Effects of Hydroxytyrosol Supplementation on Performance, Fat and Blood Parameters of Broiler Chickens
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Birds, Experimental Design, and Diets
2.2. Performance Parameters
2.3. Samples Collection
2.3.1. Blood Metabolites
2.3.2. Breast Meat Composition
Lipid Content
Fatty Acid Profile
Peroxide Index
2.4. Statistical Analysis
3. Results
3.1. Performance
3.2. Blood Metabolites
3.3. Breast Meat Composition
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, S.; Yong, Y.; Ju, X. Effect of heat stress on growth and production performance of livestock and poultry: Mechanism to prevention. J. Therm. Biol. 2021, 99, 103019. [Google Scholar] [CrossRef]
- Zhu, X.; Zhang, Y.; Zhao, Y.; Tao, L.; Liu, H.; Dong, W.; Yang, G.; Li, L. Effects of dietary supplementation with itaconic acid on the growth performance, nutrient digestibility, slaughter variables, blood biochemical parameters, and intestinal morphology of broiler chickens. Poult. Sci. 2022, 101, 101732. [Google Scholar] [CrossRef] [PubMed]
- Habashy, W.S.; Milfort, M.C.; Rekaya, R.; Aggrey, S.E. Expression of genes that encode cellular oxidant/antioxidant systems are affected by heat stress. Mol. Biol. Rep. 2018, 45, 389–394. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Moneim, A.-M.E.; Shehata, A.M.; Khidr, R.E.; Paswan, V.K.; Ibrahim, N.S.; El-Ghoul, A.A.; Aldhumri, S.A.; Gabr, S.A.; Mesalam, N.M.; Elbaz, A.M.; et al. Nutritional manipulation to combat heat stress in poultry—A comprehensive review. J. Therm. Biol. 2021, 98, 102915. [Google Scholar] [CrossRef] [PubMed]
- Kreuz, B.S.; Duarte, M.S.; Albino, L.F.T.; Borges, S.O.; Piazza, M.C.N.; Carvalho, M.E.S.; Miranda, J.V.S.; Calderano, A.A. Capsaicinoids affect intestinal mRNA expression of genes related to oxidative stress in broilers. Braz. J. Anim. Sci. 2022, 51, e20220077. [Google Scholar] [CrossRef]
- Hu, W.; Bi, S.; Shao, J.; Qu, Y.; Zhang, L.; Li, J.; Chen, S.; Ma, Y.; Cao, L. Ginsenoside Rg1 and Re alleviates inflammatory responses and oxidative stress of broiler chicks challenged by lipopolysaccharide. Poul Sci. 2023, 102, 102536. [Google Scholar] [CrossRef] [PubMed]
- Vasquez-Gomez, M.; Heras-Molina, A.; Garcia-Contreras, C.; Pesantez-Pacheco, J.L.; Torres-Rovira, L.; Martinez-Fernandez, B.; Gonzalez, J.; Encinas, T.; Astiz, S.; Ovilo, C.; et al. Polyphenols and IUGR pregnancies: Effects of maternal hydroxytyrosol supplementation on postnatal growth, metabolism and body composition of the offspring. Antioxidants 2019, 8, 535. [Google Scholar] [CrossRef] [PubMed]
- Stefanon, B.; Colitti, M. Hydroxytyrosol, an ingredient of olive oil, reduces triglyceride accumulation and promotes lipolysis in human primary visceral adipocytes during differentiation. Exp. Biol. Med. 2016, 241, 1796–1802. [Google Scholar] [CrossRef]
- Britton, J.; Davis, R.; O’Connor, K.E. Chemical, physical and biotechnological approaches to the production of the potent antioxidant hydroxytyrosol. Appl. Microbiol. Biotechnol. 2019, 103, 5957–5974. [Google Scholar] [CrossRef]
