Kinematic and Morphometric Assessment of Fresh Semen, before, during and after Mating Period in Brahman Bulls
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics
2.2. Animals and Mating Period
2.3. Semen Collection
2.4. Sperm Kinematics and Motility
2.5. Morphology
2.6. Morphometry
2.7. Statistical Analysis
Multivariate Procedures
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Agus, A.; Widi, T.S.M. Current Situation and Future Prospects for Beef Cattle Production in Indonesia—A Review. Asian-Australas. J. Anim. Sci. 2018, 31, 976–983. [Google Scholar] [CrossRef] [PubMed]
- Madhusoodan, A.P.; Sejian, V.; Rashamol, V.P.; Savitha, S.T.; Bagath, M.; Krishnan, G.; Bhatta, R. Resilient Capacity of Cattle to Environmental Challenges—An Updated Review. J. Anim. Behav. Biometeorol. 2019, 7, 104–118. [Google Scholar] [CrossRef]
- Fernandes Júnior, G.A.; Silva, D.A.; Mota, L.F.M.; de Melo, T.P.; Fonseca, L.F.S.; Silva, D.B.D.S.; Carvalheiro, R.; De Albuquerque, L.G. Sustainable Intensification of Beef Production in the Tropics: The Role of Genetically Improving Sexual Precocity of Heifers. Animals 2022, 12, 174. [Google Scholar] [CrossRef] [PubMed]
- Taaffe, P.; O’Meara, C.M.; Stiavnicka, M.; Byrne, C.J.; Eivers, B.; Lonergan, P.; Fair, S. Increasing the Frequency of Ejaculate Collection in Young Dairy Bulls Increases Semen Production and Field Fertility. Theriogenology 2022, 182, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Chacón, J.; Müller, E.; Söderquist, L.; Rodríguez-Martínez, H. Breeding Soundness Evaluation of Extensivelty Managed Bulls in Costa Rica. Theriogenology 1999, 52, 221–231. [Google Scholar] [CrossRef] [PubMed]
- Schutt, K.M.; Burrow, H.M.; Thompson, J.M.; Bindon, B.M. Brahman and Brahman Crossbred Cattle Grown on Pasture and in Feedlots in Subtropical and Temperate Australia. 1. Carcass Quality. Anim. Prod. Sci. 2009, 49, 426–438. [Google Scholar] [CrossRef]
- Cooke, R.F.; Daigle, C.L.; Moriel, P.; Smith, S.B.; Tedeschi, L.O.; Vendramini, J.M.B. Cattle Adapted to Tropical and Subtropical Environments: Social, Nutritional, and Carcass Quality Considerations. J. Anim. Sci. 2020, 98, skaa014. [Google Scholar] [CrossRef] [PubMed]
- Torres-Aburto, V.F.; Barrientos-Morales, M.; Hernández-Flores, H.; Rodríguez-Andrade, A.; Cervantes-Acosta, P.; Landi, V.; Beltran, A.H.; Domínguez-Mancera, B. Breeding Soundness Examination and Herd Proficiency of Local Genetic Groups of Bulls in Tropical Environment Conditions in Veracruz, Mexico. Ital. J. Anim. Sci. 2020, 19, 840–855. [Google Scholar] [CrossRef]
- Chacón, J.; Pérez, E.; Rodríguez-Martínez, H. Seasonal Variations in Testicular Consistency, Scrotal Circumference and Spermiogramme Parameters of Extensively Reared Brahman (Bos indicus) Bulls in the Tropics. Theriogenology 2002, 58, 41–50. [Google Scholar] [CrossRef]
- Molina, R.; Bolaños, I.; Galina, C.S.; Pérez, E.; Paniagua, G.; Estrada, S. Sexual Behaviour of Zebu Bulls in the Humid Tropics of Costa Rica: Single versus Multiple-Sire Groups. Anim. Reprod. Sci. 2000, 64, 139–148. [Google Scholar] [CrossRef]
- Molina, R.; Galina, C.S.; Camacho, J.; Maquivar, M.; Diaz, G.S.; Estrada, S.; Martínez, L. Effect of Alternating Bulls as a Management Tool to Improve the Reproductive Performance of Suckled Zebu Cows in the Humid Tropics of Costa Rica. Anim. Reprod. Sci. 2002, 69, 159–173. [Google Scholar] [CrossRef] [PubMed]
