Cystatin C, Ammonia, and Bicarbonate Measurements in the Saliva of Pigs: Analytical Validation and Changes in S. suis Infection
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Saliva Sampling
2.3. Biochemical Analysis of Saliva
2.4. Validation Study of the Assays
- Precision was assessed by calculating the intra- and inter-assay coefficients of variation (CVs) using saliva samples containing high and low cystatin C, ammonia, and bicarbonate concentrations.
- Accuracy evaluation was indirectly conducted by linearity after dilution studies using ultrapure water on saliva samples with elevated levels of ammonia and bicarbonate. In the case of cystatin C, interference with serial dilutions was observed, and a recovery study was performed, wherein samples with two different concentrations of the analyte were mixed at different concentrations.
- The lower limit of quantification (LLoQ) was calculated as the lowest concentration of Cystatin C, ammonia, and bicarbonate that the assays could determine with an intra-assay CV < 20%.
- The limit of detection (LD) was defined as the lowest concentration at which the assays could reliably distinguish a specimen with a zero value (ultrapure water). This determination was made by calculating the mean value plus three standard deviations from twelve replicate measurements of ultrapure water.
2.5. Stability Study
2.6. Cystatin C, Ammonia, and Bicarbonate Concentrations in the Saliva of Pigs Infected with S. suis
2.7. Statistical Analysis
3. Results
3.1. Analytical Validation of Cystatin C, Ammonia and Bicarbonate Assays
3.2. Stability of Cystatin C, Ammonia, and Bicarbonate Assays
3.3. Concentrations of Cystatin C, Ammonia, and Bicarbonate in Pigs with Meningitis Due to S. suis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, A.; Sun, H.; Wang, P.; Wang, X. Salivary Proteomics in Biomedical Research. Clin. Chim. Acta 2013, 415, 261–265. [Google Scholar] [CrossRef]
- Khurshid, Z.; Zafar, M.S.; Khan, R.S.; Najeeb, S.; Slowey, P.D.; Rehman, I.U. Role of Salivary Biomarkers in Oral Cancer Detection. Adv. Clin. Chem. 2018, 86, 23–70. [Google Scholar]
- Prickett, J.R.; Zimmerman, J.J. The Development of Oral Fluid-Based Diagnostics and Applications in Veterinary Medicine. Anim. Health Res. Rev. 2010, 11, 207–216. [Google Scholar] [CrossRef]
- Barrera-Zarate, J.A.; Andrade, M.R.; Pereira, C.E.R.; Vasconcellos, A.; Wagatsuma, M.M.; Sato, J.P.H.; Daniel, A.G.S.; Rezende, L.A.; Otoni, L.A.V.; Laub, R.P.; et al. Oral Fluid for Detection of Exposure to Lawsonia Intracellularis in Naturally Infected Pigs. Vet. J. 2019, 244, 34–36. [Google Scholar] [CrossRef]
- Gugoasa, L.A.; Staden, R.-I.S. Advanced Methods for the Analysis of Testosterone. Curr. Med. Chem. 2018, 25, 4037–4049. [Google Scholar] [CrossRef]
- Ornelas, M.A.S.; López-Martínez, M.J.; Franco-Martínez, L.; Cerón, J.J.; Ortín-Bustillo, A.; Rubio, C.P.; Manzanilla, E.G. Analysing Biomarkers in Oral Fluid from Pigs: Influence of Collection Strategy and Age of the Pig. Porc. Health Manag. 2023, 9, 39. [Google Scholar] [CrossRef]
- Cerón, J.J.; Contreras-Aguilar, M.D.; Escribano, D.; Martínez-Miró, S.; López-Martínez, M.J.; Ortín-Bustillo, A.; Franco-Martínez, L.; Rubio, C.P.; Muñoz-Prieto, A.; Tvarijonaviciute, A.; et al. Basics for the Potential Use of Saliva to Evaluate Stress, Inflammation, Immune System, and Redox Homeostasis in Pigs. BMC Vet. Res. 2022, 18, 81. [Google Scholar] [CrossRef]
- Merlot, E.; Mounier, A.M.; Prunier, A. Endocrine Response of Gilts to Various Common Stressors: A Comparison of Indicators and Methods of Analysis. Physiol. Behav. 2011, 102, 259–265. [Google Scholar] [CrossRef]
- López-Martínez, M.J.; Escribano, D.; Martínez-Miró, S.; Ramis, G.; Manzanilla, E.G.; Tecles, F.; Martínez-Subiela, S.; Cerón, J.J. Measurement of Procalcitonin in Saliva of Pigs: A Pilot Study. BMC Vet. Res. 2022, 18, 139. [Google Scholar] [CrossRef]
