Feeding Value of Lupins, Field Peas, Faba Beans and Chickpeas for Poultry: An Overview
Abstract
:Simple Summary
Abstract
1. Introduction
2. Nutritional Value
2.1. Lupins (Lupinus spp.)
2.1.1. Lupinus angustifolius
Nutrient | Average | Range * | References |
---|---|---|---|
Dry matter | 916 | 889–957 | [3,13,20,22,23,24,25,26,27,28,29,30,31,32] |
Crude protein | 328 | 223–409 | [3,13,20,22,23,24,25,26,27,28,30,31,32,33,34,35,36] |
Crude fat | 68 | 43–81 | [3,13,20,22,23,25,26,27,28,30,32,33,34,35,36] |
Crude fibre | 179 | 140–213 | [3,13,24,27,28,30,33,36] |
Acid detergent fibre | 224 | 198–258 | [3,22,24,25,26,27,36] |
Neutral detergent fibre | 272 | 240–307 | [22,24,25,26,27,36] |
Soluble fibre | 34 | 34 | [34] |
Insoluble fibre | 488 | 488 | [34] |
Ash | 34 | 21–45 | [3,22,23,24,25,26,27,28,30,33,34,36] |
Starch | 6.6 | [27] | |
Calcium | 2.2 | 1.9–2.4 | [3,13,27] |
Phosphorus | 4.0 | 3.3–5.0 | [3,13,23,27] |
Apparent Metabolisable Energy
Amino Acid Digestibility
Feeding Trials
Amino Acids | References | ||||||
---|---|---|---|---|---|---|---|
[26] 1 | [27] 2 | [32] 3 | [43] 4 | [44] 5 | [49] | [50] | |
Essential | |||||||
Arginine | 0.90 | na | 0.94 | 0.84 | 0.93 | 0.89 | 0.93 |
Histidine | 0.84 | 0.84 | 0.79 | 0.76 | 0.86 | 0.84 | 0.78 |
Isoleucine | 0.82 | 0.84 | 0.85 | 0.83 | 0.87 | 0.81 | 0.82 |
Leucine | 0.84 | 0.81 | 0.87 | 0.84 | 0.88 | 0.83 | 0.85 |
Lysine | 0.78 | 0.85 | 0.87 | 0.82 | 0.89 | 0.83 | 0.84 |
Methionine | 0.83 | 0.85 | 0.79 | na | 0.79 | 0.82 | 0.76 |
Phenylalanine | 0.83 | 0.82 | 0.89 | 0.83 | 0.85 | 0.83 | 0.87 |
Threonine | 0.76 | 0.78 | 0.82 | 0.76 | 0.80 | 0.77 | 0.79 |
Tryptophan | 0.79 | 0.76 | na | na | na | na | na |
Valine | 0.80 | 0.77 | 0.83 | 0.80 | 0.89 | 0.80 | 0.80 |
Non-essential | |||||||
Alanine | 0.80 | na | 0.83 | 0.81 | 0.87 | 0.80 | 0.82 |
Aspartic acid | 0.82 | na | 0.84 | 0.78 | 0.87 | 0.82 | 0.81 |
Cysteine | 0.69 | na | 0.83 | na | 0.77 | 0.78 | 0.82 |
Glycine | 0.82 | 0.80 | 0.82 | 0.75 | 0.83 | 0.82 | 0.81 |
Glutamic acid | 0.89 | na | 0.91 | 0.87 | 0.92 | 0.86 | 0.90 |
Proline | na | na | 0.82 | 0.80 | 0.82 | na | 0.80 |
Serine | 0.81 | na | 0.82 | 0.77 | 0.82 | 0.80 | 0.79 |
Tyrosine | 0.85 | 0.79 | 0.84 | 0.78 | 0.76 | 0.83 | 0.84 |
2.1.2. Lupinus albus
Apparent Metabolisable Energy
Amino Acid Digestibility
Feeding Trials
2.2. Field Peas
Nutrient | Mean | Range * | References |
---|---|---|---|
Dry matter | 888 | 869–913 | [3,22,24,25,31,50,58,84,85,86,87,88,89,90] |
Crude protein | 236 | 114–301 | [3,22,24,25,31,33,50,58,84,85,86,87,88,89,90,91,92,93,94,95,96] |
Crude fat | 18 | 6.5–27 | [3,22,25,33,50,58,85,86,87,88,89,90,93,94,96] |
Crude fibre | 101 | 49–286 | [3,24,33,58,85,88,95,96] |
Acid detergent fibre | 85 | 100–230 | [3,22,24,25,58,86,87,93] |
Neutral detergent fibre | 153 | 84–230 | [3,22,24,25,50,58,86,87,93] |
Starch | 413 | 119–488 | [58,87,89,90,92,93,94,95] |
Ash | 31 | 25–37 | [3,22,24,25,33,50,58,85,87,89,90,93,94,96] |
Calcium | 0.9 | 0.5–1.2 | [3,86,87,88,93] |
Phosphorus | 4.7 | 4.4–4.9 | [3,86,87,88,93] |
2.2.1. Apparent Metabolisable Energy
2.2.2. Amino Acid Digestibility
Amino Acid | References | ||||||||
---|---|---|---|---|---|---|---|---|---|
[22] | [24] 1 | [25] | [49] | [50] | [58] | [90] 2 | [96] 3 | [99] | |
Essential | |||||||||
Arginine | 22.0 | 10.9 | 24.3 | 25.2 | 22.0 | 16.1 | 21.1 | 12.4 | 21.1 |
Histidine | 6.2 | 2.8 | 5.8 | 6.6 | 6.5 | 4.3 | 6.3 | 5.1 | 6.3 |
Isoleucine | 10.2 | 5.1 | 9.4 | 10.2 | 9.7 | 9.9 | 9.4 | 7.3 | 10.9 |
Leucine | 16.8 | 8.2 | 16.6 | 17.5 | 17.5 | 16.0 | 16.7 | 12.7 | 18.3 |
Lysine | 17.0 | 8.3 | 14.2 | 17.1 | 17.3 | 14.8 | 17.3 | 14.0 | 18.8 |
Methionine | 2.3 | 1.0 | 1.9 | 2.2 | 2.6 | 2.0 | 2.5 | 2.2 | 2.7 |
Phenylalanine | 11.0 | 5.2 | 11.1 | 11.5 | 10.9 | 10.8 | 11.1 | 8.9 | 11.9 |
Threonine | 9.0 | 4.1 | 8.5 | 9.6 | 9.0 | 9.2 | 8.6 | 7.5 | 10.2 |
Tryptophan | na | 0.9 | na | na | na | 2.0 | na | 1.4 | 2.3 |
Valine | 12.3 | 5.5 | 10.8 | 12.0 | 10.5 | 10.3 | 10.3 | 8.3 | 13.0 |
Non-essential | |||||||||
Alanine | 10.4 | 5.0 | 10.1 | 11.3 | 10.0 | 10.1 | 9.8 | 8.1 | 11.4 |
Aspartic acid | 26.7 | 12.5 | 25.4 | 28.6 | 28.6 | 30.1 | 26.6 | 20.9 | 28.9 |
Cysteine | 1.8 | 1.4 | 3.2 | 3.5 | 3.1 | 3.4 | 3.3 | 3.5 | 3.5 |
Glycine | 10.3 | 4.7 | 10.1 | 10.9 | 10.4 | 9.7 | 9.9 | 7.7 | 11.1 |
Glutamic acid | 39.7 | 22.3 | 38.4 | 41.3 | 39.6 | 39.3 | 37.3 | 29.3 | 45.1 |
Proline | 8.4 | 4.6 | 9.7 | na | 9.6 | 9.7 | 9.3 | 7.8 | 10.4 |
Serine | 11.8 | 5.2 | 11.1 | 12.9 | 10.3 | 12.8 | 10.0 | 8.2 | 12.1 |
Tyrosine | 7.3 | 3.0 | 6.7 | 7.6 | 8.3 | 7.0 | 7.8 | 5.7 | 7.1 |
2.2.3. Feeding Trials
Cultivar | Bird Class | AME | AMEn | References |
---|---|---|---|---|
Finale | Broilers | - | 11.56 | [104] |
Finale | Adult roosters | - | 11.77 | [104] |
Frisson | Broilers | - | 10.86 | [104] |
Frisson | Adult roosters | - | 11.28 | [104] |
Impala | Broilers | - | 10.13 # | [105] |
Radley | Broilers | - | 10.29 # | [105] |
Sirius | Broilers | - | 8.28 # | [105] |
- | Poultry | 11.50 # | - | [3] |
Glenroy | Pullets | 11.70 * | - | [25] |
- | Broilers | - | 10.2–11.3 * | [106] |
- | Broilers | 11.7 | - | [89] |
Santana | Broilers | 10.78 | 10.16–12.30 | [31,90] |
Miami | Broilers | 10.15 | 9.81 | [90] |
Courier | Broilers | 10.39 | 9.71 | [90] |
Rex | Broilers | 9.82 | 9.11 | [90] |
Sohvi | Broilers | 12.2 | - | [44] |
Karita | Broilers | 13.8 | - | [44] |
Tarachalska | Broilers | - | 9.05 * | [107] |
Amino Acid | References | |||
---|---|---|---|---|
[49] 1 | [96] 2,3 | [97] 2,4 | [98] 2,5 | |
Essential | ||||
Arginine | 0.83 | 0.89 | 0.89 | 0.92 |
Histidine | 0.75 | 0.90 | 0.85 | 0.87 |
Isoleucine | 0.71 | 0.82 | 0.80 | 0.74 |
Leucine | 0.71 | 0.83 | 0.82 | 0.85 |
Lysine | 0.83 | 0.91 | 0.87 | 0.90 |
Methionine | 0.70 | 0.90 | 0.83 | 0.83 |
Phenylalanine | 0.72 | 0.82 | 0.85 | 0.86 |
Threonine | 0.69 | 0.87 | 0.81 | 0.85 |
Tryptophan | na | 0.78 | na | 0.86 |
Valine | 0.71 | 0.81 | 0.82 | 0.84 |
Non-essential | ||||
Alanine | 0.73 | 0.82 | 0.84 | 0.86 |
Aspartic acid | 0.78 | 0.77 | 0.85 | 0.87 |
Cystine | 0.66 | 0.70 | 0.76 | 0.81 |
Glutamic acid | 0.80 | 0.89 | 0.88 | 0.91 |
Glycine | 0.71 | 0.80 | 0.83 | 0.85 |
Proline | na | 0.86 | 0.83 | 0.85 |
Serine | 0.71 | 0.79 | 0.82 | 0.87 |
Tyrosine | 0.72 | 0.82 | 0.86 | 0.87 |
2.3. Faba Bean
2.3.1. Apparent Metabolisable Energy
2.3.2. Amino Acid Digestibility
2.3.3. Feeding Trials
2.4. Chickpeas
2.4.1. Apparent Metabolisable Energy
Amino Acid | References | |||||||
---|---|---|---|---|---|---|---|---|
[25] 1 | [49] | [128] 2 | [136,137] 3 | [138] 4 | [139] | [145] 5 | [151] | |
Essential | ||||||||
Arginine | 17.6 | 25.6 | 22.8 | 20.1 | 19.2 | na | 19.9 | 14.4 |
Histidine | 5.1 | 6.9 | 7.9 | na | 6.5 | 6.2 | 5.4 | 4.4 |
Isoleucine | 8.5 | 11.4 | 10.3 | 9.1 | 9.7 | 10.4 | 6.7 | 6.6 |
Leucine | 14.9 | 18.3 | 18.5 | 19.3 | 17.6 | 17.4 | 16.3 | 12.0 |
Lysine | 11.8 | 15.2 | 14.7 | 18.8 | 16.4 | 14.5 | 15.1 | 9.4 |
Methionine | 2.6 | 3.0 | 3.2 | na | 1.7 | 1.9 | 3.1 | Na |
Phenylalanine | 11.4 | 13.8 | 15.0 | 12.5 | 11.0 | 13.1 | 11.5 | 10.3 |
Threonine | 7.3 | 8.8 | 10.0 | 10.2 | 8.0 | 8.8 | 8.2 | 8.3 |
Tryptophan | na | na | Na | na | 3.0 | 1.6 | na | na |
Valine | 8.9 | 11.5 | 10.5 | 9.6 | 10.7 | 10.2 | 7.4 | 8.8 |
Non-essential | ||||||||
Alanine | 8.2 | 10.2 | 10.2 | 14.1 | na | na | na | 6.8 |
Aspartic acid | 22.0 | 26.8 | 26.3 | 29.0 | na | na | na | 15.7 |
Cysteine | 3.3 | 3.5 | Na | na | 4.1 | 2.1 | 3.7 | Na |
Glycine | 7.9 | 9.3 | 9.6 | 9.2 | na | na | na | 7.9 |
Glutamic acid | 31.3 | 38.9 | 49.1 | 49.7 | na | na | na | 24.9 |
Proline | 8.1 | na | Na | na | 6.4 | na | na | 12.3 |
Serine | 10.2 | 13.2 | 13.0 | 12.5 | na | na | na | 9.4 |
Tyrosine | 5.8 | 6.6 | 7.6 | 6.3 | 6.9 | 6.2 | 4.4 | 7.9 |
2.4.2. Amino Acid Digestibility
2.4.3. Feeding Trials
3. Antinutritional Factors in Grain Legumes
3.1. Proteinaceous ANFs of Grain Legumes
3.1.1. Protease Inhibitors
3.1.2. Lectins
Legume | References | TIA (TIU/mg) | CIA (IU/mg) | α-AI (IU/g) | Lectin (HU/mg) |
---|---|---|---|---|---|
Chickpea | [163,180,181] | 6.2–39 | 6.1–12 | 3.1–11 | 2.7–6.2 |
Field pea | [89,90,100,163,181,182] | 0.2–10.8 | 0.7–10.2 | 2.8–80 | 5.1–15.1 |
Pigeon pea | [163,168] | 4.8–31.3 | 2.1–3.6 | 23–34 | 25 |
Cowpea | [163,168] | 3.4–67 | 1.6 | 1.4–90 | 40–640 |
Faba bean | [116,181,183] | 0.4–7.2 | 1.1–3.6 | 19 | 5.5–49 |
Kidney bean | [181,183] | 3.1–31 | 4.0–21 | 1370 | 75–89 |
Mung bean | [168,184] | 1.8–16 | - | - | 27 |
Lupinus spp | [32,57,168] | 0.1–4.3 | - | - | - |
Soybean | [168,181] | 46–94 | 30 | 939 | 693 |
Lentil | [163,181] | 3.6–7.6 | 3.5–4.7 | 0 | 11–50 |
3.2. Non-Proteinaceous ANFs of Grain Legumes
3.2.1. Tannins
3.2.2. Phytic Acid
Legume | Tannins (mg/g) | References | Phytate (mg/g) | References |
---|---|---|---|---|
Chickpeas | 0.8–4.9 | [215,216] | 1.21–12.3 | [146,193,216] |
Field peas | 0.04–30.9 | [174,193,217] | 1.3–13.0 | [93,100,193] |
Faba beans | 0.06–33.0 | [119,188,197,215,217] | 8.4–8.6 | [188] |
Lupinus spp | 0.61–9.8 | [217,218,219] | 2.5–16.5 | [218,219] |
Soybean | 0.39–0.45 | [193,217] | 6.2–41.3 | [193] |
3.2.3. Non-Starch Polysaccharides
4. Improving the Feeding Value of Grain Legumes
4.1. Physical Processing of Grain Legumes
4.1.1. Dehulling
4.1.2. Soaking
4.2. Germination
4.3. Fermentation
4.4. Exogenous Enzymes
4.5. Thermal Processing of Grain Legumes
4.6. Plant Breeding
5. Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ravindran, V.; Blair, R. Feed resources for poultry production in Asia and the Pacific. I. Energy sources. World’s Poult. Sci. J. 1991, 47, 213–231. [Google Scholar] [CrossRef]
- Food and Agriculture Organisation of the United Nations. Definition and Classification of Commodities, Pulses and Derived Products. 1994. Available online: https://www.fao.org/es/faodef/fdef04e.htm (accessed on 1 November 2021).