- Farrell, P.B.; Presicce, G.A.; Brockett, C.C.; Foote, R.H. Quantification of Bull Sperm Characteristics Measured by Computer-Assisted Sperm Analysis (CASA) and the Relationship to Fertility. Theriogenology 1998, 49, 871–879. [Google Scholar] [CrossRef] [PubMed]
- García-Paloma, J.A.; Fernandez-Novo, A.; Perez-Villalobos, N.; Astiz, S. Comparative Cognition & Behavior Reviews The Importance of Reproductive Behavior Tests in Bull Breeding Soundness Evaluation. Comp. Cogn. Behav. Rev. 2022, 17, 1–12. [Google Scholar] [CrossRef]
- Martínez-Albarrán, J.F.; Galina-Hidalgo, C.S.; Rubio-Gutiérrez, I.; Balam-Villarreal, W.L.; Corro-Morales, M.D. Reproductive and Cost Assessment of a Seasonal Breeding Program with Bos indicus in Tropical Mexico. Rev. MVZ Córdoba 2021, 26, e2130. [Google Scholar] [CrossRef]
- Nagy, Á.; Polichronopoulos, T.; Gáspárdy, A.; Solti, L.; Cseh, S. Correlation between Bull Fertility and Sperm Cell Velocity Parameters Generated by Computer-Assisted Semen Analysis. Acta Vet. Hung. 2015, 63, 370–381. [Google Scholar] [CrossRef] [PubMed]
- Barth, A.D. Review: The Use of Bull Breeding Soundness Evaluation to Identify Subfertile and Infertile Bulls. Animal 2018, 12, s158–s164. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, L.Z.; de Arruda, R.P.; de Andrade, A.F.C.; Celeghini, E.C.C.; dos Santos, R.M.; Beletti, M.E.; Peres, R.F.G.; Oliveira, C.S.; Hossepian de Lima, V.F.M. Assessment of Field Fertility and Several in Vitro Sperm Characteristics Following the Use of Different Angus Sires in a Timed-AI Program with Suckled Nelore Cows. Livest. Sci. 2012, 146, 38–46. [Google Scholar] [CrossRef]
- Rodriguez-Martinez, H.; Barth, A.D. In Vitro Evaluation of Sperm Quality Related to in Vivo Function and Fertility. Soc. Reprod. Fertil. Suppl. 2007, 64, 39–54. [Google Scholar] [CrossRef]
- Zhang, B.R.; Larsson, B.; Lundeheim, N.; Håård, M.G.H.; Rodriguez-Martinez, H. Prediction of Bull Fertility by Combined in Vitro Assessments of Frozen-Thawed Semen from Young Dairy Bulls Entering an Al-Programme. Int. J. Androl. 1999, 22, 253–260. [Google Scholar] [CrossRef]
- Calderón-Calderón, J.; Sevilla, F.; Roldan, E.R.S.; Barquero, V.; Valverde, A. Influence of Fat-Soluble Vitamin Intramuscular Supplementation on Kinematic and Morphometric Sperm Parameters of Boar Ejaculates. Front. Vet. Sci. 2022, 9, 908763. [Google Scholar] [CrossRef]
- Kondracki, S.; Iwanina, M.; Wysokińska, A.; Huszno, M. Comparative Analysis of Duroc and Pietrain Boar Sperm Morphology. Acta Vet. Brno 2012, 81, 195–199. [Google Scholar] [CrossRef]
- Yániz, J.L.; Soler, C.; Santolaria, P. Toward an Integrative and Predictive Sperm Quality Analysis in Bos Taurus. Anim. Reprod. Sci. 2017, 181, 108–114. [Google Scholar] [CrossRef] [PubMed]
- Yániz, J.L.; Silvestre, M.A.; Santolaria, P.; Soler, C. CASA-Mot in Mammals: An Update. Reprod. Fertil. Dev. 2018, 30, 799–809. [Google Scholar] [CrossRef]
- Morrell, J.M.; Valeanu, A.S.; Lundeheim, N.; Johannisson, A. Sperm Quality in Frozen Beef and Dairy Bull Semen. Acta Vet. Scand. 2018, 60, 41. [Google Scholar] [CrossRef] [PubMed]