- Branciari, R.; Galarini, R.; Giusepponi, D.; Trabalza-Marinucci, M.; Forte, C.; Roila, R.; Miraglia, D.; Servili, M.; Acuti, G.; Valiani, A. Oxidative status and presence of bioactive compounds in meat from chickens fed polyphenols extracted from olive oil industry waste. Sustainability 2017, 9, 1566. [Google Scholar] [CrossRef]
- Sabino, M.; Capelli, K.; Capomaccio, S.; Pascucci, L.; Biasato, I.; Verini-Supplizi, A.; Valiani, A.; Trabalza-Marinucci, M. Dietary supplementation with olive mill wastewaters induces modifications on chicken jejunum epithelial cell transcriptome and modulates jejunum morphology. BMC Genom. 2018, 19, 576. [Google Scholar] [CrossRef]
- Papadomichelakis, G.; Pappas, A.C.; Tsiplakou, E.; Symeon, G.K.; Sotirakoglou, K.; Mpekelis, V.; Fegeros, K.; Zervas, G. Effects of dietary dried olive pulp inclusion on growth performance and meat quality of broiler chickens. Livest. Sci. 2019, 221, 115–122. [Google Scholar] [CrossRef]
- Shan, C.; Miao, F. Immunomodulatory and antioxidant effects of hydroxytyrosol in cyclophosphamide-induced immunosuppressed broilers. Poult. Sci. 2022, 101, 101516. [Google Scholar] [CrossRef]
- Bonetti, A.; Venturini, S.; Ena, A.; Faraloni, C. Innovative method for recovery and valorization of hydroxytyrosol from olive mill wastewaters. Water Sci. Technol. 2016, 74, 73–86. [Google Scholar] [CrossRef]
- Bertelli, M.; Kiani, A.K.; Paolacci, S.; Manara, E.; Kurti, D.; Dhuli, K.; Bushati, V.; Miertus, J.; Pangallo, D.; Baglivo, M.; et al. Hydroxytyrosol: A natural compound with promising pharmacological activities. J. Biotechnol. 2020, 309, 29–33. [Google Scholar] [CrossRef]
- Rostagno, H.S.; Albino, L.F.T.; Hannas, M.I.; Donzele, J.L.; Sakomura, N.K.; Perazzo, F.G.; Saraiva, A.; de Abreu, M.L.T.; Ro-drigues, P.B.; de Oliveira, R.F.; et al. Brazilian Tables for Poultry and Swine: Composition of Feedstuffs and Nutritional Requirements, 4th ed.; Federal University of Viçosa: Viçosa, Brazil, 2017; 482p. [Google Scholar]
- Sindirações. Guia de métodos analíticos. In Compêndio Brasileiro de Alimentação Animal, 5th ed.; Sindirações: São Paulo, Brazil, 2017. [Google Scholar]
- Pikul, J.; Leszczynski, D.E.; Kummerow, F.A. Evaluation of three modified TBA methods for measuring lipid oxidation in chicken meat. J. Agric. Food Chem. 1989, 31, 1338–1342. [Google Scholar] [CrossRef]
- Gerasopoulos, K.; Stagos, D.; Kokkas, S.; Petrotos, K.; Kantas, D.; Goulas, P.; Kouretas, D. Feed supplemented with byproducts from olive oil mill wastewater processing increases antioxidant capacity in broiler chickens. Food Chem. Toxicol. 2015, 82, 42–49. [Google Scholar] [CrossRef]
- Tufarelli, V.; Laudadio, V.; Casalino, E. An extra-virgin olive oil rich in polyphenolic compounds has antioxidant effects in meat-type broiler chickens. Environ. Sci. Pollut. Res. 2016, 23, 6197–6204. [Google Scholar] [CrossRef]