- Sipsas, S.; Mackintosh, J.B.; Pertterson, D.S. The Chemical Composition and Nutritive Value of Australian Pulses, 2nd ed.; Grains Research and Development Corporation: Canberra, Australia, 1997; ISBN 1875477306. [Google Scholar]
- Mitchell, D.C.; Webster, A.; Garrison, B. Terminology matters: Advancing science to define an optimal pulse intake. Nutrients 2022, 14, 655. [Google Scholar] [CrossRef] [PubMed]
- Hamblin, J. Grains Legumes in Australia. In Responding to Change, Proceedings of the Fourth Australian Agronomy Conference, Melbourne, Australia; Reeves, T.G., Ed.; The Regional Institute: Erina, NSW, Australia, 1987. [Google Scholar]
- Hill, G.D.; Savage, G.P. Grain Legumes: National Symposium and Workshop; Agronomy Society of New Zealand: Lincoln, New Zealand, 1991; Special publication, no. 7. [Google Scholar]
- Petterson, D.S.; Mackintosh, J.B. The Chemical Composition and Nutritive Values of Australian Grain Legumes; Grains Research and Development Corporation: Canberra, Australia, 1994; p. 68. ISBN 1875477195. [Google Scholar]
- Rowarth, J.S.; Hampton, J.G.; Hill, M.J. Bibliography of grain legume research in New Zealand 1910–2002. N. Z. J. Crop Hort. Sci. 2003, 31, 365–390. [Google Scholar] [CrossRef]
- Ravindran, V.; Bryden, W.L. Amino acid availability in poultry—In vitro and in vivo measurements. Aust. J. Agric. Res. 1999, 50, 889–908. [Google Scholar] [CrossRef]
- Lemme, A.; Ravindran, V.; Bryden, W.L. Ileal digestibility of amino acids in feed ingredients for broilers. World’s Poult. Sci. J. 2004, 60, 421–435. [Google Scholar] [CrossRef]
- Kettel, K.; Tuck, B.; Payne, W.A.; Chen, C.; Machado, S.; Karow, R. Dryland Cropping Systems: Narrow-Leaf Lupin; Oregon State University Extension Service; EM 8834; Oregon State University: Corvallis, OR, USA, 2003. [Google Scholar]
- Nalle, C.L. Nutritional Evaluation of Grain Legumes for Poultry. Ph.D. Thesis, Massey University, Palmerston North, New Zealand, 2009. [Google Scholar]
- Olver, M.D.; Jonker, A. Effect of sweet, bitter and soaked micronised bitter lupins on duckling performance. Br. Poult. Sci. 1998, 39, 622–626. [Google Scholar] [CrossRef] [PubMed]
- Breytenbach, L. The Influence of Processing of Lupins and Canola on Apparent Metabolizable Energy and Broiler Performance. Master’s Thesis, Stellenbosch University, Stellenbosch, South Africa, 2005. [Google Scholar]
- Guillaume, J.; Chenieux, J.C.; Rideau, M. Feeding value of Lupinus albus L. in chicken diets with emphasis in the role of alkaloids. Nutr. Rep. Int. 1979, 20, 57–65. [Google Scholar]
- Olkowski, A.A.; Olkowski, B.I.; Amarowicz, R.; Classen, H.L. Adverse effects of dietary lupine in broiler chickens. Poult. Sci. 2001, 80, 621–625. [Google Scholar] [CrossRef]
- Culvenor, C.C.J.; Petterson, D.S. Lupin toxins—Alkaloids and phomopsins. In Proceedings of the 4th International Lupin Conference, Department of Agriculture, Geraldton, Australia, 15–22 August 1986; pp. 119–208. [Google Scholar]
- Hill, G.D. The composition and nutritive value of lupin seed. Nutr. Abstr. Rev. B 1977, 47, 511–529. [Google Scholar]
- Marquardt, R.R. Use of legume seeds (peas, faba beans and grass peas) in poultry diets: Influence of antinutritional factors. In Proceedings of the 9th Australian Poultry and Feed Convention, Gold Coast, Australia, 9–11 February 1993. [Google Scholar]
- Sipsas, S.; Glencross, B. Implications of variability amongst Lupin cultivars in processing. In Proceedings of the 3rd Workshop for Seeding a Future for Grains in Aquaculture Feeds; Fisheries Occasional Publications No. 24; Department of Fisheries: Hillarys, Australia, 2005. [Google Scholar]
- Kingwell, R. Extracting value from protein variation in lupins. In Proceedings of the 3rd Workshop for Seeding a Future for Grains in Aquaculture Feeds; Fisheries Occasional Publications No. 24; Department of Fisheries: Hillarys, Australia, 2005. [Google Scholar]
- Eason, P.J.; Johnson, R.J.; Castleman, G.H. The effects of dietary inclusion of narbon beans (Vicia narbonensis) on the growth of broiler chickens. Aust. J. Agric. Res. 1990, 41, 565–571. [Google Scholar] [CrossRef]
- Glencross, B.; Curnow, J.; Hawkins, W. Assessment of the Nutritional Variability of Lupins as an Aquaculture Feed Ingredient; Fisheries Research Contract Report No. 6; Department of Fisheries: Hillarys, Australia, 2003. [Google Scholar]
- Mariscal-Landín, G.; Lebreton, Y.; Sève, B. Apparent and standardised true ileal digestibility of protein and amino acids from faba bean, lupin and pea provided as whole seeds, dehulled or extruded in pig diets. Anim. Feed Sci. Technol. 2002, 97, 183–198. [Google Scholar] [CrossRef]
- Perez-Maldonado, R.A.; Mannion, P.F.; Farrell, D.J. Optimum inclusion of field peas, faba beans, chickpeas and sweet lupins in poultry diets. Chemical composition and layer experiments. Br. Poult. Sci. 1999, 40, 667–673. [Google Scholar] [CrossRef] [PubMed]
- Ravindran, V.; Tabe, L.M.; Molvig, L.; Higgins, T.J.V.; Bryden, W.L. Nutritional evaluation of transgenic high-methionine lupins (Lupinus angustifolius L.) with broiler chickens. J. Sci. Food Agric. 2002, 82, 280–285. [Google Scholar] [CrossRef]
- Kim, J.C.; Pluske, J.R.; Mullan, B.P. Lupins as a protein source in pig diets. CABI Rev. 2007, 2, 1–12. [Google Scholar] [CrossRef]
- Batterham, E.S. Lupinus albus cv. Ultra and Lupinus angustifolius cv. Unicrop as protein concentrates for growing pigs. Aust. J. Agric. Res. 1979, 30, 369–375. [Google Scholar] [CrossRef]
- Monteiro, M.R.P.; Costa, A.B.P.; Campos, S.F.; Silva, M.R.; da Silva, C.O.; Martino, H.S.D.; Silvestre, M.P.C. Evaluation of the chemical composition, protein quality and digestibility of lupin (Lupinus albus and Lupinus angustifolius). Mundo Saúde 2014, 38, 251–259. [Google Scholar] [CrossRef]
- Sujak, A.; Kotlarz, A.; Strobel, W. Compositional and nutritional evaluation of several lupin seeds. Food Chem. 2006, 98, 711–719. [Google Scholar] [CrossRef]
- Nalle, C.L.; Ravindran, G.; Ravindran, V. Influence of dehulling on the apparent metabolisable energy and ileal amino acid digestibility of grain legumes for broiler. J. Sci. Food Agric. 2010, 90, 1227–1231. [Google Scholar] [CrossRef]
- Nalle, C.L.; Ravindran, V.; Ravindran, G. Nutritional value of narrow-leafed lupin (Lupinus angustifolius) for broilers. Br. Poult. Sci. 2011, 52, 775–781. [Google Scholar] [CrossRef]
- Palander, S.; Laurinen, P.; Perttila, S.; Valaja, J.; Partanen, K. Protein and amino acid digestibility and metabolizable energy value of pea (Pisum sativum), faba bean (Vicia faba) and lupin (Lupinus angustifolius) seeds for turkeys of different age. Anim. Feed Sci. Technol. 2006, 127, 89–100. [Google Scholar] [CrossRef]
- Torres, A.; Frias, J.; Vidal-Valverde, C. Changes in chemical composition of lupin seeds (Lupinus angustifolius) after selective α-galactoside extraction. J. Sci. Food Agric. 2005, 85, 2468–2474. [Google Scholar] [CrossRef]
- Trugo, L.C.; Almeida, D.C.F.; Gross, R. Oligosaccharide contents in the seeds of cultivated lupins. J. Sci. Food Agric. 1988, 45, 21–24. [Google Scholar] [CrossRef]
- Batterham, E.S.; Andersen, L.M.; Burnham, B.V.; Taylor, G.A. Effect of heat on the nutritional value of lupin (Lupinus angustifolius) seed meal for growing pigs. Br. J. Nutr. 1986, 55, 169–177. [Google Scholar] [CrossRef] [PubMed]
- Petterson, D.S. Composition and food uses of lupins. In Lupins as Crop Plants: Biology, Production and Utilization; Chapter 12; Gladstones, J.S., Atkins, C.A., Hamblin, J., Eds.; CAB International: Wallingford, UK, 1998; pp. 353–384. [Google Scholar]
- van Barneveld, R.J. Understanding the nutritional chemistry of lupins (Lupinus spp.) seed to improve livestock production efficiency. Nutr. Res. Rev. 1999, 12, 203–230. [Google Scholar] [CrossRef] [PubMed]
- Hughes, R.J.; van Barneveld, R.J.; Kocher, A.; Choct, M. Factors Influencing the Nutritive Value of Lupins for Broiler Chickens; Chicken Meat Research and Development Committee Final Report, Project No. DAS 10CM; Rural Industries Research and Development Corporation: Canberra, Australia, 1998. [Google Scholar]
- Hughes, R.J.; Kocher, A.; Choct, M. Nutritive value of lupins for broilers. In Proceedings of the 10th Annual Australian Poultry Science Symposium, Sydney, Australia, 8–10 February 1998. [Google Scholar]
- Annison, G.; Hughes, R.J.; Choct, M. Effects of enzyme supplementation on the nutritive value of dehulled lupins. Br. Poult. Sci. 1996, 37, 157–172. [Google Scholar] [CrossRef]
- Kocher, A.; Choct, M.; Hughes, R.J.; Bros, J. Effect of food enzymes on utilization of lupin carbohydrates by broilers. Br. Poult. Sci. 2000, 41, 75–82. [Google Scholar] [CrossRef] [PubMed]
- Kaczmarek, S.A.; Kasprowicz-Potocka, M.; Hejdysz, M.; Mikuła, R.; Rutkowski, A. The nutritional value of narrow-leafed lupin (Lupinus angustifolius) for broilers. J. Anim. Feed Sci. 2014, 23, 160–166. [Google Scholar] [CrossRef]
- Koivunena, E.; Partanen, K.; Perttilä, S.; Palander, S.; Tuunainen, P.; Valaja, J. Digestibility and energy value of pea (Pisum sativum L.), faba bean (Vicia faba L.) and blue lupin (narrow-leaf) (Lupinus angustifolius) seeds in broilers. Anim. Feed Sci. Technol. 2016, 218, 120–127. [Google Scholar] [CrossRef]
- Konieczka, P.; Smulikowska, S. Viscosity negatively affects the nutritional value of blue lupin seeds for broilers. Animal 2018, 12, 1144–1153. [Google Scholar] [CrossRef]
- Zuber, T.; Siegert, W.; Salehi, H.; Hummel, F.; Rodehutscord, M. Variability of amino acid digestibility of lupin and pea grains in caecectomised laying hens. Br. Poult. Sci. 2019, 60, 229–240. [Google Scholar] [CrossRef]
- Farrell, D.J.; Perez-Maldonado, R.A.; Mannion, P.F. Optimum inclusion of field peas, faba beans, chick peas and sweet lupins in poultry diets. II. Broiler experiments. Br. Poult. Sci. 1999, 40, 674–680. [Google Scholar] [CrossRef] [PubMed]
- Steenfeldt, S.; Gonzalez, E.; Bach-Knudsen, K.E. Effects of inclusion with blue lupins (Lupinus angustifolius) in broiler diets and enzyme supplementation on production performance, digestibility and dietary AME content. Anim. Feed Sci. Technol. 2003, 110, 185–200. [Google Scholar] [CrossRef]
- Ravindran, V.; Hew, L.I.; Ravindran, G.; Bryden, W.L. Apparent ileal digestibility of amino acids in dietary ingredients for broiler chickens. Br. Soc. Anim. Sci. 2005, 81, 85–97. [Google Scholar] [CrossRef]
- Nalle, C.L.; Ravindran, V. Comparison of methodologies to determine the apparent ileal amino acid digestibility of maize, wheat, lupins, and peas for broiler chickens. J. Appl. Anim. Nutr. 2021, 9, 93–98. [Google Scholar] [CrossRef]
- Perez-Escamilla, R.; Vohra, P. Lupins (Lupinus albus var. Ulta) replace a part of soybean meal in diets for growing chickens. Recent Adv. Anim. Nutr. 1987, 9, 169. [Google Scholar]
- Brand, T.S.; Engelbrecht, J.A.; van der Merwe, J.; Hoffman, L.C. Feed preference of grower ostriches consuming diets differing in Lupinus angustifolius inclusion levels. S. Afr. J. Anim. Sci. 2018, 48, 170–185. [Google Scholar] [CrossRef]
- Huyghe, C. White lupin (Lupinus albus L.). Field Crops Res. 1997, 53, 147–160. [Google Scholar] [CrossRef]
- Erbaş, M.; Certel, M.; Uslu, M.K. Some chemical properties of white lupin seeds (Lupinus albus L.). Food Chem. 2005, 89, 341–345. [Google Scholar] [CrossRef]
- Feedipedia: Animal Feed Resources Information System. White Lupin (Lupinus albus) Seeds. Available online: https://www.feedipedia.org/node/279 (accessed on 16 October 2023).