- Amann, R.; Waberski, D. Computer-Assisted Sperm Analysis (CASA): Capabilities and Potential Developments. Theriogenology 2014, 81, 5–17.e3. [Google Scholar] [CrossRef] [PubMed]
- O’Meara, C.; Henrotte, E.; Kupisiewicz, K.; Latour, C.; Broekhuijse, M.; Camus, A.; Gavin-Plagne, L.; Sellem, E. The Effect of Adjusting Settings within a Computer-Assisted Sperm Analysis (CASA) System on Bovine Sperm Motility and Morphology Results. Anim. Reprod. 2022, 19, e20210077. [Google Scholar] [CrossRef] [PubMed]
- Ibănescu, I.; Leiding, C.; Ciornei, Ş.G.; RoŞca, P.; Sfartz, I.; Drugociu, D. Differences in CASA Output According to the Chamber Type When Analyzing Frozen-Thawed Bull Sperm. Anim. Reprod. Sci. 2016, 166, 72–79. [Google Scholar] [CrossRef] [PubMed]
- Víquez, L.; Barquero, V.; Valverde, A. Condiciones Óptimas de Análisis Cinético En Semen Fresco de Toros Brahman. Agron. Mesoam. 2021, 32, 920–938. [Google Scholar] [CrossRef]
- Beran, J.; Stádník, L.; Bezdíček, J.; Louda, F.; Čítek, J.; Ducháček, J. Effect of Sire and Extender on Sperm Motility and Share of Live or Dead Sperm in Bulls’ Fresh Ejaculate and in AI Doses after Thawing. Arch. Anim. Breed. 2012, 55, 207–218. [Google Scholar] [CrossRef]
- Hyakutake, T.; Mori, K.; Sato, K. Effects of Surrounding Fluid on Motility of Hyperactivated Bovine Sperm. J. Biomech. 2018, 71, 183–189. [Google Scholar] [CrossRef]
- Valverde, A.; Madrigal, M.; Caldeira, C.; Bompart, D.; de Murga, J.N.; Arnau, S.; Soler, C. Effect of Frame Rate Capture Frequency on Sperm Kinematic Parameters and Subpopulation Structure Definition in Boars, Analysed with a CASA-Mot System. Reprod. Domest. Anim. 2019, 54, 167–175. [Google Scholar] [CrossRef] [PubMed]
- Büyükleblebici, S.; Tuncer, P.B.; Bucak, M.N.; Eken, A.; Sariözkan, S.; Taşdemir, U.; Endirlik, B.Ü. Cryopreservation of Bull Sperm: Effects of Extender Supplemented with Different Cryoprotectants and Antioxidants on Sperm Motility, Antioxidant Capacity and Fertility Results. Anim. Reprod. Sci. 2014, 150, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Valverde, A.; Arenán, H.; Sancho, M.; Contell, J.; Yániz, J.; Fernández, A.; Soler, C. Morphometry and Subpopulation Structure of Holstein Bull Spermatozoa: Variations in Ejaculates and Cryopreservation Straws. Asian J. Androl. 2016, 18, 851–857. [Google Scholar] [CrossRef] [PubMed]
- Wysokińska, A.; Wójcik, E.; Chłopik, A. Evaluation of the Morphometry of Sperm from the Epididymides of Dogs Using Different Staining Methods. Animals 2021, 11, 227. [Google Scholar] [CrossRef] [PubMed]
- Barquero, V.; Roldan, E.R.S.; Soler, C.; Yániz, J.L.; Camacho, M.; Valverde, A. Predictive Capacity of Boar Sperm Morphometry and Morphometric Sub-Populations on Reproductive Success after Artificial Insemination. Animals 2021, 11, 920. [Google Scholar] [CrossRef] [PubMed]
- Kondracki, S.; Wysokińska, A.; Kania, M.; Górski, K. Application of Two Staining Methods for Sperm Morphometric Evaluation in Domestic Pigs. J. Vet. Res. 2017, 61, 345–349. [Google Scholar] [CrossRef] [PubMed]
- Yániz, J.; Capistrós, S.; Vicente-Fiel, S.; Hidalgo, C.; Santolaria, P. A Comparative Study of the Morphometry of Sperm Head Components in Cattle, Sheep, and Pigs with a Computer-Assisted Fluorescence Method. Asian J. Androl. 2016, 18, 840–843. [Google Scholar] [CrossRef]