- Pappas, A.C.; Tsiplakou, E.; Papadomichelakis, G.; Mitsipoulou, C.; Sotirakoglou, K.; Mpekelis, V.; Haroutounian, S.A.; Fegeros, K.; Zervas, G. Effects of olive pulp addition to broiler diets on performance, selected biochemical parameters and antioxidant enzymes. J. Hell. Vet. 2019, 70, 1687–1696. [Google Scholar] [CrossRef]
- Dias, K.M.M.; Oliveira, C.H.; Calderano, A.A.; Rostagno, H.S.; Gomes, K.M.; O’Connor, K.; Davis, R.; Walsh, M.; Altieri, E.A.; Albino, L.F.T. Hydroxytyrosol supplementation on performance, intestinal morphometry, and antioxidant and inflammatory responses of LPS-challenged broilers. 2023. to be submitted. [Google Scholar]
- Pitargue, F.M.; Kim, J.H.; Goo, D.; Delos Reyes, J.B.; Kil, D.Y. Effect of vitamin E sources and inclusion levels in diets on growth performance, meat quality, alpha-tocopherol retention, and intestinal inflammatory cytokine expression in broiler chickens. Poult. Sci. 2019, 98, 4584–4594. [Google Scholar] [CrossRef] [PubMed]
- Bami, M.K.; Afsharmanesh, M.; Salarmoini, M.; Ebrahimnejad, H. Effects of selenium-chitosan on growth performance, carcass traits, meat quality, and blood indices of broiler chickens. Livest. Sci. 2022, 250, 104562. [Google Scholar]
- Yadav, S.; Jangra, R.; Sharma, B.R.; Sharma, M. Current advancement in biosensing techniques for determination of alanine aminotransferase and aspartate aminotransferase-a mini review. Process Biochem. 2022, 114, 71–76. [Google Scholar] [CrossRef]
- Dalia, A.M.; Loh, T.C.; Sazili, A.Q.; Jahromi, M.F.; Samsudin, A.A. The effect of dietary bacterial organic selenium on growth performance, antioxidant capacity, and Selenoproteins gene expression in broiler chickens. BMC Vet. Res. 2017, 13, 254. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Wen, Y.; Peng, F.F.; Wang, N.; Zhan, X.; Wu, X. Association between aminotransferase/alanine aminotransferase ratio and cardiovascular disease mortality in patients on peritoneal dialysis: A multi-center retrospective study. BMC Nephrol. 2020, 21, 209. [Google Scholar] [CrossRef] [PubMed]
- Jia, J.; Yang, Y.; Liu, F.; Zhang, M.; Xu, Q.; Guo, T.; Wang, L.; Peng, Z.; He, Y.; Wang, Y.; et al. The association between serum alanine aminotransferase and hypertension: A national based cross-sectional analysis among over 21 million Chinese adults. BMC Cardiovasc. Disord. 2021, 21, 145. [Google Scholar] [CrossRef] [PubMed]
- Barnes, I.H.A.; Bagnall, M.C.; Browning, D.D.; Thompson, S.A.; Manning, G.; Newell, D.G. γ-Glutamyl transpeptidase has a role in the persistent colonization of the avian gut by Campylobacter jejuni. Microb. Pathog. 2007, 43, 198–207. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Li, W.; Wang, X.; Han, M.; Muhammad, I.; Zhang, X.; Sun, X.; Cui, X. Water-soluble substances of wheat: A potential preventer of aflatoxin B1-induced liver damage in broilers. Poult. Sci. 2019, 98, 136–149. [Google Scholar] [CrossRef]
- Ibrahim, D.; Moustafa, A.; Shahin, S.E.; Sherief, W.R.I.A.; Abdallah, K.; Farag, M.F.M.; Nassan, M.A.; Ibrahim, S.M. Impact of fermented or enzymatically fermented dried olive pomace on growth, expression of digestive enzyme and glucose transporter genes, oxidative stability of frozen meat, and economic efficiency of broiler chickens. Front. Vet. Sci. 2021, 8, 644325. [Google Scholar] [CrossRef]