- Brenes, A.; Marquardt, R.R.; Guenter, W.; Rotter, B.A. Effect of enzyme supplementation on the nutritional value of raw, autoclaved, and dehulled lupins (Lupinus albus) in chicken diets. Poult. Sci. 1993, 72, 2281–2293. [Google Scholar] [CrossRef]
- Nalle, C.L.; Ravindran, V.; Ravindran, G. Nutritional value of white lupins (Lupinus albus) for broilers: Apparent metabolisable energy, apparent ileal amino acid digestibility and production performance. Animal 2012, 6, 579–585. [Google Scholar] [CrossRef]
- Diaz, D.; Morlacchini, M.; Masoero, F.; Moschini, M.; Fusconi, G.; Piva, G. Pea seeds (Pisum sativum), faba beans (Vicia faba var. minor) and lupin seeds (Lupinus albus var. multitalia) as protein sources in broiler diets: Effect of extrusion on growth performance. Ital. J. Anim. Sci. 2006, 5, 45–53. [Google Scholar] [CrossRef]
- Olver, M.D. Effect of sweet lupins on duckling growth. Br. Poult. Sci. 1997, 38, 115–117. [Google Scholar] [CrossRef] [PubMed]
- Aguilera, J.F.; Molina, E.; Prieto, C. Digestibility and energy value of sweet lupin seed (Lupinus albus var. Multolupa) in pigs. Anim. Feed Sci. Technol. 1985, 12, 171–178. [Google Scholar] [CrossRef]
- Robinson, P.H.; McNiven, M.A. Nutritive value of raw and roasted sweet white lupins (Lupinus albus) for lactating dairy cows. Anim. Feed Sci. Technol. 1993, 43, 275–290. [Google Scholar] [CrossRef]
- Petterson, D.S. The use of lupins in feeding systems—Review. Asian-Australas. J. Anim. Sci. 2000, 13, 861–882. [Google Scholar] [CrossRef]
- Sgarbieri, V.C.; Galeazzi, M.A.M. Some physicochemical and nutritional properties of a sweet lupin (Lupinus albus var. multolupa) protein. J. Agric. Food Chem. 1978, 26, 1438–1442. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Villaluenga, C.; Sirtori, E.; Vidal-Valverde, C.; Duranti, M. Effect of oligosaccharides removing procedure on the protein profiles of lupin seeds. Eur. Food Res. Technol. 2006, 223, 691–696. [Google Scholar] [CrossRef]
- Kemm, E.H.; Minnaar, J.P.; Ras, M.N.; Davie, S.J. Lupin seed meal (Lupinus albus cv. Buttercup) as a source of protein for early weaned piglets. S. Afr. J. Anim. Sci. 1987, 17, 37–42. [Google Scholar]
- Gresta, F.; Oteri, M.; Scordia, D.; Costale, A.; Armone, R.; Meineri, G.; Chiofalo, B. White lupin (Lupinus albus L.), an alternative legume for animal feeding in the mediterranean area. Agriculture 2023, 13, 434. [Google Scholar] [CrossRef]
- Gatel, F. Protein quality of legume seeds for non-ruminant animals: A literature review. Anim. Feed Sci. Technol. 1994, 45, 317–348. [Google Scholar] [CrossRef]
- Mohamed, A.A.; Rayas-duarte, P. Composition of Lupinus albus. Cereal Chem. 1995, 72, 643–647. [Google Scholar]
- Green, A.G.; Oram, R.N. Variability for protein and oil quality in Lupinus albus. Anim. Feed Sci. Technol. 1983, 9, 271–282. [Google Scholar] [CrossRef]
- Halvorson, J.C.; Shehata, M.A.; Waibel, P.E. White lupins and triticale as feedstuffs in diets for turkeys. Poult. Sci. 1983, 62, 1038–1044. [Google Scholar] [CrossRef]
- Olver, M.D.; Jonker, A. Effect of sweet, bitter and soaked micronised bitter lupins on broiler performance. Br. Poult. Sci. 1997, 38, 203–208. [Google Scholar] [CrossRef] [PubMed]
- Zrally, Z.; Pisarikova, B.; Trckova, M.; Herzig, I.; Juzl, M.; Simeonovova, J. The effect of white lupine on the performance, health, carcass characteristics and meat quality of market pigs. Vet. Med. 2007, 52, 29–41. [Google Scholar] [CrossRef]
- Bellof, G.; Halle, I.; Rodehutscord, M. Faba Bean, Grain Pea, Sweet Lupin and Soybean in Poultry Feeds; Union for the Promotion of Oil and Protein Plants: Berlin, Germany, 2020; p. 12. Available online: www.ufop.de/medien/downloads/agrarinfo/praxisinformationen/tierernaehrung/ (accessed on 15 January 2024).
- Son, J.; Ravindran, V. Influence of extrusion of white lupins (Lupinus albus L.) on the apparent metabolizable energy and ileal nutrient digestibility for broilers. Int. J. Poult. Sci. 2012, 11, 565–569. [Google Scholar] [CrossRef]
- Nalle, C.L.; Ravindran, V.; Ravindran, G. Evaluation of faba beans, white lupins and peas as protein sources in broiler diets. Int. J. Poult. Sci. 2010, 9, 567–573. [Google Scholar] [CrossRef]
- Hejdysz, M.; Kaczmarek, S.A.; Rogiewicz, A.; Rutkowski, A. Influence of graded levels of meals from three lupin species on growth performance and nutrient digestibility in broiler chickens. Br. Poult. Sci. 2019, 60, 288–296. [Google Scholar] [CrossRef]
- Olver, M.D. Sweet lupins as a feedstuff for broilers. S. Afr. Tydskr. Veek. 1987, 17, 168–170. [Google Scholar]
- Watkins, B.A.; Mirosh, L.W. White lupin as a protein source for layers. Poult. Sci. 1987, 66, 1798–1806. [Google Scholar] [CrossRef]
- Olkowski, B.I.; Classen, H.L.; Wojnarowicz, C.; Olkowski, A.A. Feeding High Levels of Lupine Seeds to Broiler Chickens: Plasma micronutrient status in the context of digesta viscosity and morphometric and ultrastructural changes in the gastrointestinal tract. Poult. Sci. 2005, 84, 1707–1715. [Google Scholar] [CrossRef] [PubMed]
- Pastuszewska, B.; Jach, K.; Perkowski, W. The effect of lupin alkaloids on growth performance of rats and chicken. In Recent Advances of Research in Antinutritional Factors in Legume Seeds; Huisman, H.J., Van der Poel, T.F.B., Liener, I.E., Eds.; Pudoc: Wageningen, The Netherlands, 1989; pp. 202–205. [Google Scholar]
- Kaczmarek, S.A.; Hejdysz, M.; Kubiś, M.; Rutkowski, A. Influence of graded inclusion of white lupin (Lupinus albus) meal on performance, nutrient digestibility and intestinal morphology of broiler chickens. Br. Poult. Sci. 2016, 57, 364–374. [Google Scholar] [CrossRef] [PubMed]
- Kubiś, M.; Kaczmarek, S.; Hejdysz, M.; Mikuła, R.; Wiśniewska, Z.; Pruszyńska-Oszmałek, E.; Kołodziejski, P.; Sassek, M.; Rutkowski, A. Microbial phytase improves performance and bone traits in broilers fed diets based on soybean meal and white lupin (Lupinus albus) meal. Ann. Anim. Sci. 2020, 20, 1379–1394. [Google Scholar] [CrossRef]
- Ravindran, V.; Abdollahi, M.R.; Bootwalla, S.M. Nutrient analysis, metabolizable energy and digestible amino acids of soybean meals of different origin for broilers. Poult. Sci. 2014, 93, 2567–2577. [Google Scholar] [CrossRef] [PubMed]
- Canibe, N.; Eggum, B.O. Digestibility of dried and toasted peas in pigs. 2. Ileal and total tract digestibilities of amino acids, protein and other nutrients. Anim. Feed Sci. Technol. 1997, 64, 311–325. [Google Scholar] [CrossRef]
- Bingol, N.T.; Bolat, D.; Levendoglu, T.; Togay, Y.; Togay, N. Nutritional evaluation of grain and straw fractions of pea genotypes grown under arid conditions. J. Appl. Anim. Res. 2008, 33, 93–97. [Google Scholar] [CrossRef]
- Anderson, V.; Harrold, R.; Landblom, D.; Lardy, G.; Schatz, B.; Schroeder, J.W. A Guide to Feeding Field Peas to Livestock: Nutrient Content and Feeding Recommendations for Beef, Dairy, Sheep, Swine and Poultry; North Dakota State University: Fargo, ND, USA, 2002. [Google Scholar]
- Ravindran, G.; Nalle, C.L.; Molan, A.; Ravindran, V. Nutritional and Biochemical Assessment of field peas (Pisum sativum L.) as a protein source in poultry diets. J. Poult. Sci. 2010, 47, 48–52. [Google Scholar] [CrossRef]
- National Research Council. Nutrient Requirements of Poultry, 9th ed.; National Academic Press: Washington, DC, USA, 1994. [Google Scholar]
- Nalle, C.L.; Ravindran, V.; Ravindran, G. Extrusion of peas (Pisum sativum L.): Effects on the apparent metabolisable energy and ileal nutrient digestibility of broilers. Am. J. Anim. Vet. Sci. 2011, 6, 25–30. [Google Scholar] [CrossRef]
- Nalle, C.L.; Ravindran, V.; Ravindran, G. Nutritional value of peas (Pisum sativum L.) for broilers: Apparent metabolisable energy, apparent ileal amino acid digestibility and production performance. Anim. Prod. Sci. 2011, 51, 150–155. [Google Scholar] [CrossRef]
- Alonso, R.; Oru’e, E.; Zabalza, M.J.; Grant, G.; Marzo, F. Nutritional assessment in vitro and in vivo of raw and extruded peas (Pisum sativum L.). J. Sci. Food Agric. 2000, 80, 397–403. [Google Scholar] [CrossRef]
- Tzitzikas, E.N.; Vincken, J.; De Groot, J.; Gruppen, H.; Visser, R.G.F. Genetic variation in pea seed globulin composition. J. Agric. Food Chem. 2006, 54, 425–433. [Google Scholar] [CrossRef]
- Wang, N.; Daun, J.K. Effect of variety and crude protein content on nutrients and certain antinutrients in field peas (Pisum sativum). J Sci Food Agric. 2004, 84, 1021–1029. [Google Scholar] [CrossRef]
- Nikolopoulou, D.; Grigorakis, K.; Stasini, M.; Alexis, M.N.; Iliadis, K. Differences in chemical composition of field pea (Pisum sativum) cultivars: Effects of cultivation area and year. Food Chem. 2007, 103, 847–852. [Google Scholar] [CrossRef]
- Okon, P.; Bachmann, M.; Wensch-Dorendorf, M.; Kuhnitzsch, C.; Martens, S.D.; Greef, J.M.; Steinhöfel, O.; Kuhla, B.; Zeyner, A. In vitro and in vivo analyses of the nutritive value of native and ensiled partial crop field peas. Anim. Feed Sci. Technol. 2023, 304, 115723. [Google Scholar] [CrossRef]
- Witten, S.; Grashorn, M.A.; Aulrich, K. Precaecal digestibility of crude protein and amino acids of a field bean (Vicia faba L.) and a field pea (Pisum sativum L.) variety for broilers. Anim. Feed Sci. Technol. 2018, 243, 35–40. [Google Scholar] [CrossRef]
- Szczurek, W.; Świątkiewicz, S. Standardised ileal amino acid digestibility in field pea seeds of two cultivars differing in flower colour for broiler chickens: Effects of bird age and microbial protease. Animals 2020, 10, 2099. [Google Scholar] [CrossRef] [PubMed]
- Adekoya, A.A.; Adeola, O. Evaluation of the utilisation of energy and phosphorus in field peas fed to broiler chickens. Br. Poult. Sci. 2023, 64, 726–732. [Google Scholar] [CrossRef] [PubMed]
- Bastianelli, D.; Grosjean, F.; Peyronnet, C.; Duparque, M.; Regnier, J.M. Feeding value of pea (Pisum sativum, L.) 1. Chemical composition of different categories of pea. Anim. Sci. 1998, 67, 609–619. [Google Scholar] [CrossRef]
- Castell, A.G.; Guenter, W.; Igbasan, F.A. Nutritive value of peas for non ruminant diets. Anim. Feed Sci. Technol. 1996, 60, 209–227. [Google Scholar] [CrossRef]
- Janocha, A.; Milczarek, A.; Głuchowska, J. Efficiency of peas in broiler chicken feeding. Anim. Sci. Genet. 2022, 18, 11–23. [Google Scholar]
- Brenes, A.; Rotter, B.A.; Marquardt, R.R.; Guenter, W. The nutritional value of raw, autoclaved, and dehulled peas (Pisum sativum L.) in chicken diets as affected by enzyme supplementation. Can. J. Anim. Sci. 1993, 73, 605–614. [Google Scholar] [CrossRef]
- Igbasan, F.A.; Guenter, W. The influence of micronization, dehulling, and enzyme supplementation on the nutritional value of peas for laying hens. Poult. Sci. 1997, 76, 331–337. [Google Scholar] [CrossRef] [PubMed]
- Carré, B.; Beaufils, E.; Melcion, J.P. Evaluation of protein and starch digestibilities and energy value of pelleted or unpelleted pea seeds from winter or spring cultivars in adult and young chickens. J. Agric. Food Chem. 1991, 39, 468–472. [Google Scholar] [CrossRef]
- Igbasan, F.A.; Guenter, W. The enhancement of the nutritive value of peas for broiler chickens: An evaluation of micronization and denuding processes. Poult. Sci. 1996, 75, 1243–1252. [Google Scholar] [CrossRef] [PubMed]
- Sauvant, D.; Perez, J.M.; Tran, G. Tables of Composition and Nutritional Value of Feed Materials: Pigs, Poultry, Cattle, Sheep, Goats, Rabbits, Horses and Fish, 2nd ed.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2004; ISBN 978-90-76998-41-1. [Google Scholar]
- Hejdysz, M.; Kaczmarek, S.A.; Bedford, M.R. The effect of different temperatures applied during extrusion on the nutritional value of faba bean and degradation of phytic P isomers. Anim. Feed Sci. Technol. 2022, 285, 115221. [Google Scholar] [CrossRef]
- Rubio, L.A.; Grant, G.; Bardocz, S.; Dewey, P.; Pusztai, A. Mineral excretion of rats fed on diets containing faba beans (Vicia faba L.) or faba beans fractions. Br. J. Nutr. 1992, 67, 295–302. [Google Scholar] [CrossRef] [PubMed]