- Banaszewska, D.; Czubaszek, M.; Walczak-Jędrzejowska, R.; Andraszek, K. Morphometric Dimensions of the Stallion Sperm Head Depending on the Staining Method Used. Bull. Vet. Inst. Pulawy 2015, 59, 263–270. [Google Scholar] [CrossRef]
- Czubaszek, M.; Andraszek, K.; Banaszewska, D.; Walczak-Jędrzejowska, R. The Effect of the Staining Technique on Morphological and Morphometric Parameters of Boar Sperm. PLoS ONE 2019, 14, e0214243. [Google Scholar] [CrossRef]
- Gizejewski, Z. Effect of Season on Characteristics of Red Deer/Cervus elaphus L./Semen Collected Using Modified Artificial Vagina. Reprod. Biol. 2004, 4, 51–66. [Google Scholar]
- Abadjieva, D.; Chervenkov, M.; Stefanov, R.; Metodiev, N.; Kistanova, E.; Kacheva, D.; Raycheva, E. Effect of Breeding Season on the Kinematic Parameters and Morphology of Ram’ Sperm from Synthetic Population Bulgarian Milk Sheep Breed. Bulg. J. Agric. Sci. 2014, 20, 967–972. [Google Scholar]
- Swelum, A.A.A.; Saadeldin, I.M.; Ba-Awadh, H.; Alowaimer, A.N. Shortened Daily Photoperiod during the Non-Breeding Season Can Improve the Reproductive Performance of Camel Bulls (Camelus dromedarius). Anim. Reprod. Sci. 2018, 195, 334–344. [Google Scholar] [CrossRef] [PubMed]
- Al-Bulushi, S.; Manjunatha, B.M.; de Graaf, S.P.; Rickard, J.P. Reproductive Seasonality of Male Dromedary Camels. Anim. Reprod. Sci. 2019, 202, 10–20. [Google Scholar] [CrossRef] [PubMed]
- Quezada-Casasola, A.; Martínez-Armendáriz, K.E.; Carrera-Chávez, J.M.; Pérez-Eguía, E.; Rodríguez-Alarcón, C.A.; Avendaño-Reyes, L. Effect of Season on Scrotal Circumference, Semen Characteristics and Testosterone Serum Concentration in Mexican Corriente and Other Beef Breed Bulls. Anim. Reprod. 2016, 13, 787–794. [Google Scholar] [CrossRef]
- Gumulka, M.L.; Rozenboim, I. Breeding Period-Associated Changes in Semen Quality, Concentrations of LH, PRL, Gonadal Steroid and Thyroid Hormones in Domestic Goose Ganders (Anser anser f. domesticus). Anim. Reprod. Sci. 2015, 154, 166–175. [Google Scholar] [CrossRef] [PubMed]
- Lüpold, S.; Birkhead, T.R.; Westneat, D.F. Seasonal Variation in Ejaculate Traits of Male Red-Winged Blackbirds (Agelaius phoeniceus). Behav. Ecol. Sociobiol. 2012, 66, 1607–1617. [Google Scholar] [CrossRef]
- Ellis, R.W.; Rupp, G.P.; Chenoweth, P.J.; Cundiff, L.V.; Lunstra, D.D. Fertility of Yearling Beef Bulls during Mating. Theriogenology 2005, 64, 657–678. [Google Scholar] [CrossRef] [PubMed]
- Fordyce, G.; Entwistle, K.; Norman, S.; Perry, V.; Gardiner, B.; Fordyce, P. Standardising Bull Breeding Soundness Evaluations and Reporting in Australia. Theriogenology 2006, 66, 1140–1148. [Google Scholar] [CrossRef]
- Boyd, G.; Conrad, L. Serving Capacity of Yearling Beef Bulls’. Theriogenology 1988, 29, 779–790. [Google Scholar] [CrossRef]
- Kennedy, S.P.; Spitzer, J.C.; Hopkins, F.M.; Higdon, H.L.; Bridges, W.C. Breeding Soundness Evaluations of 3648 Yearling Beef Bulls Using the 1993 Society for Theriogenology Guidelines. Theriogenology 2002, 58, 947–961. [Google Scholar] [CrossRef]