- Ruiz, A.R.G.; Crespo, J.; Martínez, R.M.L.; Iruzubieta, P.; Mercadal, G.C.; Garcés, M.L.; Lavin, B.; Ruiz, M.M. Measurement and clinical usefulness of bilirubin in liver disease. Adv. Lab. Med. 2021, 2, 352–361. [Google Scholar]
- Lee, T.-Y.; Lee, Y.-S.; Yeh, R.-H.; Chen, K.-H.; Chen, K.-L. Bacillus amyloliquefaciens CU33 fermented feather meal-soybean meal product improves the intestinal morphology to promote the growth performance of broilers. Poult. Sci. 2022, 101, 102027. [Google Scholar] [CrossRef]
- Mohebodini, H.; Jazi, V.; Ashayerizadeh, A.; Toghyani, M.; Tellez-Isaias, G. Productive parameters, cecal microflora, nutrient digestibility, antioxidant status, and thigh muscle fatty acid profile in broiler chickens fed with Eucalyptus globulus essential oil. Poult. Sci. 2021, 100, 100922. [Google Scholar] [CrossRef]
- Amorim, A.; Rodrigues, S.; Pereira, E.; Teixeira, A. Physicochemical composition and sensory quality evaluation of capon and rooster meat. Poult. Sci. 2016, 95, 1211–1219. [Google Scholar] [CrossRef]
- Ahmed, S.T.; Islam, M.M.; Bostami, A.B.M.R.; Mun, H.-S.; Kim, Y.-J.; Yang, C.-J. Meat composition, fatty acid profile and oxidative stability of meat from broilers supplemented with pomegranate (Punica granatum L.) by-products. Food Chem. 2015, 188, 481–488. [Google Scholar] [CrossRef]
- Zong, G.; Li, Y.; Wanders, A.J.; Alssema, M.; Zock, P.L.; Willett, W.C.; Hu, F.B.; Sun, Q. Intake of individual saturated fatty acids and risk of coronary heart disease in US men and women: Two prospective longitudinal cohort studies. BMJ. 2016, 355, i5796. [Google Scholar] [CrossRef]
- Hashemipour, H.; Kermanshani, H.; Golian, A.; Veldkamp, T. Effect of thymol and carvacrol feed supplementation on performance, antioxidant enzyme activities, fatty acid composition, digestive enzyme activities, and immune response in broiler chickens. Poult. Sci. 2013, 92, 2059–2069. [Google Scholar] [CrossRef]
- Galli, G.M.; Gerbet, R.R.; Griss, L.G.; Fortuoso, B.F.; Petrolli, T.G.; Boiago, M.M.; Souza, C.F.; Baldissera, M.D.; Mesadri, J.; Wagner, R.; et al. Combination of herbal components (curcumin, carvacrol, thymol, cinnamaldehyde) in broiler chicken feed: Impacts on response parameters, performance, fatty acid profiles, meat quality and control of coccidia and bacteria. Microb. Pathog. 2020, 139, 103916. [Google Scholar] [CrossRef]
- Westerling, D.B.; Hendrick, H.B. Fatty acid composition of bovine lipids as influenced by diet, sex and anatomical location and relationship to sensory characteristics. Anim. Sci. J. 1979, 48, 1343–1348. [Google Scholar] [CrossRef]
- Joubert, S. The Effect of Genotype and Rearing System on Chicken Meat Quality. Master Thesis, Faculty of AgriSciences, Stellenbosch University, Stellenbosch, South Africa.
- El-Abassi, A.; Kiai, H.; Hafidi, A. Phenolic profile and antioxidant activities of olive mill wastewater. Food Chem. 2012, 132, 406–412. [Google Scholar] [CrossRef]