- Hughes, R.J.; Choct, M. Chemical and physical characteristics of grains related to variability in energy and amino acid availability in poultry. Aust. J. Agric. Res. 1999, 50, 689–701. [Google Scholar]
- Chavan, J.K.; Kute, L.S.; Kadam, S.S. Broad bean. In CRC Handbook of World Food Legumes: Nutritional Chemistry, Processing, Technology and Utilization; Salunkhe, D.K., Kadam, S.S., Eds.; CRC Press: Boca Raton, FL, USA, 1989; ISBN 0849305543. [Google Scholar]
- Brufau, J.; Boros, D.; Marquardt, R.R. Influence of growing season, tannin content and autoclave treatment on the nutritive value of near-isogenic lines of faba beans (Vicia faba L.) when fed to leghorn chicks. Br. Poult. Sci. 1998, 39, 97–105. [Google Scholar] [CrossRef]
- Goelema, J.O.; Smits, A.; Vaessen, L.M.; Wemmers, A. Effects of pressure toasting, expander treatment and pelleting on in vitro and in situ parameters of protein and starch in a mixture of broken peas, lupins and faba beans. Anim. Feed Sci. Technol. 1999, 78, 109–126. [Google Scholar] [CrossRef]
- Lewis, A.J.; Southern, L.L. Swine Nutrition, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2001; ISBN 0-8493-0696-5. [Google Scholar]
- Gdala, J.; Buraczewska, L. Ileal digestibility of pea and faba bean carbohydrates in growing pigs. J. Anim. Feed Sci. 1997, 6, 235–245. [Google Scholar] [CrossRef]
- Brand, T.S.; Brandt, D.A.; Cruywagen, C.W. Chemical composition, true metabolisable energy content and amino acid availability of grain legumes for poultry. S. Afr. J. Anim. Sci. 2004, 34, 116–122. [Google Scholar] [CrossRef]
- Nalle, C.L.; Ravindran, V.; Ravindran, G. Nutritional value of faba beans (Vicia faba L.) for broilers: Apparent metabolisable energy, ileal amino acid digestibility and production performance. Anim. Feed Sci. Technol. 2010, 156, 104–111. [Google Scholar] [CrossRef]
- Smit, M.N.; Ketelaar, R.F.; He, L.; Beltranena, E. Ileal digestibility of energy and amino acids in three faba bean cultivars (Vicia faba L.) planted and harvested early or late in broiler chickens. Poult. Sci. 2021, 100, 101332. [Google Scholar] [CrossRef]
- Hejdysz, M.; Kaczmarek, S.A.; Rutkowski, A. Extrusion cooking improves the metabolizable energy of faba beans and amino acids digestibility in broilers. Anim. Feed Sci. Technol. 2016, 212, 100–111. [Google Scholar] [CrossRef]
- Gous, R.M. Evaluation of faba bean (Vicia faba cv. Fiord) as a protein source for broilers. S. Afr. J. Anim. Sci. 2011, 41, 71–78. [Google Scholar] [CrossRef]
- Kopmels, F.C.; Smit, M.N.; Cho, M.; He, L.; Beltranena, E. Effect of feeding 3 zero-tannin faba bean cultivars at 3 increasing inclusion levels on growth performance, carcass traits, and yield of saleable cuts of broiler chickens. Poult. Sci. 2020, 99, 4958–4968. [Google Scholar] [CrossRef] [PubMed]
- Vilariño, M.; Métayer, J.P.; Crépon, K.; Duc, G. Effects of varying vicine, convicine and tannin contents of faba bean seeds (Vicia faba L.) on nutritional values for broiler chicken. Anim. Feed Sci. Technol. 2009, 150, 114–121. [Google Scholar] [CrossRef]
- Koivunena, E.; Tuunainen, P.; Rossow, L.; Valaja, J. Digestibility and utilization of faba bean (Vicia faba L.) diets in broilers. Acta Agric. Scand. A Anim. Sci. 2014, 64, 217–225. [Google Scholar] [CrossRef]
- Barua, M.; Abdollahi, M.R.; Zaefarian, F.; Wester, T.J.; Girish, C.K.; Ravindran, V. Standardized ileal amino acid digestibility of protein sources for broiler chickens is influenced by the feed form. Poult. Sci. 2020, 99, 6925–6934. [Google Scholar] [CrossRef]
- Alagawany, M.; Abd El-Hack, M.E.; Ashour, E.A.; Salah, A.S.; Hussein, E.O.S.; Al Alowaimer, A.; Swelum, A.A.; Dhama, K. Raw faba bean (Vicia faba) as an alternative protein source in laying hen diets. J. Appl. Poult. Res. 2019, 28, 808–817. [Google Scholar] [CrossRef]
- Ivarsson, E.; Wall, H. Effects of toasting, inclusion levels and different enzyme supplementations of faba beans on growth performance of broiler chickens. J. Appl. Poult. Res. 2017, 26, 467–475. [Google Scholar] [CrossRef]
- Smit, M.N.; He, L.; Beltranena, E. Feeding different cultivars and quality levels of faba bean to broiler chickens. Transl. Anim. Sci. 2021, 5, txab094. [Google Scholar] [CrossRef] [PubMed]
- Jukanti, A.; Gaur, P.M.; Gowda, C.L.; Chibbar, R. Nutritional quality and health benefits of chickpea (Cicer arietinum L.): A review. Br. J. Nutr. 2012, 108, S11–S26. [Google Scholar] [CrossRef] [PubMed]
- Viveros, A.; Brenes, A.; Elices, R.; Arija, I.; Canales, R. Nutritional value of raw and autoclaved Kabuli and Desi chickpeas (Cicer arietinum L.) for growing chickens. Br. Poult. Sci. 2001, 42, 242–251. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, A.; Ateeq, N.; Khalil, A.; Parveen, S.; Saleemullah, S. Physicochemical characteristics and amino acid profile of chickpea cultivars grown in Pakistan. J. Food Serv. 2006, 17, 94–101. [Google Scholar] [CrossRef]
- Brenes, A.; Viveros, A.; Centeno, C.; Arija, I.; Marzo, F. Nutritional value of raw and extruded chickpeas (Cicer arietinum L.) for growing chickens. Span. J. Agric. Res. 2008, 6, 537–545. [Google Scholar] [CrossRef]
- Ribeiro, R.J.M.C.; Melo, P.I.M. Composition and nutritive value of chickpea. Options Méditerranéennes-Série Séminaires 1990, 9, 107–111. [Google Scholar]
- Algam, T.A.; Atti, A.A.; Dousa, B.M.; Elawad, S.M.; Elseed, A.M.F. Effect of dietary chickpea (Cicer arietinum L.) seeds on broiler performance and blood constituents. Int. J. Poult. Sci. 2012, 11, 294–297. [Google Scholar] [CrossRef]
- Matovu, H.A.; Muyanja, C.K.; Byenkya, S. The proximate and chemical composition of improved chickpea cultivars grown under the pure stand and banana intercrop systems in south western Uganda agro ecological zone. Afr. J. Food Agric. Nutr. Dev. 2015, 15, 10474–10490. [Google Scholar] [CrossRef]
- Sengül, A.Y.; Çalişlar, S. Effect of partial replacement of soybean and corn with dietary chickpea (raw, autoclaved, or microwaved) on production performance of laying quails and egg quality. Food Sci. Anim. Resour. 2020, 40, 323–337. [Google Scholar] [CrossRef]
- Vishwakarma, R.K.; Shivhare, U.S.; Gupta, R.K.; Nar, D.; Prasad, P. Status of pulse milling processes and technologies: A review. Crit. Rev. Food Sci. Nutr. 2018, 58, 1615–1628. [Google Scholar] [CrossRef]
- Ciurescu, G.; Vasilachi, A.; Grosu, H. Efficacy of microbial phytase on growth performance, carcass traits, bone mineralization, and blood biochemistry parameters in broiler turkeys fed raw chickpea (Cicer arietinum L., cv. Burnas) diets. J. Appl. Poult. Res. 2020, 29, 171–184. [Google Scholar] [CrossRef]
- Ciurescu, G.; Vasilachi, A.; Grosu, H. Effect of dietary cowpea (Vigna unguiculata [L.] walp) and chickpea (Cicer arietinum L.) seeds on growth performance, blood parameters and breast meat fatty acids in broiler chickens. Ital. J. Anim. Sci. 2021, 21, 97–105. [Google Scholar] [CrossRef]
- Christodoulou, V.; Bampidis, V.A.; Hučko, B.; Iliadis, C.; Mudřik, Z. Nutritional value of chickpeas in rations of broiler chickens. Arch. Geflügelkunde 2006, 70, S112–S118. [Google Scholar]
- Visitpanich, T.; Batterham, E.S.; Norton, B.W. Nutritional value of chickpea (Cicer arietinum) and pigeonpea (Cajanus cajan) meals for growing pigs and rats. I. Energy content and protein quality. Aust. J. Agric. Res. 1985, 36, 327–335. [Google Scholar] [CrossRef]
- Ravindran, G.; Ravindran, V.; Bryden, W.L. Total and ileal digestible tryptophan contents of feedstuffs for broiler chickens. J. Sci. Food Agric. 2006, 86, 1132–1137. [Google Scholar] [CrossRef]
- Candella, M.; Astiasaran, I.; Bello, J. Cooking and warm-holding: Effect on general composition and amino acids of kidney beans (Phaseolus vulgaris), chickpeas (Cicer arietinum), and lentils (Lens culinaris). J. Agric. Food Chem. 1997, 45, 4763–4767. [Google Scholar] [CrossRef]
- Jood, S.; Bishnoi, S.; Sharma, A. Chemical analysis and physico-chemical properties of chickpea and lentil cultivars. Nahrung 1998, 42, S71–S74. [Google Scholar] [CrossRef]
- Nestares, T.; Lopez-Frias, M.; Barrionuevo, M.; Urbano, G. Nutritional assessment of raw and processed chikpea (Cicer arietinum L.) protein in growing rats. J. Agri. Food Chem. 1996, 44, 2760–2765. [Google Scholar] [CrossRef]
- Mustafa, A.F.; Thacker, P.A.; McKinnon, J.J.; Christensen, D.A.; Racz, V.J. Nutritional value of feed grade chickpeas for ruminants and pigs. J. Sci. Food Agric. 2000, 80, 1581–1588. [Google Scholar] [CrossRef]
- Thacker, P.A.; Qiao, S.; Racks, V.J. A comparison of the nutrient digestibility of Desi and Kabuli chickpeas fed to swine. J. Sci. Food Agric. 2002, 82, 1312–1318. [Google Scholar] [CrossRef]
- Sharma, S.; Yadav, N.; Singh, A.; Kumar, R. Nutritional and antinutritional profile of newly developed chickpea (Cicer arietinum L) varieties. Int. Food Res. J. 2013, 20, 805–810. [Google Scholar]
- Chiaiese, P.; Ohkama-Ohtsu, N.; Molvig, L.; Godfree, R.; Dove, H.; Hocart, C.; Fujiwara, T.; Higgins, T.J.V.; Tabe, L.M. Sulphur and nitrogen nutrition influence the response of chickpea seeds to an added, transgenic sink for organic sulphur. J. Exp. Bot. 2004, 55, 1889–1901. [Google Scholar] [CrossRef] [PubMed]
- INRAE-CIRAD-AFZ Feed Tables: Composition and Nutritive Values of Feeds for Cattle, Sheep, Goats, Pigs, Poultry, Rabbits, Horses and Salmonids. Available online: https://www.feedtables.com/content/chickpea-kabuli-type (accessed on 9 November 2023).
- WPSA. Subcommittee Energy of the Working Group no.2, Nutrition of the European Federation of Branches of the World’s Poultry Science Association; European Table of Energy Values for Poultry Feedstuffs: Wageningen, The Netherlands, 1986. [Google Scholar]
- Khan, M.A.; Akhtar, N.; Ullah, I.; Jaffery, S. Nutritional evaluation of desi and kabuli chickpeas and their products commonly consumed in Pakistan. Int. J. Food Sci. Nutr. 1995, 46, 215–223. [Google Scholar] [CrossRef]
- Rubio, L. Ileal digestibility of defatted soybean, lupin and chickpea seed meals in cannulated Iberian pigs: I. Proteins. J. Sci. Food Agric. 2005, 85, 1313–1321. [Google Scholar] [CrossRef]
- Danek-Majewska, A.; Kwiecień, M.; Samolińska, W.; Kowalczyk-Pecka, D.; Nowakowicz-Dębek, B.; Winiarska-Mieczan, A. Effect of raw chickpea in the broiler chicken diet on intestinal histomorphology and intestinal microbial populations. Animals 2022, 12, 1767. [Google Scholar] [CrossRef] [PubMed]
- Bampidis, V.A.; Christodoulou, V. Chickpeas (Cicer arietinum L.) in animal nutrition: A review. Anim. Feed Sci. Technol. 2011, 168, 1–20. [Google Scholar] [CrossRef]
- Liener, I.E. Toxic Constituents of Plant Foodstuffs, 1st ed.; Academic Press: New York, NY, USA, 1969; ISBN 9780124499508. [Google Scholar]
- Ravindran, V. Progress in ileal endogenous amino acid flow research in poultry. J. Anim. Sci. Biotechnol. 2021, 12, 5. [Google Scholar] [CrossRef]
- Cheeke, P.R.; Shull, L.R. Natural Toxicants in Feeds and Poisonous Plants; Avi Publishing Company Inc.: Westport, CT, USA, 1985; ISBN 0-87055-482-4. [Google Scholar]
- Dolan, L.C.; Matulka, R.A.; Burdock, G.A. Naturally occurring food toxins. Toxins 2010, 2, 2289–2332. [Google Scholar] [CrossRef] [PubMed]
- Ravindran, V.; Blair, R. Feed resources for poultry production in Asia and the Pacific. II. Plant protein sources. World’s Poult. Sci. J. 1992, 48, 205–231. [Google Scholar] [CrossRef]
- Hemperly, J.J.; Hopp, T.P.; Becker, J.W.; Cunningham, B.A. The chemical characterization of favin, a lectin isolated from Vicia faba. J. Biol. Chem. 1979, 254, 6803–6810. [Google Scholar] [CrossRef] [PubMed]
- Nachbar, M.S.; Oppenheim, J.D. Lectins in the United States diet: A survey of lectins in commonly consumed foods and a review of the literature. Am. J. Clin. Nutr. 1980, 33, 2338–2345. [Google Scholar] [CrossRef] [PubMed]
- Helsper, J.P.F.G.; Balkema-Boomstra, A.; Ribôt, S.A.; Groot, M.J.; van Loo, E.N. Novel Protein Crops as Pig Feed in Organic Farming; Plant Research International Report No. 112; RIKILT: Wageningen, The Netherlands, 2006. [Google Scholar]