- Barth, A.D.; Arteaga, A.A.; Brito, L.F.C.; Palmer, C.W. Use of Internal Artificial Vaginas for Breeding Soundness Evaluation in Range Bulls: An Alternative for Electroejaculation Allowing Observation of Sex Drive and Mating Ability. Anim. Reprod. Sci. 2004, 84, 315–325. [Google Scholar] [CrossRef] [PubMed]
- Rego, J.P.A.; Moura, A.A.; Nouwens, A.S.; McGowan, M.R.; Boe-Hansen, G.B. Seminal Plasma Protein Profiles of Ejaculates Obtained by Internal Artificial Vagina and Electroejaculation in Brahman Bulls. Anim. Reprod. Sci. 2015, 160, 126–137. [Google Scholar] [CrossRef] [PubMed]
- Toledano-Díaz, A.; Castaño, C.; Velázquez, R.; Bóveda, P.; López-Sebastián, A.; Martínez-Nevado, E.; Villaverde-Morcillo, S.; Esteso, M.C.; Santiago-Moreno, J. Cryopreservation of Ferret (Mustela putorius furo) Sperm Collected by Rectal Massage and Electroejaculation: Comparison of a Decelerating and an Accelerating Freezing Rate Protocol. Vet. Med. Sci. 2021, 7, 256–263. [Google Scholar] [CrossRef] [PubMed]
- Soler, C.; García-Molina, A.; Contell, J.; Silvestre, M.A.; Sancho, M. The Trumorph℗® System: The New Univ the Morphology of Living Sperm. Anim. Reprod. Sci. 2015, 158, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Hancock, A.S.; Younis, P.J.; Beggs, D.S.; Mansell, P.D.; Stevenson, M.A.; Pyman, M.F. An Assessment of Dairy Herd Bulls in Southern Australia: 1. Management Practices and Bull Breeding Soundness Evaluations. J. Dairy Sci. 2016, 99, 9983–9997. [Google Scholar] [CrossRef] [PubMed]
- Perry, V.E.A. The Role of Sperm Morphology Standards in the Laboratory Assessment of Bull Fertility in Australia. Front. Vet. Sci. 2021, 8, 672058. [Google Scholar] [CrossRef] [PubMed]
- Snider, A.P.; McCarthy, K.L.; Wright-Johnson, E.C.; Ondrak, J.D.; Oliver, W.T.; Dahlen, C.R.; Cushman, R.A.; Crouse, M.S. Yearling Bulls Have Reduced Sperm Concentration and Increased Seminal Plasma Interleukin-8 after a 28-Day Breeding Season. Reprod. Domest. Anim. 2022, 57, 1465–1473. [Google Scholar] [CrossRef] [PubMed]
- Maree, L.; Van Der Horst, G. Quantification and Identification of Sperm Subpopulations Using Computer-Aided Sperm Analysis and Species-Specific Cut-off Values for Swimming Speed. Biotech. Histochem. 2013, 88, 181–193. [Google Scholar] [CrossRef]
- van der Horst, G. Computer Aided Sperm Analysis (CASA) in Domestic Animals: Current Status, Three D Tracking and Flagellar Analysis. Anim. Reprod. Sci. 2020, 220, 106350. [Google Scholar] [CrossRef]
- Lavanya, M.; Archana, S.S.; Swathi, D.; Ramya, L.; Arangasamy, A.; Binsila, B.; Dhali, A.; Krishnaswamy, N.; Singh, S.K.; Kumar, H.; et al. Sperm Preparedness and Adaptation to Osmotic and PH Stressors Relate to Functional Competence of Sperm in Bos Taurus. Sci. Rep. 2021, 11, 22563. [Google Scholar] [CrossRef]
- Ebel, F.; Vallejos, A.; Gajardo, G.; Ulloa, O.; Clavel, E.; Rodríguez-Gil, J.E.; Ramírez-Reveco, A. Semen Quality and Freezability Analysis during Breeding and Non-Breeding Seasons in Heavy Draft Stallions in Southern Chile. Andrologia 2020, 52, e13797. [Google Scholar] [CrossRef] [PubMed]
- Ibanescu, I.; Siuda, M.; Bollwein, H. Motile Sperm Subpopulations in Bull Semen Using Different Clustering Approaches—Associations with Flow Cytometric Sperm Characteristics and Fertility. Anim. Reprod. Sci. 2020, 215, 106329. [Google Scholar] [CrossRef] [PubMed]
