylguanidine | 1.940260 | 0.002589 | ↓ |
112 | PC(20:0/14:0) | 1.981505 | 0.003086 | ↓ |
113 | Isobutyric acid | 1.988003 | 0.015340 | ↓ |
114 | 4-Acetyl-2(3H)-benzoxazolone | 2.019812 | 0.000882 | ↓ |
115 | LysoPC(22:6(4Z,7Z,10Z,13Z,16Z,19Z)) | 2.027527 | 0.004787 | ↓ |
116 | Ecgonine | 2.032427 | 0.001834 | ↓ |
117 | LysoPC(20:4(5Z,8Z,11Z,14Z)) | 2.035657 | 0.004187 | ↓ |
118 | 3-Methoxybenzenepropanoic acid | 2.114186 | 0.000912 | ↓ |
119 | (E)-8-Hydroxy-2-octene-4,6-diynoic acid | 2.213267 | 0.000723 | ↓ |
120 | Saccharin | 2.215125 | 0.003720 | ↓ |
121 | Carnosic acid | 2.242463 | 0.000932 | ↓ |
122 | LysoPC(16:1(9Z)/0:0) | 2.246300 | 0.000373 | ↓ |
123 | Cortisone | 2.363506 | 0.010462 | ↓ |
124 | 4,6-Dihydroxyquinoline | 2.402878 | 0.000239 | ↓ |
125 | PC(18:1(11Z)/15:0) | 2.450633 | 0.000058 | ↓ |
126 | Butylparaben | 2.459819 | 0.000256 | ↓ |
127 | Diphenylamine | 2.575275 | 0.000218 | ↓ |
Differential Metabolites | Metabolic Pathway |
---|---|
L-phenylalanine | Phenylalanine, tyrosine and tryptophan biosynthesis Phenylalanine metabolism |
L- Tyrosine | Phenylalanine, tyrosine and tryptophan biosynthesis Phenylalanine metabolism Tyrosine metabolism |
Thiamine | Thiamine metabolism |
L-Valine | Valine, leucine and isoleucine biosynthesis |
Alpha-D-Glucose | Starch and sucrose metabolism Glycolysis or Gluconeogenesis |
Pyruvic acid | Valine, leucine and isoleucine biosynthesis Pyruvate metabolism Glycolysis or Gluconeogenesis |
Dihydrouracil | beta-Alanine metabolism |
Epinephrine | Tyrosine metabolism |
Epinephrine | Tyrosine metabolism |
id | Compound Name | VIP | p-Value | Trend |
---|---|---|---|---|
1 | K | 1.901603 | 0.000365 | ↑ |
2 | Li | 1.650740 | 0.020948 | ↑ |
3 | Pb | 1.319857 | 0.051836 | ↑ |
4 | Cd | 1.210477 | 0.071717 | ↑ |
5 | Ba | 1.165220 | 0.120138 | ↑ |
6 | Mo | 0.942896 | 0.220352 | ↑ |
7 | Ti | 0.758099 | 0.223822 | ↑ |
8 | Co | 0.632883 | 0.407299 | ↑ |
9 | Cr | 0.539478 | 0.519642 | ↑ |
10 | Fe | 0.572170 | 0.556518 | ↑ |
11 | Si | 0.716205 | 0.755569 | ↑ |
12 | Ca | 0.147897 | 0.834511 | ↑ |
13 | Se | 0.291345 | 0.960316 | ↑ |
14 | Al | 1.601160 | 0.001899 | ↓ |
15 | Cu | 1.147357 | 0.007794 | ↓ |
16 | Sb | 1.488560 | 0.022543 | ↓ |
17 | B | 1.328378 | 0.032455 | ↓ |
18 | Sn | 1.238449 | 0.046691 | ↓ |
19 | Na | 1.413242 | 0.049185 | ↓ |
20 | Ag | 0.993963 | 0.099159 | ↓ |
21 | Mn | 1.253383 | 0.181161 | ↓ |
22 | Zn | 0.790421 | 0.201062 | ↓ |
23 | P | 1.111163 | 0.211961 | ↓ |
24 | Mg | 0.700067 | 0.413513 | ↓ |
25 | As | 0.328768 | 0.478374 | ↓ |
26 | Zr | 0.212851 | 0.532474 | ↓ |
27 | Bi | 0.545527 | 0.679050 | ↓ |
28 | Sr | 0.225083 | 0.702618 | ↓ |
29 | Be | 0.101009 | 0.774712 | ↓ |
30 | S | 0.359800 | 0.924664 | ↓ |
31 | Ni | 0.224000 | 0.927771 | ↓ |
id | Compound Name | VIP | p-Value | Tend |
---|---|---|---|---|
1 | L-Proline | 1.117977 | 0.001500 | ↑ |
2 | L-Phenylalanine | 0.959884 | 0.004450 | ↑ |
3 | L-Tryptophan | 0.910356 | 0.009355 | ↑ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, C.; Yue, Y.; Zhang, H.; Liu, M.; Ge, Y.; Xu, E.; Zheng, J. Serum Metabolomics and Ionomics Analysis of Hoof-Deformed Cows Based on LC-MS/MS and ICP-OES/MS. Animals 2023, 13, 1440. https://doi.org/10.3390/ani13091440
Deng C, Yue Y, Zhang H, Liu M, Ge Y, Xu E, Zheng J. Serum Metabolomics and Ionomics Analysis of Hoof-Deformed Cows Based on LC-MS/MS and ICP-OES/MS. Animals. 2023; 13(9):1440. https://doi.org/10.3390/ani13091440
Chicago/Turabian StyleDeng, Chaoyang, Yang Yue, Hefei Zhang, Meng Liu, Yansong Ge, Enshuang Xu, and Jiasan Zheng. 2023. "Serum Metabolomics and Ionomics Analysis of Hoof-Deformed Cows Based on LC-MS/MS and ICP-OES/MS" Animals 13, no. 9: 1440. https://doi.org/10.3390/ani13091440
APA StyleDeng, C., Yue, Y., Zhang, H., Liu, M., Ge, Y., Xu, E., & Zheng, J. (2023). Serum Metabolomics and Ionomics Analysis of Hoof-Deformed Cows Based on LC-MS/MS and ICP-OES/MS. Animals, 13(9), 1440. https://doi.org/10.3390/ani13091440