- Kouris-Blazos, K.; Belski, R. Health benefits of legumes and pulses with a focus on Australian sweet lupins. Asia. Pac. J. Clin. Nutr. 2016, 25, 1–17. [Google Scholar] [PubMed]
- Kumar, Y.; Basu, S.; Goswami, D.; Devi, M.; Shivhare, U.S.; Vishwakarma, R.K. Anti-nutritional compounds in pulses: Implications and alleviation methods. Legume Sci. 2022, 4, e111. [Google Scholar] [CrossRef]
- Zhu, M.J.; Zhang, G.Q.; Wang, H.X.; Ng, T.B. Isolation and characterization of a kunitz-type trypsin inhibitor with antiproliferative activity from Gymnocladus chinensis (Yunnan Bean) seeds. Protein J. 2011, 30, 240–246. [Google Scholar] [CrossRef] [PubMed]
- Odani, S.; Ikenaka, T. Studies on soybean trypsin inhibitors. J. Biochem. 1973, 74, 697–715. [Google Scholar] [CrossRef] [PubMed]
- Habib, H.; Fazili, K.M. Plant protease inhibitors: A defense strategy in plants. Biotechnol. Mol. Biol. Rev. 2007, 2, 68–85. [Google Scholar]
- Fernandez, J.H.; Mello, M.O.; Galgaro, L.; Tanaka, A.S.; Silva-Filho, M.C.; Neshich, G. Proteinase inhibition using small Bowman-Birk-type structures. Genet. Mol. Res. 2007, 6, 846–858. [Google Scholar]
- Avilés-Gaxiola, S.; Chuck-Hernández, C.; Saldívar, S.O.S. Inactivation methods of trypsin inhibitor in legumes: A review. J. Food Sci. 2018, 83, 17–29. [Google Scholar] [CrossRef]
- Liener, I.E.; Kakade, M.L. Protease inhibitors. In Toxic Constituents of Plant Foodstuffs; Liener, I.E., Ed.; Academic Press: New York, NY, USA, 1969; pp. 8–53. ISBN 9780323147378. [Google Scholar]
- Kakade, M.L.; Rackis, J.J.; McGhee, J.E.; Puski, G. Determination of trypsin inhibitor activity of soy products: A collaborative analysis of an improved procedure. Cereal Chem. 1974, 51, 376–382. [Google Scholar]
- Liener, I.E. Antinutritional factors in legume seeds: State of the art. In Recent Advances of Research in Antinutritional Factors in Legume Seeds; Huisman, H.J., Van der Poel, T.F.B., Liener, I.E., Eds.; Pudoc: Wageningen, The Netherlands, 1989; pp. 6–13. [Google Scholar]
- Wang, T.L.; Domoney, C.; Cliff, C.L.; Casey, R.; Grusak, M.A. Can we improve the nutritional quality of legume seeds? Plant Physiol. 2003, 131, 886–891. [Google Scholar] [CrossRef] [PubMed]
- Kakade, M.I.; Simons, N.; Liener, I.E. An evaluation of natural vs. synthetic substrates for measuring the antitryptic activity of soybean samples. Cereal Chem. 1969, 46, 518–526. [Google Scholar]
- Khattab, R.Y.; Arntfield, S.D. Nutritional quality of legume seeds as affected by some physical treatments 2. Antinutritional factors. Food Sci. Technol. 2009, 42, 1113–1118. [Google Scholar] [CrossRef]
- Asao, T.; Imai, F.; Tsuji, I.; Tashiro, M.; Iwami, K.; Ibuki, F. Purification and characterization of a Bowman-birk type proteinase inhibitor from faba beans (Vicia faba L.). Agric. Biol. Chem. 1991, 55, 707–713. [Google Scholar] [CrossRef]
- Pusztai, A. Plant lectins. In Chemistry and Pharmacology of Natural Products; Cambridge University Press: Cambridge, UK, 1991; ISBN 052132824. [Google Scholar]
- Lagarda-Diaz, I.; Guzman-Partida, A.M.; Vazquez-Moreno, L. Legume lectins: Proteins with diverse applications. Int. J. Mol. Sci. 2017, 18, 1242. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, A.C.; Monteiro, S.V.; Carrapiço, B.M.; Ferreira, R.B. Are Vicilins another major class of legume lectins? Molecules 2014, 19, 20351–20373. [Google Scholar] [CrossRef] [PubMed]
- Katoch, R.; Tripathy, A. Research advances and prospects of legume lectins. J Biosci. 2021, 46, 104. [Google Scholar] [CrossRef] [PubMed]
- Kansal, R.; Kumar, M.; Kuhar, K.; Gupta, R.N.; Subrahmanyam, B.; Koundal, K.R.; Gupta, V.K. Purification and characterization of trypsin inhibitor from Cicer arietinum L. and its efficacy against Helicoverpa armigera. Braz. J. Plant Physiol. 2008, 20, 313–322. [Google Scholar] [CrossRef]
- Shi, L. A Quantitative Assessment of the Anti-Nutritional Properties of Canadian Pulses. Master’s Thesis, The University of Manitoba, Winnipeg, MB, Canada, 2015. [Google Scholar]
- Griffiths, D.W. The trypsin and chymotrypsin inhibitor activities of various pea (Pisum spp.) and field bean (Vicia faba) cultivars. J. Sci. Food Agric. 1984, 35, 481–486. [Google Scholar] [CrossRef]
- Alonso, R.; Aguirre, A.; Marzo, F. Effects of extrusion and traditional processing methods on antinutrients and in vitro digestibility of protein and starch in faba and kidney beans. Food Chem. 2000, 68, 159–165. [Google Scholar] [CrossRef]
- Mubarak, A.E. Nutritional composition and antinutritional factors of mung bean seeds (Phaseolus aureus) as affected by some home traditional processes. Food Chem. 2005, 89, 489–495. [Google Scholar] [CrossRef]
- Liener, I.E. Soy in a toxic protein from the soybean. I. Inhibition of rat growth. J. Nutr. 1953, 49, 527–540. [Google Scholar] [CrossRef]
- Vasconcelos, I.M.; Oliveira, J.T.A. Antinutritional properties of plant lectins. Toxicon 2004, 44, 385–403. [Google Scholar] [CrossRef]
- Sánchez-Chino, X.; Jiménez-Martínez, C.; Dávila-Ortiz, G.; Álvarez-González, I.; Madrigal-Bujaidar, E. Nutrient and nonnutrient components of legumes, and its chemopreventive activity: A review. Nutr. Cancer 2015, 67, 401–410. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Xie, W. Effect of different processing methods on certain antinutritional factors and protein digestibility in green and white faba bean (Vicia faba L.). CyTA—J. Food. 2013, 11, 43–49. [Google Scholar] [CrossRef]
- Mansoori, B.; Acamovic, T. The effect of tannic acid on the excretion of endogenous methionine, histidine and lysine with broilers. Anim. Feed Sci. Technol. 2007, 134, 198–210. [Google Scholar] [CrossRef]
- Hassan, Z.M.; Manyelo, T.G.; Selaledi, L.; Mabelebele, M. The effects of tannins in monogastric animals with special reference to alternative feed ingredients. Molecules 2020, 25, 4680. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Liu, X.; Zhao, G.; Hu, T.; Wang, Y. Potential and challenges of tannins as an alternative to in-feed antibiotics for farm animal production. Anim. Nutr. 2018, 4, 137–150. [Google Scholar] [CrossRef] [PubMed]
- Das, A.K.; Islam, M.N.; Faruk, M.O.; Ashaduzzamanb, M.; Dungani, R. Review on tannins: Extraction processes, applications and possibilities. S. Afr. J. Bot. 2020, 135, 58–70. [Google Scholar] [CrossRef]
- Gulewicz, P.; Martinez-Villaluenga, C.; Kasprowicz-Potocka, M.; Frias, J. Non-nutritive compounds in fabaceae family seeds and the improvement of their nutritional quality by traditional processing—A review. Pol. J. Food Nutr. Sci. 2014, 64, 75–89. [Google Scholar] [CrossRef]
- Butler, L.G. Antinutritional effects of condensed and hydrolyzable tannins. In Plant Polyphenols: Synthesis, Properties, Significance, Proceedings of the 2nd North American Tannin Conference on Plant Polyphenols: Biogenesis, Chemical Properties and Significance, Houghton, MI, USA, 17–21 June 1991; Hemingway, R.W., Laks, P.E., Branham, S.J., Eds.; Springer Science Business Media: New York, NY, USA, 1992; pp. 693–698. [Google Scholar]
- Jansman, A.J.M. Tannins in faba beans (Vicia faba L.)—Antinutritional Properties in Monogastric Animals. Ph.D. Thesis, Agricultural University, Wageningen, The Netherlands, 1993. [Google Scholar]
- Salunkhe, D.K.; Chavan, J.K.; Kadam, S.S. Nutritional consequences of dietary tannins. In Dietary Tannins: Consequences and Remedies; Salunkhe, D.K., Chavan, J.K., Kadam, S.S., Eds.; CRC Press: Boca Raton, FL, USA, 1990; ISBN 0-8493-6811-1. [Google Scholar]
- Avola, G.; Gresta, F.; Abbate, V. Diversity examination based on physical, technological and chemical traits in a locally grown landrace of faba bean (Vicia faba L. var. major). Int. J. Food Sci. Technol. 2009, 44, 2568–2576. [Google Scholar] [CrossRef]
- Redondo, L.M.; Chacana, P.A.; Dominguez, J.E.; Miyakawa, M.E.F. Perspectives in the use of tannins as alternative to antimicrobial growth promoter factors in poultry. Front Microbiol. 2014, 5, 118. [Google Scholar] [CrossRef]
- Bhat, T.K.; Kannan, A.; Singh, B.; Sharma, O.P. Value addition of feed and fodder by alleviating the antinutritional effects of tannins. Agric. Res. 2013, 2, 189–206. [Google Scholar] [CrossRef]
- Longstaff, M.A.; McNabb, J.M. The effect of concentration of tannin-rich bean hulls (Vicia faba L.) on activities of lipase (EC 3.1.1.3) and α-amylase (EC 3.2.1.1) in digesta and pancreas and on the digestion of lipid and starch by young chicks. Br. Poult. Sci. 1991, 66, 139–147. [Google Scholar]
- Vohra, P.; Kratzer, F.H.; Joslyn, M.A. The Growth Depressing and Toxic Effects of Tannins to Chicks. Poult. Sci. 1966, 45, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Ortiz, L.T.; Alzueta, C.; Trevino, J.; Castano, M. Effects of faba beans tannins on the growth and histological structure of the intestinal tract and liver of chicks and rats. Br. Poult. Sci. 1994, 35, 743–754. [Google Scholar] [CrossRef]
- Ortiz, L.T.; Centeno, C.; Trevifio, J. Tannins in faba bean seeds: Effects on the digestion of protein and amino acids in growing chicks Anim. Feed Sci. Technol. 1993, 41, 271–278. [Google Scholar] [CrossRef]
- Hassan, I.A.G.; Elzubier, E.A.; El Tinay, A.H. Growth and apparent absorption of minerals in broiler chicks fed diets with low and high tannin contents. Trop. Anim. Health Prod. 2003, 35, 189–196. [Google Scholar] [CrossRef]
- Marzo, F.; Tosar, A.; Santidrian, S. Effect of tannic acid on the immune response of growing chickens. J. Anim. Sci. 1990, 68, 3306–3312. [Google Scholar] [CrossRef]
- Fahey, G.C., Jr.; Jung, H.G. Phenolic compounds in forages and fibrous feedstuffs. In Toxicants of Plant Origin; Cheeke, P.R., Ed.; CRC Press: Boca Raton, FL, USA, 1989. [Google Scholar]
- Hidayat, C.H.; Irawan, A.; Jayanegara, A.; Sholikin, M.M.; Prihambodo, T.R.; Yanza, Y.R.; Wina, E.; Sadarman, S.; Krisnan, R.; Isbandi, I. Effect of dietary tannins on the performance, lymphoid organ weight, and amino acid ileal digestibility of broiler chickens: A meta-analysis. Vet. World 2021, 14, 1405. [Google Scholar] [CrossRef]
- Bressani, R.; Hernandez, E.; Braham, J.E. Relationship between content and intake of bean polyphenolics and protein digestibility in humans. Plant Foods Hum. Nutr. 1988, 38, 5–21. [Google Scholar] [CrossRef]
- Viveros, A.; Chamorro, S.; Pizarro, M.; Arija, I.; Centeno, C.; Brenes, A. Effects of dietary polyphenol-rich grape products on intestinal microflora and gut morphology in broiler chicks. Poult. Sci. 2011, 90, 566–578. [Google Scholar] [CrossRef]
- Xu, H.; Fu, J.; Luo, Y.; Li, P.; Song, B.; Lv, Z.; Guo, Y. Effects of tannic acid on the immunity and intestinal health of broiler chickens with necrotic enteritis infection. J. Anim. Sci. Biotechnol. 2023, 14, 72. [Google Scholar] [CrossRef] [PubMed]
- Cosgrove, D.J. The Determination of myo-inositol hexakisphosphate (Phytate). J. Sci. Food Agric. 1980, 31, 1253–1256. [Google Scholar] [CrossRef]
- Reddy, N.R.; Sathe, S.K.; Salunkhe, D.K. Phytates in legumes and cereals. Adv. Food Nutr. Res. 1982, 28, 1–92. [Google Scholar]
- Ravindran, V.; Bryden, W.L.; Kornegay, E.T. Phytates: Occurrence, bioavailability and implications in poultry nutrition. Avian Biol. Poult. Sci. Rev. 1995, 6, 125–143. [Google Scholar]
- Selle, P.H.; Ravindran, V.R.; Caldwell, A.; Bryden, W.L. Phytate and Phytase: Consequences for Protein Utilisation. Nutr. Res. Rev. 2000, 13, 255–278. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.A.; Ammar, M.H.; Migdadi, H.M.; El-Harty, E.H.; Osman, M.A.; Farooq, M.; Alghamdi, S.S. Comparative nutritional profiles of various faba bean and chickpea genotypes. Int. J. Agric. Biol. 2015, 17, 449–457. [Google Scholar] [CrossRef]
- Alajaji, S.A.; El-Adawy, T.A. Nutritional composition of chickpea (Cicer arietinum L.) as affected by microwave cooking and other traditional cooking methods. J. Food Compos. Anal. 2006, 19, 806–812. [Google Scholar] [CrossRef]