- Víquez, L.; Barquero, V.; Soler, C.; Roldan, E.R.S.; Valverde, A. Kinematic Sub-Populations in Bull Spermatozoa: A Comparison of Classical and Bayesian Approaches. Biology 2020, 9, 138. [Google Scholar] [CrossRef] [PubMed]
- Barquero, V.; Roldan, E.R.S.; Soler, C.; Vargas-Leitón, B.; Sevilla, F.; Camacho, M.; Valverde, A. Relationship between Fertility Traits and Kinematics in Clusters of Boar Ejaculates. Biology 2021, 10, 595. [Google Scholar] [CrossRef] [PubMed]
- Palacin-Martinez, C.; Alvarez, M.; Montes-Garrido, R.; Neila-Montero, M.; Anel-Lopez, L.; de Paz, P.; Anel, L.; Riesco, M.F. Frequency of Semen Collection Affects Ram Sperm Cryoresistance. Animals 2022, 12, 1492. [Google Scholar] [CrossRef] [PubMed]
- Erofeeva, M.N.; Alekseeva, G.S.; Sorokin, P.A.; Naidenko, S.V. Effect of the Number of Mating Partners and Sperm Quality on Reproductive Success in the Domestic Cat (Felis catus). Biol. Bull. 2018, 45, 756–765. [Google Scholar] [CrossRef]
- Gómez, L.; Varea, M.; Tourmente, M.; Martín-Coello, J.; Luque-Larena, J.J.; Gomendio, M.; Roldan, E.R.S. Sperm Competition Differentially Affects Swimming Velocity and Size of Spermatozoa from Closely Related Muroid Rodents: Head First. Reproduction 2011, 142, 819–830. [Google Scholar] [CrossRef]
- Kondracki, S.; Banaszewska, D.; Wysokińska, A.; Iwanina, M. The Effect of Sperm Concentration in the Ejaculate on Morphological Traits of Bull Spermatozoa. Folia Biol. 2012, 60, 85–91. [Google Scholar] [CrossRef]
- Elgeti, J.; Kaupp, U.B.; Gompper, G. Hydrodynamics of Sperm Cells near Surfaces. Biophys. J. 2010, 99, 1018–1026. [Google Scholar] [CrossRef]
- Nassir, M.; Levi, M.; Dardikman-Yoffe, G.; Mirsky, S.K.; Shaked, N.T. Prediction of Sperm Progression in Three Dimensions Using Rapid Optical Imaging and Dynamic Mechanical Modeling. Cells 2022, 11, 1319. [Google Scholar] [CrossRef]
- Ramón, M.; Soler, A.J.; Ortiz, J.A.; García-Alvarez, O.; Maroto-Morales, A.; Roldan, E.R.S.; Garde, J.J. Sperm Population Structure and Male Fertility: An Intraspecific Study of Sperm Design and Velocity in Red Deer. Biol. Reprod. 2013, 89, 1–7. [Google Scholar] [CrossRef]
- Bremer, J.; Morrell, J.M.; Kommisrud, E. Novel Interpretation of Sperm Stress Test and Morphology for Maturity Assessment of Young Norwegian Red Bulls. Anim. Reprod. Sci. 2023, 253, 107261. [Google Scholar] [CrossRef] [PubMed]
- Cucho, H.; Puelles, O.; Meza, A.; Urquizo, D.; Coila, L.; Valverde, A. Morphometric Characterization and Classification of Vicuña Sperm (Vicugna vicugna) Using ISAS® CASA-Morph System. Spermova 2021, 11, 115–123. [Google Scholar] [CrossRef]
- Cucho, H.; Nina, G.; Meza, A.; Ccalta, R.; Ordóñez, C.; Valverde, A. Subpoblaciones Morfométricas de Espermatozoides Epididimarios Del Venado de Cola Blanca (Odocoileus Virginianus Peruvianus). Agron. Mesoam. 2022, 33, 46938. [Google Scholar] [CrossRef]
- Shahani, S.K.; Revell, S.G.; Argo, C.G.; Murray, R.D. Mid-piece Length of Spermatozoa in Different Cattle Breeds and its Relationship to Fertility. Pak. J. Biol. Sci. 2010, 13, 802–808. [Google Scholar] [CrossRef] [PubMed]
- Anderson, M.J.; Nyholt, J.; Dixson, A.F. Sperm Competition and the Evolution of Sperm Midpiece Volume in Mammals. J. Zool. 2005, 267, 135–142. [Google Scholar] [CrossRef]
