Spatiotemporal Distribution of PRRSV-1 Clades in Hungary with a Focus on the Era of Disease Eradication
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. History of PRRS Epizootiology in Hungary
- 1996–2004. In this period, Hungarian pig farming was characterized by the nearly equal (i.e., 50–50%) distribution of fattening pig production between backyard and large farms, the very strict hierarchical animal health administration system and the import of live animals limited to a small number of breeding animals. In this period, PRRSV was probably introduced through breeding animals, but the laboratory infrastructure and diagnostic tests to diagnose the disease were in their infancy. Additionally, sequencing of the ORF5 genomic region did not help to determine the route of infection.
- 2004–2014. Hungary became a member of the European Union. As a consequence for the pig industry, the import of live pigs increased dramatically (to nearly 90,000 tons in 2 years). In 2011, more than one million live pigs were imported to Hungary. Simultaneously, there was a significant decrease in the number and production of small-scale herds. The constant reorganization of the animal health administration, relegation of epidemic prevention and softening of animal transport and quarantine rules have favored the spread of PRRS. In 2008, PRRS became a notifiable disease again in Hungary.
- 2014–2022. This period was defined by elimination efforts and preservation of the results achieved. The 3/2014 (I.16.) VM decree of Minister of Rural Development has settled the legal background for the National PRRS Eradication Program coordinated by the National PRRS Eradication Committee, a unique proceeding in the EU at the time. According to the National PRRS Eradication Plan, that regulated the tasks, all pig farmers had to certify their herd based on serological (ELISA) and virological (PCR) diagnostic tests for PRRSV carried out by the National Reference Laboratory at the Veterinary Diagnostic Directorate, National Food Chain Safety Office. Besides the elimination of PRRS from Hungarian pig herds, another principal goal of the eradication plan was to identify the origin of PRRS infections for all PCR-positive herds by epidemiological investigation. The main laboratory tool of this effort was the sequence analysis of the ORF5 gene, as described elsewhere in detail [15,16,17]. In this period, very rigorous field epidemiology investigations were carried out to trace the origin and potential intra-country transmission of vaccine strains and to identify imported strains as well as farm-specific resident strains. It is clearly not possible to share all details in this study; therefore, further data are available upon request.
2.2. Classification by Phylogenetic and Network Analysis
3. Results
3.1. Old and New PRRSV-1 Clades in Hungary
3.2. Spatiotemporal Distribution of PRRSV-1 Clades
3.2.1. Clade 1a
3.2.2. Clade 1b
3.2.3. Clade 1c
3.2.4. Clade 1e
3.2.5. Clade 1f
3.2.6. Clade 1g
3.2.7. Clade ‘Spanish’
3.2.8. Porcilis and Porcilis-like Strains
3.2.9. Clade X1
3.2.10. Clade X2
3.2.11. Clade 2
3.2.12. Clade 3c
3.2.13. Clade 3d
3.2.14. Clade 3f
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Holtkamp, D.J.; Kliebenstein, J.B.; Neumann, E.; Zimmerman, J.J.; Rotto, H.; Yoder, T.K.; Wang, C.; Yeske, P.; Mowrer, C.; Haley, C. Assessment of the Economic Impact of Porcine Reproductive and Respiratory Syndrome Virus on United States Pork Producers. J. Swine Health Prod. 2013, 1, 72. [Google Scholar] [CrossRef]
- Renken, C.; Nathues, C.; Swam, H.; Fiebig, K.; Weiss, C.; Eddicks, M.; Ritzmann, M.; Nathues, H. Application of an Economic Calculator to Determine the Cost of Porcine Reproductive and Respiratory Syndrome at Farm-level in 21 Pig Herds in Germany. Porc. Health Manag. 2021, 7, 3. [Google Scholar] [CrossRef] [PubMed]
- Brinton, M.A.; Gulyaeva, A.; Balasuriya, U.B.R.; Dunowska, M.; Faaberg, K.S.; Goldberg, T.; Leung, F.C.; Nauwynck, H.J.; Snijder, E.J.; Stadejek, T.; et al. Proposal 2017.012S.A.v1. Expansion of the Rank Structure of the Family Arteriviridae and Renaming Its Taxa. 2018. Available online: https://talk.ictvonline.org/ICTV/proposals/2017.001S.012-017S.R.Nidovirales.zip (accessed on 1 November 2023).