- Frankel, E.; Bakhouche, A.; Lozano-Sánchez, J.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Literature review on production process to obtain extra virgin olive oil enriched in bioactive compounds. Potential use of byproducts as alternative sources of polyphenols. J. Agric. Food Chem. 2013, 61, 5179–5188. [Google Scholar] [CrossRef] [PubMed]
- Aengwanich, W.; Wandee, J. The effect of increased ambient temperature on Hsp70, superoxide dismutase, nitric oxide, malondialdehyde, and caspase activity in relation to the intrinsic and extrinsic apoptosis pathway of broiler blood cells. J. Therm. Biol. 2022, 105, 103211. [Google Scholar] [CrossRef]
Ingredient, % | Basal Diet (1 to 21 Days) | Basal Diet (21 to 42 Days) |
---|---|---|
Corn, 7.88% | 52.06 | 57.48 |
Soybean meal, 45.0% | 41.18 | 35.05 |
Soybean oil | 3.05 | 4.23 |
Dicalcium phosphate | 1.24 | 0.93 |
Limestone | 1.01 | 0.79 |
Salt | 0.52 | 0.49 |
DL-Methionine, 99% | 0.317 | 0.272 |
L-Lysine HCl, 78% | 0.140 | 0.283 |
L-Threonine, 98.5% | 0.047 | 0.037 |
Choline chloride, 60% | 0.100 | 0.100 |
Phytase (100 g/ton), 500 FTU/kg | 0.010 | 0.010 |
BHT 3 | 0.010 | 0.010 |
Mineral Premix 1 | 0.130 | 0.130 |
Vitamin Premix 2 | 0.130 | 0.130 |
Calculated nutritional composition 4 | ||
Crude Protein, % | 23.24 | 20.89 |
Metabolizable Energy, kcal/kg | 3000 | 3150 |
Calcium, % | 0.937 | 0.758 |
Available Phosphorus, % | 0.440 | 0.374 |
Sodium, % | 0.218 | 0.208 |
SID Lysine, % | 1.256 | 1.124 |
SID Methionine, % | 0.624 | 0.554 |
SID Methionine + Cysteine, % | 0.929 | 0.832 |
SID Threonine, % | 0.829 | 0.742 |
SID Tryptophan, % | 0.267 | 0.235 |
0 mg HT/kg | 5 mg HT/kg | 10 mg HT/kg | 50 mg HT/kg | p-Value | SEM | |
---|---|---|---|---|---|---|
Starter phase—1 to 21 days | ||||||
FI, kg/bird | 1.449 ab | 1.471 a | 1.437 b | 1.463 ab | 0.032 | 0.004 |
BWG, kg/bird | 1.145 | 1.155 | 1.143 | 1.154 | 0.384 | 0.003 |
BW, kg/bird | 1.192 | 1.201 | 1.191 | 1.201 | 0.465 | 0.003 |
FCR, kg/kg | 1.265 | 1.274 | 1.257 | 1.267 | 0.410 | 0.003 |
Grower/Finisher phase—21 to 42 days | ||||||
FI, kg/bird | 3.909 | 3.956 | 3.947 | 3.932 | 0.733 | 0.016 |
BWG, kg/bird | 2.408 | 2.450 | 2.449 | 2.438 | 0.200 | 0.008 |
BW, kg/bird | 3.601 | 3.651 | 3.639 | 3.631 | 0.263 | 0.010 |
FCR, kg/kg | 1.624 | 1.615 | 1.612 | 1.613 | 0.902 | 0.006 |
Overall period—1 to 42 days | ||||||
FI, kg/bird | 5.357 | 5.427 | 5.384 | 5.395 | 0.555 | 0.017 |
BWG, kg/bird | 3.553 | 3.604 | 3.592 | 3.593 | 0.222 | 0.009 |
BW, kg/bird | 3.601 | 3.651 | 3.646 | 3.639 | 0.179 | 0.009 |
FCR, kg/kg | 1.508 | 1.506 | 1.493 | 1.502 | 0.563 | 0.004 |
0 mg HT/kg | 5 mg HT/kg | 10 mg HT/kg | 50 mg HT/kg | p-Value | SEM | |
---|---|---|---|---|---|---|
ALP, U/L | 1148.1 | 955.26 | 903.75 | 808.63 | 0.097 | 77.68 |
TBIL, mg/dL | 0.057 a | 0.046 b | 0.035 b | 0.037 b | 0.0002 | 0.005 |
AST, U/L | 713.5 a | 618.9 ab | 639.3 a | 451.6 b | 0.003 | 28.32 |
ALT, U/L | 55.90 a | 47.92 a | 45.75 a | 34.33 b | <0.0001 | 1.867 |
GGT, U/L | 21.30 a | 20.58 a | 19.00 a | 12.67 b | <0.0001 | 0.833 |