- Masoero, F.; Pulimeno, A.N.; Rossi, F. Effect of extrusion, espansion and toasting on the nutritional value of peas, faba beans and lupins. Ital. J. Anim. Sci. 2005, 4, 177–189. [Google Scholar] [CrossRef]
- Villacrés, E.; Quelal, M.B.; Fernández, E.; Garcìa, G.; Cueva, G.; Rosell, C.M. Impact of debittering and fermentation processes on the antinutritional and antioxidant compounds in Lupinus mutabilis sweet. LWT-Food Sci. Technol. 2020, 131, 109745. [Google Scholar] [CrossRef]
- Embaby, H.E. Effect of soaking, dehulling, and cooking methods on certain antinutrients and in vitro protein digestibility of bitter and sweet lupin seeds. Food Sci. Biotechnol. 2010, 19, 1055–1062. [Google Scholar] [CrossRef]
- Coelho, M.B.; Kornegay, E.T. Phytases in Animal Nutrition and Waste Management; BASF Corporation: Mount Olive, NJ, USA, 1999; p. 800. [Google Scholar]
- Selle, P.H.; Ravindran, V. Microbial phytase in poultry nutrition. Anim. Feed Sci. Technol. 2007, 135, 1–41. [Google Scholar] [CrossRef]
- Bedford, M.R.; Partridge, G.G. Enzymes in Farm Animal Nutrition, 1st ed.; CABI Publishing: Wallingford, UK, 2001; ISBN 0-85199-393-1. [Google Scholar]
- Selle, P.H.; Cowieson, A.J.; Cowieson, N.P.; Ravindran, V. Protein-phytate interactions in pig and poultry nutrition: A reappraisal. Nutr. Res. Rev. 2012, 25, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Woyengo, T.A.; Nyachoti, C.M. Review: Anti-nutritional effects of phytic acid in diets for pigs and poultry—Current knowledge and directions for future research. Can. J. Anim. Sci. 2013, 93, 9–21. [Google Scholar] [CrossRef]
- Wang, R.; Guo, S. Phytic acid and its interactions: Contributions to protein functionality, food processing, and safety. Compr. Rev. Food Sci. Food Saf. 2021, 20, 2081–2105. [Google Scholar] [CrossRef] [PubMed]
- Cheryan, M.; Rackis, J.J. Phytic acid interactions in food systems. Crit. Rev. Food Sci. Nutr. 1980, 13, 297–335. [Google Scholar] [CrossRef]
- Greiner, R.; Konietzny, U.; Jany, K.D. Phytate—An undesirable constituent of plant-based foods? J. Ernährungsmedizin 2006, 8, 18–28. [Google Scholar]
- Cowieson, A.J.; Ravindran, V.; Selle, P.H. Influence of dietary phytic acid and source of microbial phytase on ileal endogenous amino acid flows in broiler chickens. Poult. Sci. 2008, 87, 2287–2299. [Google Scholar] [CrossRef]
- Cowieson, A.J.; Bedford, M.R.; Selle, P.H.; Ravindran, V. Phytate and microbial phytase: Implications for endogenous nitrogen losses and nutrient availability. World’s Poult. Sci. J. 2009, 65, 401–418. [Google Scholar] [CrossRef]
- Choct, M. Feed non-starch polysaccharides: Chemical structures and nutritional significance. Feed Mill. Int. 1997, 6, 13–26. [Google Scholar]
- Sinha, A.K.; Kumar, V.; Makkar, H.P.S.; De Boeck, G.; Becker, K. Non-starch polysaccharides and their role in fish nutrition—A review. Food Chem. 2011, 127, 1409–1426. [Google Scholar] [CrossRef]
- Choct, M.; Dersjant-Li, Y.; McLeish, J.; Peisker, M. Soy oligosaccharides and soluble non-starch polysaccharides: A review of digestion, nutritive and anti-nutritive effects in pigs and poultry. Asian-Aust. J. Anim. Sci. 2010, 23, 1386–1398. [Google Scholar] [CrossRef]
- Smits, C.H.M.; Annison, G. Non-starch plant polysaccharides in broiler nutrition—Towards a physiologically valid approach to their determination. World’s Poult. Sci. J. 1996, 52, 203–221. [Google Scholar] [CrossRef]
- de Lange, C.F.M. Overview of determinants of the nutritional value of feed ingredients. In Feed Evaluation: Principle and Practice; Moughan, P.J., Verstegen, M.W.A., Visser-Reyneveld, M.I., Eds.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2000; ISBN 9074134785. [Google Scholar]
- Singh, A.K.; Kim, W.K. Effects of dietary fiber on nutrients utilization and gut health of poultry: A review of challenges and opportunities. Animals 2021, 11, 181. [Google Scholar] [CrossRef] [PubMed]
- Choct, M. Enzymes for the feed industry: Past, present and future. World’s Poult. Sci. J. 2006, 62, 5–15. [Google Scholar] [CrossRef]
- Periago, M.J.; Ros, G.; Casas, J.L. Non-starch polysaccharides and in vitro starch digestibility of raw and cooked chick peas. J. Food Sci. 1997, 62, 93–96. [Google Scholar] [CrossRef]
- Knudsen, K.E.B. Carbohydrate and lignin. contents of plant materials used in animal feeding. Anim. Feed Sci. Technol. 1997, 67, 319–338. [Google Scholar] [CrossRef]
- Gdala, J.; Jansman, A.J.M.; Buraczewska, L.; Huisman, J.; van Leeuwen, P. The influence of α-galactosidase supplementation on the ileal digestibility of lupin seed carbohydrates and dietary protein in young pigs. Anim. Feed Sci. Technol. 1997, 67, 115–125. [Google Scholar] [CrossRef]
- Knudsen, K.E.B. The nutritional significance of “dietary fibre” analysis. Anim. Feed Sci. Technol. 2001, 90, 3–20. [Google Scholar] [CrossRef]
- Englyst, H.N.; Hudson, G.J. The classification and measurement of dietary carbohydrates. Food Chem. 1996, 57, 15–21. [Google Scholar] [CrossRef]
- Irish, G.G.; Balnave, D. Non-starch polysaccharides and broiler performance on diets containing soyabean meal as the sole protein concentrate. Aust. J. Agric. Res. 1993, 44, 1483–1499. [Google Scholar] [CrossRef]
- Nguyen, H.T.; Bedford, M.R.; Wu, S.; Morgan, N.K. Dietary soluble non-starch polysaccharide level influences performance, nutrient utilisation and disappearance of non-starch polysaccharides in broiler chickens. Animals 2022, 12, 547. [Google Scholar] [CrossRef] [PubMed]
- Gdala, J. Composition, properties, and nutritive value of dietary fibre of legume seeds. A review. J. Anim. Feed Sci. 1998, 7, 131–149. [Google Scholar] [CrossRef]
- Wood, J.A.; Knights, E.J.; Campbell, G.M.; Choct, M. Differences between easy- and difficult-to-mill chickpea (Cicer arietinum L.) genotypes. Part III: Free sugar and non-starch polysaccharide composition. J. Sci. Food Agric. 2014, 94, 1454–1462. [Google Scholar] [CrossRef] [PubMed]
- Abbas, Y.; Ahmad, A. Impact of processing on nutritional and antinutritional factors of legumes: A review. Ann. Food Sci. Technol. 2018, 19, 199–215. [Google Scholar]
- Ehiwe, A.O.F.; Reichert, R.D. Variability in dehulling quality of cowpea, pigeon pea, and mung bean cultivars determined with the tangential abrasive dehulling device. Cereal Chem. 1987, 64, 86–90. [Google Scholar]
- Ferruzzi, G.; Pistoia, P.; Balestri, G.; Casarosa, L.; Poli, P. Effect of different processing methods on the nutritional characteristics and tannin content of fababean seed (Vicia faba minor). Ital. J. Anim. Sci. 2009, 8, 298–300. [Google Scholar] [CrossRef]
- Brenes, A.; Slominski, B.A.; Marquardt, R.R.; Guenter, W.; Viveros, A. Effect of enzyme addition on the digestibilities of cell wall polysaccharides and oligosaccharides from whole, dehulled, and ethanol-extracted white lupins in chickens. Poult. Sci. 2003, 82, 1716–1725. [Google Scholar] [CrossRef]
- Mera-Zúñiga, F.; Pro-Martínez, A.; Zamora-Natera, J.F.; Sosa-Montes, E.; Guerrero-Rodríguez, J.D.; Mendoza-Pedroza, S.I.; Cuca-García, J.M.; López-Romero, R.M.; Chan-Díaz, D.; Becerril-Pérez, C.M.; et al. Soybean meal substitution by dehulled lupine (Lupinus angustifolius) with enzymes in broiler diets. Asian-Australas. J. Anim. Sci. 2019, 32, 564–573. [Google Scholar] [CrossRef]
- Struţi, D.I.; Bunea, A.; Pop, I.M.; Păpuc, T.A.; Mierliƫă, D.P. The influence of dehulling on the nutritional quality of lupine seeds (Lupinus albus L.) and the effect of their use in the feed of laying quails on the live performance and quality of eggs. Animals 2021, 11, 2898. [Google Scholar] [CrossRef] [PubMed]
- Alonso, R.; Orúe, E.; Marzo, F. Effects of extrusion and conventional processing methods on protein and antinutritional factor contents in pea seeds. Food Chem. 1998, 63, 505–512. [Google Scholar] [CrossRef]
- Farhoomand, P.; Poure, S.S. Study on the nutritional value of raw, dehulled, autoclaved, cooked and enzyme supplemented to raw yellow peas on performance of broiler chicks. Pak. J. Nutr. 2006, 5, 569–572. [Google Scholar]
- Do Carmo, C.S.; Silventoinen-Veijalainen, P.; Zobel, H.; Holopainen-Mantila, U.; Sahlstrøm, S.; Knutsen, S.H. The effect of dehulling of yellow peas and faba beans on the distribution of carbohydrates upon dry fractionation. LWT—Food Sci. Technol. 2022, 163, 113509. [Google Scholar] [CrossRef]
- Longstaff, M.; McNabb, J.M. Digestion of starch and fibre, carbohydrates in peas by adult cockerels. Br. Poult. Sci. 1987, 28, 261–285. [Google Scholar] [CrossRef] [PubMed]
- Breytenbach, L.; Ciacciariello, M. The influence of extrusion and dehulling of Lupinus angustifolius on apparent metabolizable energy (AME) and broiler performance. In Proceedings of the 12th European Poultry Conference, Verona, Italy, 10–14 September 2006. [Google Scholar]
- Avanza, M.; Acevedo, B.; Chaves, M.; Añón, M. Nutritional and anti-nutritional components of four cowpea varieties under thermal treatments: Principal component analysis. LWT-Food Sci. Technol. 2013, 51, 148–157. [Google Scholar] [CrossRef]
- Yasmin, A.; Zeb, A.; Khalil, A.W.; Paracha, G.M.; Khattak, A.B. Effect of processing on anti-nutritional factors of red kidney bean (Phaseolus vulgaris) grains. Food Bioprocess. Technol. 2008, 1, 415–419. [Google Scholar] [CrossRef]
- Shi, L.; Mu, K.; Arntfield, S.D.; Nickerson, M. Changes in levels of enzyme inhibitors during soaking and cooking for pulses available in Canada. J. Food Sci. Technol. 2017, 54, 1014–1022. [Google Scholar] [CrossRef]
- Shi, L.; Arntfield, S.D.; Nickerson, M. Changes in level of phytic acid, lectins and oxalates during soaking and cooking of Canadian pulses. J. Res. Int. 2018, 107, 660–668. [Google Scholar] [CrossRef]
- Han, I.H.; and Baik, B. Oligosaccharide content and composition of legumes and their reduction by soaking, cooking, ultrasounfd, and high hydrostatic pressure. Cereal Chem. 2006, 83, 428–433. [Google Scholar] [CrossRef]
- Prodanov, M.; Sierra, I.; Vidal-Valverde, C. Influence of soaking and cooking on the thiamin, riboflavin and niacin contents of legumes. Food Chem. 2004, 84, 271–277. [Google Scholar] [CrossRef]
- Dagnia, S.G.; Petterson, D.S.; Bell, R.R.; Flanagan, V. Germination alters the chemical composition and protein quality of lupin seeds 1992. J. Sci. Food Agric. 1992, 60, 419–423. [Google Scholar] [CrossRef]
- Eskin, N.A.M.; Wiebe, S. Changes in phytase activity and phytate during germination of two fababean cultivars. J. Food Sci. 1983, 48, 270–271. [Google Scholar] [CrossRef]
- Khalil, A.W.; Zeb, A.; Mahmood, F.; Tariq, S.; Khattak, A.B.; Shah, H. Comparison of sprout quality characteristics of desi and kabuli type chickpea cultivars (Cicer arietinum L.). LWT—Food Sci. Technol. 2007, 40, 937–945. [Google Scholar] [CrossRef]
- Savelkoul, F.H.M.G.; Van der Poel, A.F.B.; Tamminga, S. The presence and inactivation of trypsin inhibitors, tannins, lectins and amylase inhibitors in legume seeds during germination. A review. Plant Foods Hum. Nutr. 1992, 42, 71–85. [Google Scholar] [CrossRef] [PubMed]
- Masood, T.; Shah, H.U.; Zeb, A. Effect of sprouting time on proximate composition and ascorbic acid level of mung bean (Vigna radiate L.) and chickpea (Cicer arietinum L.) seeds. J. Anim. Plant Sci. 2014, 24, 850–859. [Google Scholar]
- Maleki, S.; Razavi, S.H. Pulses’ germination and fermentation: Two bioprocessing against hypertension by releasing ACE inhibitory peptides. Crit. Rev. Food Sci. Nutr. 2021, 61, 2876–2893. [Google Scholar] [CrossRef] [PubMed]
- Nkhata, S.G.; Ayua, E.; Kamau, E.H.; Shingiro, J. Fermentation and germination improve nutritional value of cereals and legumes through activation of endogenous enzymes. Food Sci. Nutr. 2018, 6, 2446–2458. [Google Scholar] [CrossRef]
- Torino, M.I.; Limón, R.I.; Martínez-Villaluenga, C.; Mäkinen, S.; Pihlanto, A.; Vidal-Valverde, C.; Frias, J. Antioxidant and antihypertensive properties of liquid and solid state fermented lentils. Food Chem. 2013, 136, 1030–1037. [Google Scholar] [CrossRef]