- Kappes, M.A.; Faaberg, K.S. PRRSV Structure, Replication and Recombination: Origin of Phenotype and Genotype Diversity. Virology 2015, 479–480, 475–486. [Google Scholar] [CrossRef] [PubMed]
- Nelsen, C.J.; Murtaugh, M.P.; Faaberg, K.S. Porcine Reproductive and Respiratory Syndrome Virus Comparison: Divergent Evolution on Two Continents. J. Virol. 1999, 73, 271–280. [Google Scholar] [CrossRef] [PubMed]
- Rossow, K.D. Porcine Reproductive and Respiratory Syndrome. Vet. Pathol. 1998, 35, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Vansickle, J. PRRS Elimination Final Goal. Position Statement of the Board of Directors of the American Association of Swine Veterinarians (AASV). 2015. Available online: https://www.nationalhogfarmer.com/mag/farming_prrs_elimination_final (accessed on 1 November 2023).
- Nodelijk, G.; Nielen, M.; De Jong, M.C.M.; Verheijden, J.H.M. A Review of Porcine Reproductive and Respiratory Syndrome Virus in Dutch Breeding Herds: Population Dynamics and Clinical Relevance. Prev. Vet. Med. 2003, 60, 37–52. [Google Scholar] [CrossRef]
- Rathkjen, P.H.; Dall, J. Control and Eradication of Porcine Reproductive and Respiratory Syndrome Virus Type 2 Using a Modified Live Type 2 Vaccine in Combination with a Load, Close, Homogenise Model: An Area Elimination Study. Acta Vet. Scand. 2017, 59, 4. [Google Scholar] [CrossRef] [PubMed]
- Scottish Agricultural Organisation Society Ltd. Scottish Porcine Reproductive and Respiratory Syndrome Elimination Project. Available online: http://www.saossupplychains.scot/scottish-prrs-elimination-project/2018 (accessed on 21 February 2023).
- Nemes, I.; Molnár, T.; Abonyi, T.; Terjék, Z.; Bálint, Á.; Szabó, I. Eradication of PRRS from Backyard Swine Herds in Hungary between 2012 and 2018. Acta Vet. Hung. 2019, 67, 543–552. [Google Scholar] [CrossRef]
- Szabó, I.; Molnár, T.; Nemes, I.; Abonyi, T.; Terjék, Z.; Bálint, Á. PRRSV Eradication on Large-scale Fattening Pig Farms in Hungary between 2014 and 2019. Acta Vet. Hung. 2019, 67, 529–542. [Google Scholar] [CrossRef]
- Szabó, I.; Bognár, L.; Molnár, T.; Nemes, I.; Bálint, Á. PRRS Eradication of Swine Farms in Five Regions of Hungary. Acta Vet. Hung. 2020, 68, 257–262. [Google Scholar] [CrossRef]
- Balka, G.; Podgórska, K.; Brar, M.S.; Bálint, Á.; Cadar, D.; Celer, V.; Dénes, L.; Dirbakova, Z.; Jedryczko, A.; Márton, L.; et al. Genetic Diversity of PRRSV 1 in Central Eastern Europe in 1994–2014: Origin and Evolution of the Virus in the Region. Sci. Rep. 2018, 8, 7811. [Google Scholar] [CrossRef] [PubMed]
- Stadejek, T.; Oleksiewicz, M.B.; Scherbakov, A.V.; Timina, A.M.; Krabbe, J.S.; Chabros, K.; Potapchuk, D. Definition of Subtypes in the European Genotype of Porcine Reproductive and Respiratory Syndrome Virus: Nucleocapsid Characteristics and Geographical Distribution in Europe. Arch. Virol. 2008, 153, 1479–1488. [Google Scholar] [CrossRef]
- Bálint, Á.; Molnár, T.; Kecskeméti, S.; Kulcsár, G.; Soós, T.; Szabó, P.M.; Kaszab, E.; Fornyos, K.; Zádori, Z.; Bányai, K.; et al. Genetic Variability of PRRSV Vaccine Strains Used in the National Eradication Programme, Hungary. Vaccines 2021, 9, 849. [Google Scholar] [CrossRef]