Cholesterol, mg/dL | 125.11 | 130.83 | 132.25 | 126.00 | 0.496 | 1.947 |
HDL, mg/dL | 87.20 | 93.54 | 91.83 | 90.82 | 0.369 | 1.294 |
LDL, mg/dL | 29.92 | 26.60 | 28.22 | 26.20 | 0.673 | 1.162 |
VLDL, mg/dL | 11.77 | 12.63 | 12.20 | 11.38 | 0.189 | 0.214 |
Triglyceride, mg/dL | 58.78 | 63.18 | 61.00 | 56.92 | 0.185 | 1.070 |
0 mg HT/kg | 5 mg HT/kg | 10 mg HT/kg | 50 mg HT/kg | p-Value | SEM | |
---|---|---|---|---|---|---|
Lipid content | 1.929 a | 1.565 ab | 1.303 ab | 0.933 b | 0.022 | 0.121 |
Palmitic acid (C16:0) | 0.576 a | 0.458 ab | 0.366 ab | 0.294 b | 0.015 | 0.032 |
Stearic acid (C18:0) | 0.180 a | 0.167 ab | 0.128 ab | 0.116 b | 0.025 | 0.008 |
Oleic acid (C18:1n9c) | 0.820 a | 0.580 ab | 0.488 ab | 0.336 b | 0.004 | 0.049 |
Linoleic acid (C18:2n6c) | 0.372 a | 0.108 b | 0.162 b | 0.090 b | <0.0001 | 0.032 |
Saturated fatty acid (SFA) 1 | 0.796 a | 0.637 ab | 0.500 ab | 0.438 b | 0.024 | 0.044 |
Monounsaturated fatty acid (MUFA) | 0.893 a | 0.618 ab | 0.519 b | 0.352 b | 0.003 | 0.054 |
Polyunsaturated fatty acid (PUFA) | 0.411 a | 0.113 b | 0.168 b | 0.090 b | <0.0001 | 0.035 |
Cis-monounsaturated fatty acid (cis-MUFA) | 0.915 a | 0.718 ab | 0.626 b | 0.495 b | 0.003 | 0.046 |
Omega 6 fatty acids (ω-6) | 0.369 a | 0.108 b | 0.162 b | 0.092 b | <0.0001 | 0.031 |
Omega 9 fatty acids (ω-9) | 0.827 a | 0.582 ab | 0.488 ab | 0.336 b | 0.004 | 0.049 |
Total fatty acids 3 | 2.030 a | 1.481 ab | 1.230 ab | 0.880 b | 0.009 | 0.114 |
Unsaturated fatty acid 2 | 1.192 a | 0.829 ab | 0.705 ab | 0.390 b | 0.004 | 0.079 |
Peroxide index | 3.846 | 4.580 | 2.923 | 5.374 | 0.323 | 0.468 |
Malondialdehyde | 5.288 a | 4.317 ab | 5.412 a | 3.630 b | 0.018 | 0.236 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dias, K.M.M.; Oliveira, C.H.; Calderano, A.A.; Rostagno, H.S.; O’Connor, K.E.; Davis, R.; Walsh, M.; Britton, J.; Altieri, E.A.; Albino, L.F.T. Effects of Hydroxytyrosol Supplementation on Performance, Fat and Blood Parameters of Broiler Chickens. Animals 2024, 14, 119. https://doi.org/10.3390/ani14010119
Dias KMM, Oliveira CH, Calderano AA, Rostagno HS, O’Connor KE, Davis R, Walsh M, Britton J, Altieri EA, Albino LFT. Effects of Hydroxytyrosol Supplementation on Performance, Fat and Blood Parameters of Broiler Chickens. Animals. 2024; 14(1):119. https://doi.org/10.3390/ani14010119
Chicago/Turabian StyleDias, Kelly M. M., Carlos H. Oliveira, Arele A. Calderano, Horacio S. Rostagno, Kevin E. O’Connor, Reeta Davis, Meg Walsh, James Britton, Enrico A. Altieri, and Luiz F. T. Albino. 2024. "Effects of Hydroxytyrosol Supplementation on Performance, Fat and Blood Parameters of Broiler Chickens" Animals 14, no. 1: 119. https://doi.org/10.3390/ani14010119
APA StyleDias, K. M. M., Oliveira, C. H., Calderano, A. A., Rostagno, H. S., O’Connor, K. E., Davis, R., Walsh, M., Britton, J., Altieri, E. A., & Albino, L. F. T. (2024). Effects of Hydroxytyrosol Supplementation on Performance, Fat and Blood Parameters of Broiler Chickens. Animals, 14(1), 119. https://doi.org/10.3390/ani14010119