- Turner, R.M. Tales from the Tail: What Do We Really Know about Sperm Motility? J. Androl. 2003, 24, 790–803. [Google Scholar] [CrossRef] [PubMed]
- Rowe, M.; Laskemoen, T.; Johnsen, A.; Lifjeld, J.T. Evolution of Sperm Structure and Energetics in Passerine Birds. Proc. R. Soc. B Biol. Sci. 2013, 280, 20122616. [Google Scholar] [CrossRef]
- Gomendio, M.; Roldan, E.R.S. Implications of Diversity in Sperm Size and Function for Sperm Competition and Fertility. Int. J. Dev. Biol. 2008, 52, 439–447. [Google Scholar] [CrossRef]
- Firman, R.C.; Simmons, L.W. Sperm Midpiece Length Predicts Sperm Swimming Velocity in House Mice. Biol. Lett. 2010, 6, 513–516. [Google Scholar] [CrossRef]
Variable | Times of Mating Periods | ||
---|---|---|---|
PMP | DMP | AMP | |
SC (cm) | 41.21 ± 1.04 | 41.84 ± 0.74 | 42.15 ± 1.12 |
Ejaculate volume (mL) | 6.70 ± 1.49 a | 2.75 ± 0.97 b | 7.79 ± 1.26 a |
Concentration (×109 sperm/mL) | 1.41 ± 0.25 a | 0.66 ± 0.16 b | 1.44 ± 0.21 a |
TM (%) | 75.68 ± 4.13 | 69.85 ± 2.92 | 75.82 ± 2.13 |
PM (%) | 65.83 ± 4.13 | 63.92 ± 2.92 | 67.90 ± 4.13 |
Normal sperm (%) | 88.81 ± 2.13 | 89.76 ± 1.51 | 87.60 ± 2.13 |
Abnormal sperm (%) | 11.19 ± 2.13 | 10.24 ± 1.51 | 12.40 ± 2.13 |
Variable | Times of Mating Periods | ||
---|---|---|---|
PMP | DMP | AMP | |
VCL (µm/s) | 120.87 ± 0.59 c | 141.87 ± 0.50 b | 155.97 ± 0.69 a |
VSL (µm/s) | 86.05 ± 0.52 c | 107.71 ± 0.44 b | 113.32 ± 0.61 a |
VAP (µm/s) | 91.98 ± 0.50 c | 114.37 ± 0.42 b | 123.14 ± 0.58 a |
LIN (%) | 68.69 ± 0.22 c | 74.61 ± 0.18 a | 71.88 ± 0.25 b |
STR (%) | 88.46 ± 0.17 b | 90.62 ± 0.14 a | 89.03 ± 0.19 b |
WOB (%) | 74.69 ± 0.16 c | 79.98 ± 0.13 a | 78.65 ± 0.19 b |
ALH (µm) | 2.61 ± 0.01 b | 2.57 ± 0.01 c | 2.68 ± 0.01 a |
BCF (Hz) | 13.95 ± 0.06 c | 15.08 ± 0.05 b | 16.49 ± 0.07 a |
Variable | Times of Mating Period | ||
---|---|---|---|
PMP | DMP | AMP | |
Sperm head | |||
Length (µm) | 9.41 ± 0.02 a | 9.38 ± 0.01 a | 9.14 ± 0.02 b |
Width (µm) | 5.03 ± 0.01 a | 5.00 ± 0.01 b | 4.95 ± 0.01 c |
Area (µm2) | 41.62 ± 0.08 a | 41.07 ± 0.06 b | 39.91 ± 0.08 c |
Perimeter (µm) | 26.29 ± 0.03 a | 26.17 ± 0.02 b | 25.74 ± 0.03 c |
Acrosome (%) | 59.86 ± 0.11 b | 60.58 ± 0.08 a | 59.92 ± 0.11 b |
Ellipticity | 1.876 ± 0.004 a | 1.880 ± 0.003 a | 1.851 ± 0.004 b |
Rugosity | 0.757 ± 0.001 ab | 0.754 ± 0.001 b | 0.757 ± 0.001 a |
Elongation | 0.303 ± 0.001 a | 0.304 ± 0.001 a | 0.297 ± 0.001 b |
Regularity | 0.894 ± 0.001 b | 0.897 ± 0.001 a | 0.891 ± 0.001 b |
Sperm midpiece | |||
Width (µm) | 1.92 ± 0.01 a | 1.91 ± 0.01 a | 1.87 ± 0.01 b |
Area (µm2) | 10.69 ± 0.06 ab | 10.65 ± 0.04 b | 10.87 ± 0.06 a |
Insertion distance (µm) | 0.307 ± 0.005 ab | 0.317 ± 0.003 a | 0.303 ± 0.005 b |
Insertion angle (°) | 7.92 ± 0.16 a | 6.82 ± 0.11 b | 5.82 ± 0.16 c |
Variable | Times of Mating Period | ||||||||
---|---|---|---|---|---|---|---|---|---|
PMP | DMP | AMP | |||||||
PC1 | PC2 | PC3 | PC1 | PC2 | PC3 | PC1 | PC2 | PC3 | |
VCL | 0.935 | 0.966 | 0.961 | ||||||
VSL | 0.652 | 0.682 | 0.834 | 0.771 | |||||
VAP | 0.799 | 0.928 | 0.900 | ||||||
LIN | 0.963 | 0.983 | 0.976 | ||||||
STR | 0.680 | 0.769 | 0.720 | ||||||
WOB | 0.930 | 0.885 | 0.873 | ||||||
ALH | 0.826 | 0.765 | 0.698 | ||||||
BCF | 0.859 | 0.875 | 0.854 | ||||||