- Jakab, S.; Marton, S.; Szabó, I.; Kecskeméti, S.; Bálint, Á.; Bányai, K. Preliminary Observations Concerning the Integration of Amplicon Deep Sequencing in the PRRS Eradication Program. Magy. Állatorv. Lapja 2022, 144, 115–128. [Google Scholar]
- Larsson, A. AliView: A fast and lightweight alignment viewer and editor for large data sets. Bioinformatics 2014, 30, 32768. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X. Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Szabó, P.M.; Szalay, D.; Kecskeméti, S.; Molnár, T.; Szabó, I.; Bálint, Á. Investigations on Spreading of PRRSV among Swine Herds by Improved Minimum Spanning Network Analysis. Sci. Rep. 2020, 10, 19217. [Google Scholar] [CrossRef] [PubMed]
- Alkhamis, M.A.; Arruda, A.G.; Morrison, R.B.; Perez, A.M. Novel Approaches for Spatial and Molecular Surveillance of Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) in the United States. Sci. Rep. 2017, 7, 4343. [Google Scholar] [CrossRef] [PubMed]
- Clilverd, H.; Martín-Valls, G.; Li, Y.; Martín, M.; Cortey, M.; Mateu, E. Infection Dynamics, Transmission, and Evolution after an Outbreak of Porcine Reproductive and Respiratory Syndrome Virus. Front. Microbiol. 2023, 14, 1109881. [Google Scholar] [CrossRef] [PubMed]
- Makau, D.N.; Alkhamis, M.A.; Paploski, I.A.D.; Corzo, C.A.; Lycett, S.; VanderWaal, K. Integrating Animal Movements with Phylogeography to Model the Spread of PRRSV in the USA. Virus Evol. 2021, 7, veab060. [Google Scholar] [CrossRef]
- Franzo, G.; Faustini, G.; Legnardi, M.; Cecchinato, M.; Drigo, M.; Tucciarone, C.M. Phylodynamic and Phylogeographic Reconstruction of Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) in Europe: Patterns and Determinants. Transbound. Emerg. Dis. 2022, 69, e2175–e2184. [Google Scholar] [CrossRef] [PubMed]
- Pamornchainavakul, N.; Paploski, I.A.D.; Makau, D.N.; Kikuti, M.; Rovira, A.; Lycett, S.; Corzo, C.A.; VanderWaal, K. Mapping the Dynamics of Contemporary PRRSV-2 Evolution and Its Emergence and Spreading Hotspots in the U.S. Using Phylogeography. Pathogens 2023, 12, 740. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.A.; Jayaramaiah, U.; You, S.H.; Shin, E.G.; Song, S.M.; Ju, L.; Kang, S.J.; Hyun, B.H.; Lee, H.S. Molecular Characterization of Porcine Reproductive and Respiratory Syndrome Virus in Korea from 2018 to 2022. Pathogens 2023, 12, 757. [Google Scholar] [CrossRef] [PubMed]
- Hsueh, F.C.; Kuo, K.L.; Hsu, F.Y.; Wang, S.Y.; Chiu, H.J.; Wu, M.T.; Lin, C.F.; Huang, Y.H.; Chiou, M.T.; Lin, C.N. Molecular Characteristics and Pathogenicity of Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) 1 in Taiwan during 2019–2020. Life 2023, 13, 843. [Google Scholar] [CrossRef] [PubMed]
- Luo, Q.; Zheng, Y.; Zhang, H.; Yang, Z.; Sha, H.; Kong, W.; Zhao, M.; Wang, N. Research Progress on Glycoprotein 5 of Porcine Reproductive and Respiratory Syndrome Virus. Animals 2023, 13, 813. [Google Scholar] [CrossRef] [PubMed]