- Adebo, J.A.; Njobeh, P.B.; Gbashi, S.; Oyedeji, A.B.; Ogundele, O.M.; Oyeyinka, S.A.; Adebo, O.Y. Fermentation of cereals and legumes: Impact on nutritional constituents and nutrient bioavailability. Fermentation 2022, 8, 63. [Google Scholar] [CrossRef]
- Bedford, M.R. Mechanism of action and potential environmental benefits from the use of feed enzymes. Anim. Feed Sci. Technol. 1995, 53, 145–155. [Google Scholar] [CrossRef]
- Bedford, M.R.; Partridge, G.G.; Walk, C.L.; Hruby, M. Enzymes in Farm Animal Nutrition, 3rd ed.; CABI Publishing: Wallingford, UK, 2022; p. 312. ISBN 9781789241563. [Google Scholar]
- Adeola, O.; Cowieson, A.J. Board-invited review: Opportunities and challenges in using exogenous enzymes to improve nonruminant animal production. J. Anim. Sci. 2011, 89, 3189–3218. [Google Scholar] [CrossRef] [PubMed]
- Ravindran, V.; Son, J.H. Feed enzyme technology: Present status and future developments. Recent Pat. Food Nutr. Agric. 2011, 3, 102–109. [Google Scholar] [PubMed]
- Evans, C.; Irving, H. The feed enzyme market in 2020 and beyond. In Enzymes in Farm Animal Nutrition, 3rd ed.; Bedford, M.R., Partridge, G.G., Hruby, M., Walk, C.L., Eds.; CABI Publishing: Wallingford, UK, 2022; pp. 1–3. [Google Scholar]
- Adeola, O.; Bedford, M.R. Exogenous dietary xylanase ameliorates viscosity-induced anti-nutritional effects in wheat-based diets for White Pekin ducks (Anas platyrinchos domesticus). Br. J. Nutr. 2004, 92, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Naveed, A.; Acamovic, T.; Bedford, M.R. Effect of enzyme supplementation of UK-grown lupinus albus on growth performance in broiler chickens. Br. Poult. Sci. 1998, 39, 36–37. [Google Scholar] [CrossRef] [PubMed]
- Cowieson, A.J.; Acamovic, T.; Bedford, M.R. Supplementation of diets containing pea meal with exogenous enzymes: Effects on weight gain, feed conversion, nutrient digestibility and gross morphology of the gastrointestinal tract of growing broiler chicks. Br. Poult. Sci. 2003, 44, 427–437. [Google Scholar] [CrossRef] [PubMed]
- Kocher, A.; Choct, M.; Ross, G.; Bros, J.; Chung, T.K. Effects of enzyme combinations on apparent metabolizable energy of corn-soybean meal-based diets in broilers. J. Appl. Poult. Res. 2003, 12, 275–283. [Google Scholar] [CrossRef]
- Summers, J.D. Importance of nutrient levels and variability in feedstuffs. In Feed Formulation; Technical Report Series; American Soybean Association International Marketing: St. Louis, MO, USA, 2006. [Google Scholar]
- Moughan, P.J. Amino acid availability: Aspects of chemical analysis and bioassay methodology. Nutr. Res. Rev. 2003, 16, 127–141. [Google Scholar] [CrossRef]
- Deshpande, S.S.; Damodaran, S. Structure-digestibility relationship of legume 7S proteins. J. Food. Sci. 1989, 54, 108–113. [Google Scholar] [CrossRef]
- Dänicke, S.; Kracht, W.; Jeroch, H.; Zachmann, R.; Heidenreich, E.; Löwe, R. Effect of different technical treatments of rapeseed on the feed value for broilers and laying hens. Arch. Anim. Nutr. 1998, 51, 53–62. [Google Scholar] [CrossRef]
- Carbonaro, M.; Grant, G.; Cappelloni, M. Heat-induced denaturation impairs digestibility of legume (Phaseolus vulgaris L. and Vicia faba L.) 7S and 11S globulins in the small intestine of rat. J. Sci. Food Agric. 2005, 85, 65–72. [Google Scholar] [CrossRef]
- Abdollahi, M.R.; Wiltafsky-Martin, M.; Zaefarian, F.; Ravindran, V. Influence of conditioning and expansion characteristics on the apparent metabolizable energy and standardized ileal amino acid digestibility of full-fat soybeans for broilers. Animals 2022, 12, 1021. [Google Scholar] [CrossRef] [PubMed]
- Abdollahi, M.R.; Wiltafsky-Martin, M.; Zaefarian, F.; Ravindran, V. Metabolizable energy and standardized ileal amino acid digestibility of full-fat soybeans for broilers are influenced by wet-heating, expansion temperature and autoclaving time. Poult. Sci. 2022, 101, 102016. [Google Scholar] [CrossRef]
- Speed, M.A.; King, J.; Wang, D.I.C. Polymerization mechanism of polypeptide chain aggregation. Biotechnol. Bioeng. 1997, 54, 333–343. [Google Scholar] [CrossRef]
- Singh, S.; Gamlath, S.; Wakeling, L. Nutritional aspects of food extrusion: A review. Int. J. Food Sci. Technol. 2007, 42, 916–929. [Google Scholar] [CrossRef]
- Sørensen, M.; Ljokjel, K.; Størebakken, T.; Shearer, K.D.; Skrede, A. Apparent digestibility of protein, amino acids and energy in rainbow trout (Onchorynchus mykiss) fed a fish meal based diet extruded at different temperatures. Aquaculture 2002, 211, 215–225. [Google Scholar] [CrossRef]
- Onwulata, C.I.; Konstance, R.P.; Cooke, P.H.; Farrell, H.M., Jr. Functionality of extrusion-Texturized whey proteins. J. Dairy Sci. 2003, 86, 3775–3782. [Google Scholar] [CrossRef] [PubMed]
- Camire, M.E.; Camire, A.; Krumhar, K. Chemical and nutritional changes in foods during extrusion. Crit. Rev. Food Sci. Nutr. 1990, 29, 35–57. [Google Scholar] [CrossRef] [PubMed]
- Korus, J.; Gumul, D.; Achremowicz, B. The influence of extrusion on chemical composition of dry seeds of bean (Phaseolus vulgaris L.). Electron. J. Pol. Agric. Univ. 2000, 9. [Google Scholar]
- Vasanthan, T.; Gaosong, J.; Yeung, J.; Li, J. Dietary fiber profile of barley flour as affected by extrusion cooking. Food Chem. 2002, 77, 35–40. [Google Scholar] [CrossRef]
- Lue, S.; Hsieh, F.; Huff, F. Extrusion cooking of maize meal and sugar beet fibre: Effects on expansion properties, starch gelatinization, and dietary fibre content. Cereal Chem. 1991, 68, 227–234. [Google Scholar]
- Lichovnikova, M.; Zeman, L.; Kracmar, S.; Klecker, D. The effect of the extrusion process on the digestibility of feed given to laying hens. Anim. Feed Sci. Technol. 2004, 116, 313–318. [Google Scholar] [CrossRef]
- van der Poel, A.T.F.B. Twin-screw extrusion of two pea varieties: Effects of temperature and moisture level on antinutritional factors and protein dispersibility. J. Sci. Food Agric. 1992, 58, 83–87. [Google Scholar] [CrossRef]
- Badjona, A.; Bradshaw, R.; Millman, C.; Howarth, M.; Dubey, B. Faba bean processing: Thermal and non-thermal processing on chemical, antinutritional factors, and pharmacological properties. Molecules 2023, 28, 5431. [Google Scholar] [CrossRef] [PubMed]
- Rebollo-Hernanz, M.; Martín-Cabrejas, M.A.; Aguilera, Y. Thermal processing of legumes. In Legumes: Nutritional Quality, Processing and Potential Health Benefits; Martín-Cabrejas, M.A., Ed.; The Royal Society of Chemistry: Croydon, UK, 2019; ISBN 978-1-78801-161-7. [Google Scholar]
- Osman, A.M.A.; Hassan, A.B.; Osman, G.A.M.; Mohammed, N.; Rushdi, M.A.H.; Diab, E.E.; Babiker, E.E. Effects of gamma irradiation and/or cooking on nutritional quality of faba bean (Vicia faba L.) cultivars seeds. J. Food Sci. Technol. 2014, 51, 1554–1560. [Google Scholar] [CrossRef] [PubMed]
- Bond, D.A.; Smith, D.B. Possibilities for the reduction of antinutritional factors in grain legumes by breeding. In Recent Advances of Research in Antinutritional Factors in Legume Seeds; Huisman, J., van der Poel, T.F.B., Liener, I.E., Eds.; Pudoc: Wageningen, The Netherlands, 1989; pp. 285–296. [Google Scholar]
- Smartt, J. Grain Legumes—Evolution and Genetic Resources; Cambridge University Press: Cambridge, UK, 1990; p. 392. ISBN 0521050529. [Google Scholar]
- Duraiswamy, A.; Sneha, A.N.M.; Jebakani, K.S.; Selvaraj, S.; Pramitha, J.L.; Selvaraj, R.; Petchiammal, K.I.; Sheriff, S.K.; Thinakaran, J.; Rathinamoorthy, S.; et al. Genetic manipulation of antinutritional factors in major crops for a sustainable diet in future. Front. Plant Sci. 2023, 13, 1070398. [Google Scholar] [CrossRef] [PubMed]
- Khazaei, H.; Purves, R.W.; Hughes, J.; Link, W.; O’Sullivan, D.M.; Schulman, A.H.; Björnsdotter, E.; Geu-Flores, F.; Nadzieja, M.; Andersen, S.U.; et al. Eliminating vicine and convicine, the main anti-nutritional factors restricting faba bean usage. Trends Food Sci. Technol. 2019, 91, 549–556. [Google Scholar] [CrossRef]
- Frick, K.M.; Kamphuis, L.G.; Siddique, K.H.M.; Singh, K.B.; Foley, R.C. Quinolizidine alkaloid biosynthesis in lupins and prospects for grain quality improvement. Front. Plant Sci. 2017, 8, 87. [Google Scholar] [CrossRef]
Dry common bean (Phaseolus vulgaris L.) 1 |
Dry faba beans (Vicia faba L.) 2 |
Dry field peas (Pisum sativum L.) |
Chickpeas (Cicer arietinum L.) |
Lupins (Lupinus spp.) 3 |
Lentils (Lens culinaris L.) |
Pigeon peas (Cajanus cajan L.) |
Cowpeas (Vigna unguiculata L.) |
Bambara bean (Vigna subterranea L.) 4 |
Vetches (Vicia sativa L.) |
Pulses nes 5 |
|
Amino Acids | References | ||||
---|---|---|---|---|---|
[22] | [24] | [25] 1 | [26] 2 | [26] 3 | |
Essential | |||||
Arginine | 31.5 | 11.7 | 34.4 | 29.9 | 31.7 |
Histidine | 11.0 | 3.1 | 8.0 | 7.6 | 7.6 |
Isoleucine | 13.8 | 5.2 | 12.6 | 11.4 | 11.4 |
Leucine | 21.9 | 7.9 | 20.8 | 20.6 | 21.1 |
Lysine | 15.0 | 5.1 | 12.9 | 13.8 | 14.2 |
Methionine | 2.6 | 0.8 | 1.8 | 2.0 | 4.5 |
Phenylalanine | 12.2 | 4.3 | 12.5 | 10.8 | 10.6 |
Threonine | 11.6 | 3.7 | 10.9 | 10.0 | 10.2 |
Valine | 13.8 | 4.7 | 12.2 | 11.2 | 11.2 |
Tryptophan | na | 0.8 | na | 2.8 | 2.9 |
Non-essential | |||||
Alanine | 11.0 | 4.0 | 10.7 | 10.0 | 10.4 |
Aspartic acid | 30.8 | 11.0 | 29.4 | 29.4 | 30.8 |
Cysteine | 2.5 | 1.5 | 33 | 3.6 | 3.7 |
Glycine | 13.4 | 4.6 | 12.9 | 12.1 | 12.6 |
Glutamic acid | 64.2 | 26.8 | 56.0 | 65.1 | 65.6 |
Proline | 11.7 | 4.8 | 13.2 | na | na |
Serine | 16.4 | 5.7 | 15.2 | 14.4 | 14.1 |
Tyrosine | 11.1 | 3.0 | 10.2 | 9.5 | 10.2 |
Cultivar | AME | Nitrogen-Corrected AME (AMEn) | References |
---|---|---|---|
Unknown | 9.99 * | 9.85 * | [22] |
Danja | 6.50–10.50 | - | [38,40] |
Gungurru | 6.53–11.64 | - | [25,38,40,41,42] |
Warrah | 9.42 | - | [26] |
Transgenic lupin | 10.18 | - | [26] |
Wallan | 6.38 | 5.35–5.82 | [31,32] |
Tanjil | 6.73 | 6.18 | [32] |
Borre | 7.12 | 5.52 | [32] |
Boruta | - | 9.27 | [43] |
Neptun | - | 8.67 | [43] |
Sonet | - | 9.16 | [43] |
Graf | - | 7.91 | [43] |
Pershatvet | 7.00 | - | [44] |
Kadryl | 7.37–8.40 | - | [45] |
Regent | 6.04–6.88 | - | [45] |
Dalbor | 6.71–7.68 | - | [45] |
Bojar | 8.52–9.25 | - | [45] |
Tango | 7.60–7.74 | - | [45] |
Nutrient | Average | Range * | References |
---|---|---|---|
Dry matter | 911 | 886–944 | [13,24,27,30,54,56,57,58,59,60,61,62] |
Crude protein | 362 | 202–424 | [13,24,27,30,35,54,56,57,58,59,60,61,62,63,64,65,66,67,68] |
Crude fat | 102 | 60–130 | [13,27,30,35,54,56,57,58,59,60,61,62,63,64,65,66] |
Crude fibre | 134 | 105–162 | [13,24,27,30,54,58,59,60,62,63,65,66] |
Acid detergent fibre | 158 | 130–172 | [24,27,56,58,60,61,62] |
Neutral detergent fibre | 203 | 185–234 | [24,27,56,58,60,61,62] |
Total fibre | 344–394 | [64] | |
Soluble fibre | 44 | 36–52 | [64] |
Insoluble fibre | 325 | 308–342 | [64] |
Starch | 50 | 14–125 | [27,58,64,68] |
Ash | 38 | 27–46 | [24,27,30,54,56,57,58,60,62,63,64,65,68] |
Calcium | 2.3 | 1.6–3.2 | [13,27,56,59,61,62] |
Phosphorus | 4.1 | 3.3–5.2 | [13,27,56,59,61,62] |
Amino Acid | References | |||||||
---|---|---|---|---|---|---|---|---|
[24] 1 | [57] 2 | [58] 3 | [59] 4 | [67] | [70] | [71] 5 | [72] 6 | |
Essential | ||||||||
Arginine | 11.4 | 36.3 | 38.4 | 28.0 | 43.1 | 29.9 | 35.8 | 38.6 |
Histidine | 2.5 | 8.8 | 9.0 | 7.0 | 9.4 | 7.1 | 5.9 | 8.3 |
Isoleucine | 5.3 | 13.4 | 17.9 | 14.0 | 18.0 | 15.2 | 17.1 | 14.3 |
Leucine | 8.3 | 26.0 | 28.6 | 25.7 | 28.7 | 23.3 | 23.4 | 24.3 |
Lysine | 5.1 | 16.7 | 16.4 | 16.2 | 19.3 | 15.9 | 17.4 | 16.4 |
Methionine | 0.7 | 2.8 | 2.6 | 6.5 | na | 3.4 | 2.9 | 2.6 |
Phenylalanine | 4.1 | 13.1 | 16.1 | 14.6 | na | 11.9 | 13.7 | 12.4 |
Threonine | 4.0 | 13.7 | 14.3 | 13.1 | 14.8 | 8.0 | 14.7 | 11.6 |
Valine | 4.9 | 13.7 | 15.1 | 13.8 | 17.2 | 15.0 | 10.6 | 14.5 |
Tryptophan | 0.8 | na | 2.3 | 3.2 | 3.2 | na | 3.4 | na |
Non-essential | ||||||||
Alanine | 3.7 | 12.0 | 12.7 | na | na | 10.9 | na | 10.2 |
Aspartic acid | 11.6 | 34.4 | 45.7 | na | na | 33.8 | na | 33.6 |
Cysteine | 1.4 | 5.3 | 5.5 | 7.5 | na | na | 3.7 | 5.1 |
Glycine | 4.2 | 12.7 | 14.9 | 13.4 | na | 12.8 | na | 13.4 |