Var Exp | 54.39 | 25.45 | 9.43 | 49.39 | 30.23 | 11.20 | 47.66 | 29.60 | 13.46 |
Variable | VCL (µm/s) | VSL (µm/s) | VAP (µm/s) | LIN (%) | STR (%) | WOB (%) | ALH (µm) | BCF (Hz) |
---|---|---|---|---|---|---|---|---|
PMP | ||||||||
SP1 | 148.22 ± 0.80 b | 96.75 ± 0.65 b | 100.10 ± 0.65 b | 64.90 ± 0.31 c | 94.42 ± 0.23 b | 67.15 ± 0.27 c | 3.08 ± 0.02 a | 20.25 ± 0.09 a |
SP2 | 102.01 ± 1.02 c | 32.97 ± 0.83 d | 57.71 ± 0.82 c | 30.23 ± 0.39 d | 54.65 ± 0.29 d | 54.77 ± 0.34 d | 3.00 ± 0.02 b | 8.87 ± 0.11 d |
SP3 | 154.89 ± 0.69 a | 130.47 ± 0.56 a | 133.25 ± 0.56 a | 83.90 ± 0.26 a | 95.51 ± 0.20 a | 86.04 ± 0.23 a | 2.87 ± 0.01 c | 13.09 ± 0.07 b |
SP4 | 73.42 ± 0.70 d | 56.18 ± 0.57 c | 58.41 ± 0.57 c | 73.34 ± 0.27 b | 92.62 ± 0.20 c | 77.58 ± 0.23 b | 1.81 ± 0.02 d | 11.07 ± 0.08 c |
DMP | ||||||||
SP1 | 94.19 ± 1.11 d | 30.98 ± 0.95 d | 56.99 ± 0.97 d | 33.67 ± 0.31 d | 58.28 ± 0.25 c | 58.05 ± 0.27 d | 2.42 ± 0.02 b | 8.85 ± 0.10 d |
SP2 | 141.38 ± 0.65 b | 127.89 ± 0.55 b | 130.58 ± 0.56 b | 89.71 ± 0.18 a | 95.85 ± 0.14 a | 92.16 ± 0.16 a | 2.03 ± 0.01 d | 12.09 ± 0.06 c |
SP3 | 222.11 ± 0.84 a | 158.87 ± 0.71 a | 167.95 ± 0.73 a | 72.49 ± 0.24 c | 92.96 ± 0.19 b | 76.60 ± 0.21 c | 4.11 ± 0.01 a | 19.00 ± 0.08 a |
SP4 | 106.59 ± 0.68 c | 80.46 ± 0.58 c | 82.65 ± 0.59 c | 75.18 ± 0.19 b | 95.47 ± 0.15 a | 77.51 ± 0.17 b | 2.17 ± 0.01 c | 18.00 ± 0.06 b |
AMP | ||||||||
SP1 | 181.94 ± 0.78 b | 153.55 ± 0.65 a | 165.16 ± 0.65 a | 84.22 ± 0.26 a | 91.57 ± 0.23 b | 90.89 ± 0.22 a | 2.52 ± 0.02 b | 13.37 ± 0.10 c |
SP2 | 119.10 ± 0.71 c | 94.18 ± 0.59 c | 96.12 ± 0.59 c | 78.61 ± 0.23 b | 96.25 ± 0.20 a | 80.50 ± 0.20 b | 2.15 ± 0.01 c | 18.18 ± 0.09 b |
SP3 | 101.35 ± 1.32 d | 30.81 ± 1.09 d | 61.85 ± 1.09 d | 30.50 ± 0.43 d | 52.96 ± 0.38 c | 57.76 ± 0.37 d | 2.46 ± 0.03 b | 9.67 ± 0.17 d |
SP4 | 222.59 ± 1.03 a | 133.84 ± 0.82 b | 144.42 ± 0.85 b | 60.62 ± 0.34 c | 91.09 ± 0.30 b | 65.50 ± 0.29 c | 4.20 ± 0.02 a | 22.58 ± 0.13 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Araya-Zúñiga, I.; Sevilla, F.; Molina-Montero, R.; Roldan, E.R.S.; Barrientos-Morales, M.; Silvestre, M.A.; Valverde, A. Kinematic and Morphometric Assessment of Fresh Semen, before, during and after Mating Period in Brahman Bulls. Animals 2024, 14, 132. https://doi.org/10.3390/ani14010132
Araya-Zúñiga I, Sevilla F, Molina-Montero R, Roldan ERS, Barrientos-Morales M, Silvestre MA, Valverde A. Kinematic and Morphometric Assessment of Fresh Semen, before, during and after Mating Period in Brahman Bulls. Animals. 2024; 14(1):132. https://doi.org/10.3390/ani14010132
Chicago/Turabian StyleAraya-Zúñiga, Ignacio, Francisco Sevilla, Rafael Molina-Montero, Eduardo R. S. Roldan, Manuel Barrientos-Morales, Miguel A. Silvestre, and Anthony Valverde. 2024. "Kinematic and Morphometric Assessment of Fresh Semen, before, during and after Mating Period in Brahman Bulls" Animals 14, no. 1: 132. https://doi.org/10.3390/ani14010132
APA StyleAraya-Zúñiga, I., Sevilla, F., Molina-Montero, R., Roldan, E. R. S., Barrientos-Morales, M., Silvestre, M. A., & Valverde, A. (2024). Kinematic and Morphometric Assessment of Fresh Semen, before, during and after Mating Period in Brahman Bulls. Animals, 14(1), 132. https://doi.org/10.3390/ani14010132