- Zhai, W.; Yu, S.; Zhang, P.; Lin, Y.; Ge, S.; Zhang, T.; Zhang, K.; He, S.; Hu, Q.; Tang, X.; et al. Epidemiology and Genetic Characteristics of Porcine Reproductive and Respiratory Syndrome Virus in the Hunan and Hebei Provinces of China. Vet. Sci. 2023, 10, 63. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Xu, Z.; Xu, T.; Zhou, Y.; Li, J.; Deng, H.; Li, F.; Xu, L.; Sun, X.; Zhu, L. Molecular Characterization of the Nsp2 and ORF5s of PRRSV Strains in Sichuan China during 2012–2020. Animals 2022, 12, 3309. [Google Scholar] [CrossRef]
- Zhou, L.; Yang, Y.; Xia, Q.; Guan, Z.; Zhang, J.; Li, B.; Qiu, Y.; Liu, K.; Shao, D.; Ma, Z.; et al. Genetic Characterization of Porcine Reproductive and Respiratory Syndrome Virus from Eastern China during 2017–2022. Front. Microbiol. 2022, 13, 971817. [Google Scholar] [CrossRef]
- Li, P.; Shen, Y.; Wang, T.; Li, J.; Li, Y.; Zhao, Y.; Liu, S.; Li, B.; Liu, M.; Meng, F. Epidemiological Survey of PRRS and Genetic Variation Analysis of the ORF5 Gene in Shandong Province, 2020–2021. Front. Vet. Sci. 2022, 9, 987667. [Google Scholar] [CrossRef]
- Yim-Im, W.; Huang, H.; Zheng, Y.; Li, G.; Rawal, G.; Gauger, P.; Krueger, K.; Main, R.; Zhang, J. Characterization of PRRSV in Clinical Samples and the Corresponding Cell Culture Isolates. Transbound. Emerg. Dis. 2022, 69, e3045–e3059. [Google Scholar] [CrossRef]
- Nguyen, N.H.; Tran, H.A.T.; Nguyen, T.Q.; Nguyen, P.B.T.; Le, T.H.T.; Lai, D.C.; Nguyen, M.N. Phylogenetic Analysis of Porcine Reproductive and Respiratory Syndrome Virus in Vietnam, 2021. Virus Genes 2022, 58, 361–366. [Google Scholar] [CrossRef] [PubMed]
- Rupasinghe, R.; Lee, K.; Liu, X.; Gauger, P.C.; Zhang, J.; Martínez-López, B. Molecular Evolution of Porcine Reproductive and Respiratory Syndrome Virus Field Strains from Two Swine Production Systems in the Midwestern United States from 2001 to 2020. Microbiol. Spectr. 2022, 10, e0263421. [Google Scholar] [CrossRef] [PubMed]
- Havas, K.A.; Makau, D.N.; Shapovalov, S.; Tolkova, E.; VanderWaal, K.; Tkachyk, T.; Spronk, G.D.; Heron, B.; Dee, S.A.; Perez, A. A Molecular and Epidemiological Description of a Severe Porcine Reproductive and Respiratory Syndrome Outbreak in a Commercial Swine Production System in Russia. Viruses 2022, 14, 375. [Google Scholar] [CrossRef]
- Kim, S.C.; Jeong, C.G.; Park, G.S.; Park, J.Y.; Jeoung, H.Y.; Shin, G.E.; Ko, M.K.; Kim, S.H.; Lee, K.K.; Kim, W.I. Temporal Lineage Dynamics of the ORF5 Gene of Porcine Reproductive and Respiratory Syndrome Virus in Korea in 2014–2019. Arch. Virol. 2021, 166, 2803–2815. [Google Scholar] [CrossRef]
- Guzmán, M.; Meléndez, R.; Jiménez, C.; Piche, M.; Jiménez, E.; León, B.; Cordero, J.M.; Ramirez-Carvajal, L.; Uribe, A.; Van Nes, A.; et al. Analysis of ORF5 Sequences of Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) Circulating within Swine Farms in Costa Rica. BMC Vet. Res. 2021, 17, 217. [Google Scholar] [CrossRef]