Glutamic acid | 25.6 | 64.7 | 88.6 | na | na | 62.6 | na | 58.6 |
Proline | 3.9 | 11.9 | 16.5 | na | na | na | na | 12.8 |
Serine | 5.7 | 15.0 | 23.9 | na | na | 8.8 | na | 14.6 |
Tyrosine | 5.1 | 13.8 | 17.6 | na | na | 9.8 | na | 13.4 |
Cultivar | AME | Class of Poultry | References |
---|---|---|---|
Amiga (alkaloid-free) | 9.90 | Broilers | [56] |
Ultra | 9.20 | Roosters | [51] |
Kiev mutant | 9.58–13.29 | Broilers | [38,40,42,57,74] |
Promore | 9.68 | Broilers | [57] |
Ultra | 8.05 | Broilers | [57] |
Amino Acid | References | ||
---|---|---|---|
[49] | [57] 1 | [74] 2 | |
Essential | |||
Arginine | 0.88 | 0.95 | 0.97 |
Histidine | 0.81 | 0.81 | 0.82 |
Isoleucine | 0.77 | 0.88 | 0.86 |
Leucine | 0.79 | 0.89 | 0.88 |
Lysine | 0.81 | 0.90 | 0.90 |
Methionine | 0.84 | 0.83 | 0.79 |
Phenylalanine | 0.79 | 0.92 | 0.92 |
Threonine | 0.75 | 0.84 | 0.80 |
Valine | 0.75 | 0.85 | 0.86 |
Tryptophan | na | na | na |
Non-essential | |||
Alanine | 0.78 | 0.85 | 0.84 |
Aspartic acid | 0.80 | 0.87 | 0.78 |
Cysteine | 0.83 | 0.81 | 0.84 |
Glycine | 0.79 | 0.86 | 0.87 |
Glutamic acid | 0.85 | 0.93 | 0.84 |
Proline | na | 0.85 | 0.85 |
Serine | 0.78 | 0.85 | 0.87 |
Tyrosine | 0.81 | 0.88 | 0.88 |
Nutrient | Mean | Range * | References |
---|---|---|---|
Crude protein | 291 | 237–349 | [3,24,25,33,44,58,111,112,113,114,115,116,117,118,119,120] |
Crude fat | 16 | 10–28 | [3,25,33,44,58,112,113,114,115,116,117,118,119,120] |
Crude fibre | 106 | 84–232 | [3,24,33,44,58,111,112,113,114,117,119,120] |
Acid detergent fibre | 116 | 83–133 | [3,24,25,58,112,114,115,117,118,120] |
Neutral detergent fibre | 178 | 126–313 | [3,24,25,58,112,114,117,118,120] |
Ash | 36 | 28–52 | [3,24,25,33,44,58,111,114,115,116,117,119,120] |
Starch | 412 | 371–447 | [58,107,112,114,116,117,118,120] |
Calcium | 1.3 | 1.0–1.7 | [3,113,115,119,120] |
Phosphorus | 4.8 | 4.2–5.6 | [3,113,115,120] |
Amino Acid | References | |||||||
---|---|---|---|---|---|---|---|---|
[24] 1 | [25] 2 | [44] 3 | [58] | [116] 4 | [117] 5 | [119] 6 | [120] 7 | |
Essential | ||||||||
Arginine | 9.8 | 26.5 | 27.8 | 26.2 | 23.8 | 24.4 | 27.9 | 25.4 |
Histidine | 3.2 | 6.7 | 8.2 | 7.1 | 6.6 | 7.2 | Na | 8.0 |
Isoleucine | 4.8 | 10.8 | 11.7 | 12.6 | 9.2 | 12.7 | 11.0 | 11.8 |
Leucine | 8.3 | 19.2 | 21.3 | 21.3 | 16.7 | 21.6 | 21.0 | 21.2 |
Lysine | 7.1 | 14.4 | 18.6 | 18.0 | 14.0 | 18.8 | 21.8 | 17.0 |
Methionine | 0.8 | 1.7 | 2.2 | 2.4 | 2.2 | 2.2 | 2.4 | 2.8 |
Phenylalanine | 4.6 | 11.3 | 12.7 | 12.3 | 9.3 | 12.8 | na | 12.8 |
Threonine | 3.8 | 9.4 | 10.4 | 10.2 | 7.5 | 9.7 | 6.7 | 9.1 |
Valine | 5.4 | 12.1 | 13.6 | 13.8 | 10.4 | 13.7 | 13.0 | 13.5 |
Tryptophan | 0.8 | na | na | 2.6 | Na | 2.3 | 2.5 | 3.2 |
Non-essential | ||||||||
Alanine | 4.5 | 10.9 | 12.5 | 12.0 | 10.1 | 13.0 | na | 11.3 |
Aspartic | 11.9 | 27.5 | 24.3 | 28.0 | 26.1 | 30.3 | na | 30.6 |
Cysteine | 1.4 | 3.0 | 4.1 | 3.7 | 3.6 | 3.2 | 3.9 | 5.8 |
Glycine | 4.7 | 11.0 | 12.6 | 12.0 | 9.7 | 12.0 | na | 13.1 |
Glutamic acid | 20.7 | 40.7 | 47.1 | 48.6 | 38.2 | 47.5 | na | 45.5 |
Proline | 4.4 | 11.2 | 12.9 | 13.4 | 8.3 | 12.2 | na | 13.1 |
Serine | 5.3 | 12.7 | 14.1 | 14.9 | 8.9 | 12.0 | na | 12.6 |
Tyrosine | 3.3 | 7.8 | 10.0 | 8.5 | 7.5 | 9.3 | na | 10.1 |
Cultivar | AME | AMEn | References |
---|---|---|---|
Spring | - | 9.2 | [111] |
Winter | - | 9.9 | [111] |
Diana | - | 8.9 | [111] |
Fiord | 11.0–11.3 * | - | [25,119] |
- | - | 9.5–10.8 * | [106] |
Reconsitituted beans 1 | - | 11.8–12.7 | [121] |
PGG Tic | 10.8 | 9.8–10.5 | [31,116] |
Spec Tic | 9.2 | 8.3 | [116] |
South Tic | 12.0 | 10.6 | [116] |
Broad | 8.8 | 8.5 | [116] |
Merlin | - | 11.6 # | [118] |
Olga | - | 10.1 # | [118] |
Albus | - | 8.1 # | [118] |
Amulet | - | 7.9 *–12.2 # | [107,118] |
Kasztelan | - | 11.9 # | [118] |
Kontu | 12.4 | [44] | |
Ukko | 11.9 | - | [44] |
Amino Acid | [31] 1 | [44] 1,3 | [49] 1 | [116] 1,4 | [117] 2,5 | [118] 1 |
---|---|---|---|---|---|---|
Essential | ||||||
Arginine | 0.91 | 0.90 | 0.81 | 0.90 | 0.88 | 0.91 |
Histidine | 0.70 | 0.82 | 0.72 | 0.72 | 0.79 | 0.85 |
Isoleucine | 0.85 | 0.82 | 0.68 | 0.83 | 0.77 | 0.84 |
Leucine | 0.85 | 0.85 | 0.70 | 0.84 | 0.80 | 0.84 |
Lysine | 0.91 | 0.88 | 0.76 | 0.89 | 0.83 | 0.90 |
Methionine | 0.86 | 0.75 | 0.63 | 0.81 | 0.63 | 0.90 |
Phenylalanine | 0.86 | 0.80 | 0.72 | 0.88 | 0.80 | 0.85 |
Threonine | 0.84 | 0.79 | 0.68 | 0.77 | 0.72 | 0.81 |
Tryptophan | na | na | na | na | 0.80 | na |
Valine | 0.83 | 0.85 | 0.68 | 0.81 | 0.75 | 0.85 |
Non-essential | ||||||
Alanine | 0.89 | 0.86 | 0.71 | 0.86 | 0.80 | 0.86 |
Aspartic acid | 0.86 | 0.84 | 0.71 | 0.87 | 0.80 | 0.86 |
Cysteine | 0.63 | 0.49 | 0.58 | 0.56 | 0.47 | 0.77 |
Glycine | 0.81 | 0.77 | 0.67 | 0.76 | 0.65 | 0.82 |
Glutamic acid | 0.90 | 0.87 | 0.75 | 0.88 | 0.87 | 0.90 |
Proline | 0.71 | 0.75 | na | 0.54 | 0.75 | 0.83 |
Serine | 0.86 | 0.81 | 0.69 | 0.79 | 0.78 | 0.85 |
Tyrosine | 0.84 | 0.76 | 0.70 | 0.80 | 0.77 | 0.81 |
Nutrient | Mean | Range * | References |
---|---|---|---|
Dry matter | 905 | 882–935 | [3,25,128,129,130,131,132,133,134,135,136,137,138,139,140] |
Crude protein | 225 | 182–270 | [3,25,128,129,130,131,133,136,137,138,139,140,141,142,143,144,145,146] |
Crude fat | 58 | 42–156 | [3,25,128,130,131,133,136,137,138,139,141,142,144,145,146] |
Crude fibre | 79 | 42–75 | [3,128,130,131,133,136,137,138,139,146] |
Acid detergent fibre | 93 | 45–115 | [3,25,131,136,139,144,145] |
Neutral detergent fibre | 187 | 141–247 | [3,25,131,136,139,144,145] |
Soluble fibre | 43 | 43 | [141] |
Insoluble fibre | 235 | 235 | [141] |
Ash | 37 | 29–60 | [3,25,128,130,133,136,137,138,139,141,143,145,146] |
Starch | 422 | 310–535 | [128,131,142,144] |
Calcium | 2.4 | 1.4–4.8 | [3,128,133,145] |
Phosphorus | 4.0 | 3.9–4.1 | [3,128,133,145] |
Amino Acid | Digestibility Coefficient |
---|---|
Essential | |
Arginine | 0.84 |
Histidine | 0.77 |
Isoleucine | 0.70 |
Leucine | 0.70 |
Lysine | 0.76 |
Methionine | 0.72 |
Phenylalanine | 0.78 |
Threonine | 0.70 |
Valine | 0.73 |
Non-essential | |
Alanine | 0.73 |
Aspartic acid | 0.73 |
Cysteine | 0.58 |
Glycine | 0.68 |
Glutamic acid | 0.78 |
Serine | 0.74 |
Tyrosine | 0.72 |
Grain Legume | Soluble NSPs | Insoluble NSPs | Total NSPs | References |
---|---|---|---|---|
Chickpea | 20–33 | 74–76 | 96–107 | [233,237] |
Faba bean | 17–22 | 182–227 | 190–243 | [31,114,116,238] |
Australian sweet lupin | 22–40 | 229–464 | 251–496 | [31,32,233,239] |
White lupin | 29–50 | 320–339 | 355–405 | [57,238] |
Field pea | 3.6–59 | 130–322 | 146–347 | [31,89,90,114,233,238,240,241] |
Soybean meal | 12–139 | 141–231 | 159–303 | [233,240,242,243] |
Nutrient/ANF | Faba Beans 1,* | Faba Beans 2 | ASL 3 | ASL 2 | White Lupins 4,# | Field Peas 5 | Field Peas 2 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
W | D | W | D | W | D | W | D | W | D | W | D | W | D | |
Dry matter | 888 | 885 | 883 | 879 | 911 | 906 | 9301 | 896 | - | - | 906 | 925 | 869 | 874 |
Crude protein | 289 | 321 | 275 | 322 | 250 | 311 | 309 | 416 | 430 | 518 | 208 | 234 | 232 | 256 |
Crude fat | - | - | - | - | 54 | 65 | - | - | 107 | 119 | 12 | 10 | - | - |
Crude fibre | 95 | 26 | - | - | - | - | - | - | 140 | 44 | - | - | - | - |
NDF | 168 | 85 | - | - | 290 | 130 | - | - | - | - | 142 | 129 | - | - |
ADF | 126 | 27 | - | - | 219 | 82 | - | - | - | - | 64 | 22 | - | - |
Starch | - | - | 408 | 464 | - | - | - | - | - | - | 403 | 465 | 464 | 481 |
NSP (total) | - | - | 205 | 98 | - | - | 495 | 259 | - | - | - | - | 160 | 92 |
Soluble NSP | - | - | 20 | 14 | - | - | 32 | 19 | - | - | - | - | 19 | 15 |
Insoluble NSP | - | - | 185 | 84 | - | - | 463 | 240 | - | - | - | - | 141 | 77 |
Ash | 46 | 45 | - | - | 38 | 39 | - | - | 40 | 39 | 27 | 28 | - | - |
Calcium | - | - | - | - | 3.6 | 2.4 | - | - | - | - | 0.7 | 0.3 | - | - |
Phosphorous | - | - | - | - | 6.1 | 7.7 | - | - | - | - | 3.0 | 3.2 | - | - |
Tannins | 4.4 | 2.6 | - | - | - | - | - | - | - | - | - | - | - | - |
TI activity (TIU/mg) | 4.2 | 6.5 | - | - | - | - | - | - | - | - | - | - | - | - |
Indispensable amino acids | ||||||||||||||
Arginine | 8.7 | 8.9 | 24.5 | 29.5 | 24.2 | 28.7 | 25.4 | 36.5 | 9.4 | 10.1 | 18.7 | 20.1 | 17.4 | 19.0 |
Histidine | 2.8 | 2.9 | 6.6 | 7.7 | 6.8 | 8.5 | 7.9 | 10.3 | 4.8 | 3.6 | 5.1 | 5.5 | 5.6 | 6.1 |
Lysine | 6.3 | 6.1 | 15.3 | 17.4 | 12.2 | 14.3 | 14.5 | 18.6 | 5.0 | 5.7 | 15.9 | 17.1 | 16.1 | 17.0 |
Phenylalanine | 4.1 | 4.2 | 10.3 | 12.2 | 9.9 | 12.1 | 10.9 | 15.0 | 2.1 | 1.1 | 10.8 | 11.2 | 10.5 | 11.2 |
Leucine | 7.4 | 7.7 | 17.7 | 21.0 | 16.6 | 21.4 | 18.8 | 25.9 | 5.8 | 4.0 | 15.2 | 16.5 | 15.0 | 16.0 |
Isoleucine | 4.3 | 4.4 | 9.4 | 11.1 | 9.9 | 12.3 | 10.4 | 14.4 | 2.3 | 1.6 | 7.4 | 8.3 | 8.4 | 8.9 |
Valine | 4.8 | 5.1 | 24.5 | 29.5 | 10.6 | 11.8 | 25.4 | 36.5 | 3.2 | 3.4 | 8.7 | 9.7 | 17.4 | 19.0 |
Methionine | 0.7 | 0.8 | 1.9 | 2.1 | 1.6 | 2.3 | 1.9 | 2.6 | 4.8 | 5.5 | 1.9 | 2.0 | 2.0 | 2.0 |
Threonine | 3.4 | 3.0 | 8.4 | 9.7 | 9.2 | 10.5 | 10.2 | 14.1 | - | - | 8.2 | 8.7 | 7.8 | 8.1 |
Tryptophan | 0.7 | 0.8 | - | - | 2.4 | 3.1 | - | - | 4.7 | 5.1 | - | - | - | - |
Nutrient/ANF | Chickpeas 1,* | Sweet Lupins 2 | White Lupins 3 | Field Peas 4 | Faba Beans 5,* | |||||
---|---|---|---|---|---|---|---|---|---|---|
Raw | Ext. | Raw | Ext. | Raw | Ext. | Raw | Ext. | Raw | Ext. | |
Dry matter | 866 | 932 | - | - | - | - | - | - | 864 | 841–861 |
Crude protein | 200 | 208 | 279 | 311 | 369 | 377 | 230 | 229 | 239 | 232–236 |
Crude fat | 135 | 68 | 59 | 60 | 130 | 136 | 25 | 26 | - | - |
Crude fibre | 64 | 65 | 173 | 161 | - | - | - | - | - | - |
Ash | 35 | 36 | 33 | 34 | 37 | 36 | 31 | 31 | 37 | 37–38 |
ADF | - | - | 249 | 229 | - | - | - | - | 117 | 110–120 |
NDF | - | - | 271 | 245 | - | - | - | - | 156 | 127–139 |
NSPs | - | - | - | - | - | - | - | - | - | - |
Total | - | - | - | - | 371 | 379 | 200 | 194 | - | - |
Soluble | - | - | - | - | 41 | 74 | 23 | 28 | - | - |
Insoluble | - | - | - | - | 330 | 305 | 177 | 166 | - | - |
Starch | - | - | - | - | nd | nd | 465 | 461 | 367 | 354–368 |
Resistant starch | - | - | - | - | - | - | - | - | 192 | 10–15 |
AME (MJ/kg DM) | 10.8 | 11.5 | 8.6 | 7.5 | 9.9 | 7.8 | 11.7 | 11.1 | 7.9± | 9.0–10.9 ± |
Amino acids | ||||||||||
Arginine | 13 | 27 | 32 | 36 | 32 | - | - | 24 | 22–23 | |
Histidine | 2.0 | 1.9 | 7.6 | 8.3 | 9.1 | 8.6 | - | - | 6.8 | 6.3–6.8 |
Lysine | 15 | 15 | 12 | 13 | 19 | 17 | - | - | 18 | 17–18 |
Phenylalanine | 13 | 14 | 10 | 11 | 18 | 17 | - | - | 10 | 9.2–10 |
Leucine | 19 | 19 | 18 | 19 | 30 | 32 | - | - | 19 | 17–19 |
Isoleucine | 9.6 | 9.4 | 10 | 12 | 16 | 15 | - | - | 10 | 9.6–10 |
Valine | 12 | 11 | 11 | 11 | 16 | 17 | - | - | 11 | 10–11 |
Methionine | 2.8 | 2.5 | 1.5 | 1.6 | 3.8 | 3.7 | - | - | 0.5 | 0.4–0.7 |
Threonine | 9.3 | 94 | 9.2 | 10 | 15 | 15 | - | - | 9.0 | 8.5–9.3 |
Tryptophan | - | - | 2.3 | 2.5 | - | - | - | - | - | - |
Antinutritional factors | ||||||||||
TIA (mg/g) | - | - | - | - | 1.1 | 0.3 | 0.23 | 0.19 | 1.04 | 0.76–0.80 |
Phytic acid (g/kg) | - | - | - | - | - | - | - | - | 0.47 # | 0.42–0.43 # |
Tannins (g/kg) | - | - | - | - | - | - | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
David, L.S.; Nalle, C.L.; Abdollahi, M.R.; Ravindran, V. Feeding Value of Lupins, Field Peas, Faba Beans and Chickpeas for Poultry: An Overview. Animals 2024, 14, 619. https://doi.org/10.3390/ani14040619
David LS, Nalle CL, Abdollahi MR, Ravindran V. Feeding Value of Lupins, Field Peas, Faba Beans and Chickpeas for Poultry: An Overview. Animals. 2024; 14(4):619. https://doi.org/10.3390/ani14040619
Chicago/Turabian StyleDavid, Laura S., Catootjie L. Nalle, M. Reza Abdollahi, and Velmurugu Ravindran. 2024. "Feeding Value of Lupins, Field Peas, Faba Beans and Chickpeas for Poultry: An Overview" Animals 14, no. 4: 619. https://doi.org/10.3390/ani14040619
APA StyleDavid, L. S., Nalle, C. L., Abdollahi, M. R., & Ravindran, V. (2024). Feeding Value of Lupins, Field Peas, Faba Beans and Chickpeas for Poultry: An Overview. Animals, 14(4), 619. https://doi.org/10.3390/ani14040619