- Melmer, D.J.; O’Sullivan, T.L.; Greer, A.; Moser, L.; Ojkic, D.; Friendship, R.; Novosel, D.; Poljak, Z. The Impact of Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) Genotypes, Established on the Basis of ORF-5 Nucleotide Sequences, on Three Production Parameters in Ontario Sow Farms. Prev. Vet. Med. 2021, 189, 105312. [Google Scholar] [CrossRef] [PubMed]
- Fitzgerald, R.M.; Collins, P.J.; McMenamey, M.J.; Leonard, F.C.; McGlynn, H.; O’Shea, H. Porcine Reproductive and Respiratory Syndrome Virus: Phylogenetic Analysis of Circulating Strains in the Republic of Ireland from 2016 to 2017. Arch. Virol. 2020, 165, 2057–2063. [Google Scholar] [CrossRef]
- Bapteste, E.; van Iersel, L.; Janke, A.; Kelchner, S.; Kelk, S.; McInerney, J.O.; Morrison, D.A.; Nakhleh, L.; Steel, M.; Stougie, L.; et al. Networks: Expanding Evolutionary Thinking. Trends Genet. 2013, 8, 439–441. [Google Scholar] [CrossRef]
- Huson, D.H.; Bryant, D. Application of Phylogenetic Networks in Evolutionary Studies. Mol. Biol. Evol. 2005, 23, 254–267. [Google Scholar] [CrossRef]
- Schliep, K.; Potts, A.J.; Morrison, D.A.; Grimm, G.W. Intertwining Phylogenetic Trees and Networks. Methods Ecol. Evol. 2017, 8, 1212–1220. [Google Scholar] [CrossRef]
- Jakab, S.; Kaszab, E.; Marton, S.; Bányai, K.; Bálint, Á.; Nemes, I.; Szabó, I. Genetic Diversity of Imported PRRSV-2 Strains, 2005–2020, Hungary. Front. Vet. Sci. 2022, 9, 986850. [Google Scholar] [CrossRef] [PubMed]
Clade | First Detected (Year) | No. of Haplotypes | Nucleotide Identity Range within Clade (%) |
---|---|---|---|
1a | 2005 | 21 | 86.3–99.7 |
1b | 2012 | 6 | 84.5–96.4 |
1c | 2009 | 9 | 89.3–100 |
1e | 2003 | 37 | 87.8–99.8 |
1f | 2014 | 3 | 99.5–99.8 |
1g | 2013 | 56 | 82.2–100 |
Porcilis | 2009 | 27 | 96–100 |
Porcilis-like | 2008 | 6 | 92.2–98.8 |
Spanish | 1990s | 69 | 91.4–100 |
Reprocyc | 2016 | 11 | 96.5–100 |
2 | 2012 | 2 | 89.9 |
3c | 2014 | 2 | 90.9 |
3d | 2011 | 28 | 80–100 |
3f | 2017 | 5 | 92.7–100 |
X1 | 2015 | 6 | 96.2–98.5 |
X2 | 2012 | 13 | 80.9–100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bálint, Á.; Jakab, S.; Kaszab, E.; Marton, S.; Bányai, K.; Kecskeméti, S.; Szabó, I. Spatiotemporal Distribution of PRRSV-1 Clades in Hungary with a Focus on the Era of Disease Eradication. Animals 2024, 14, 175. https://doi.org/10.3390/ani14010175
Bálint Á, Jakab S, Kaszab E, Marton S, Bányai K, Kecskeméti S, Szabó I. Spatiotemporal Distribution of PRRSV-1 Clades in Hungary with a Focus on the Era of Disease Eradication. Animals. 2024; 14(1):175. https://doi.org/10.3390/ani14010175
Chicago/Turabian StyleBálint, Ádám, Szilvia Jakab, Eszter Kaszab, Szilvia Marton, Krisztián Bányai, Sándor Kecskeméti, and István Szabó. 2024. "Spatiotemporal Distribution of PRRSV-1 Clades in Hungary with a Focus on the Era of Disease Eradication" Animals 14, no. 1: 175. https://doi.org/10.3390/ani14010175
APA StyleBálint, Á., Jakab, S., Kaszab, E., Marton, S., Bányai, K., Kecskeméti, S., & Szabó, I. (2024). Spatiotemporal Distribution of PRRSV-1 Clades in Hungary with a Focus on the Era of Disease Eradication. Animals, 14(1), 175. https://doi.org/10.3390/ani14010175