- López-Martínez, M.J.; Cerón, J.J.; Ortín-Bustillo, A.; Escribano, D.; Kuleš, J.; Beletić, A.; Rubić, I.; González-Sánchez, J.C.; Mrljak, V.; Martínez-Subiela, S.; et al. A Proteomic Approach to Elucidate the Changes in Saliva and Serum Proteins of Pigs with Septic and Non-Septic Inflammation. Int. J. Mol. Sci. 2022, 23, 6738. [Google Scholar] [CrossRef]
- Zi, M.; Xu, Y. Involvement of Cystatin C in Immunity and Apoptosis. Immunol. Lett. 2018, 196, 80–90. [Google Scholar] [CrossRef]
- Zhao, J.; He, Y.; Xu, P.; Liu, J.; Ye, S.; Cao, Y. Serum Ammonia Levels on Admission for Predicting Sepsis Patient Mortality at D28 in the Emergency Department. Medicine 2020, 99, e19477. [Google Scholar] [CrossRef]
- Wang, P.; Yan, J.; Shi, Q.; Yang, F.; Li, X.; Shen, Y.; Liu, H.; Xie, K.; Zhao, L. Relationship between Nonhepatic Serum Ammonia Levels and Sepsis-Associated Encephalopathy: A Retrospective Cohort Study. Emerg. Med. Int. 2023, 2023, 6676033. [Google Scholar] [CrossRef]
- Muñoz-Prieto, A.; Llamas-Amor, E.; Contreras-Aguilar, M.D.; Ayala, I.; Martín Cuervo, M.; Cerón, J.J.; Hansen, S. Automated Spectrophotometric Assays for the Measurement of Ammonia and Bicarbonate in Saliva of Horses: Analytical Validation and Changes in Equine Gastric Ulcer Syndrome (EGUS). Metabolites 2024, 14, 147. [Google Scholar] [CrossRef]
- Velissaris, D.; Karamouzos, V.; Ktenopoulos, N.; Pierrakos, C.; Karanikolas, M. The Use of Sodium Bicarbonate in the Treatment of Acidosis in Sepsis: A Literature Update on a Long Term Debate. Crit. Care Res. Pract. 2015, 2015, 605830. [Google Scholar] [CrossRef]
- Maiden, M.J.; Fraser, J.D.; Finnis, M.E. Venous Blood for the Analysis of Acid–Base Status in a Model of Septic Shock. Emerg. Med. Australas. 2022, 34, 456–458. [Google Scholar] [CrossRef]
- Paudel, R.; Bissell, B.; Dogra, P.; Morris, P.E.; Chaaban, S. Serum Bicarbonate: Reconsidering the Importance of a Neglected Biomarker in Predicting Clinical Outcomes in Sepsis. Cureus 2022, 14, e24012. [Google Scholar] [CrossRef]
- Akhtar, N.; Jafarikia, M.; Sullivan, B.P.; Li, J. An Efficient Method for Saliva Collection from Mature Pigs to Determine Their Enzymatic and Electrolytic Profiles. J. Vet. Med. Sci. 2018, 80, 147–151. [Google Scholar] [CrossRef]
- Council Directive 91/630/EEC Council Directive 91/630/EEC of 19 November 1991 Laying down Minimum Standards for the Protection of Pigs. Available online: https://www.informea.org/es/legislation/council-directive-91630eec-laying-down-minimum-standards-protection-pigs (accessed on 1 April 2024).
- Scherrer, S.; Biggel, M.; Schneeberger, M.; Cernela, N.; Rademacher, F.; Schmitt, S.; Stephan, R. Genetic Diversity and Antimicrobial Susceptibility of Streptococcus Suis from Diseased Swiss Pigs Collected between 2019–2022. Vet. Microbiol. 2024, 293, 110084. [Google Scholar] [CrossRef]
- Petrocchi-Rilo, M.; Martínez-Martínez, S.; Aguarón-Turrientes, Á.; Roca-Martínez, E.; García-Iglesias, M.-J.; Pérez-Fernández, E.; González-Fernández, A.; Herencia-Lagunar, E.; Gutiérrez-Martín, C.-B. Anatomical Site, Typing, Virulence Gene Profiling, Antimicrobial Susceptibility and Resistance Genes of Streptococcus Suis Isolates Recovered from Pigs in Spain. Antibiotics 2021, 10, 707. [Google Scholar] [CrossRef]
- López-Martínez, M.J.; Beletić, A.; Kuleš, J.; Rešetar-Maslov, D.; Rubić, I.; Mrljak, V.; Manzanilla, E.G.; Goyena, E.; Martínez-Subiela, S.; Cerón, J.J.; et al. Revealing the Changes in Saliva and Serum Proteins of Pigs with Meningitis Caused by Streptococcus Suis: A Proteomic Approach. Int. J. Mol. Sci. 2022, 23, 13700. [Google Scholar] [CrossRef]
- López-Martínez, M.J.; Ornelas, M.A.S.; Amarie, R.E.; Manzanilla, E.G.; Martínez-Subiela, S.; Tecles, F.; Tvarijonaviciute, A.; Escribano, D.; González-Bulnes, A.; Cerón, J.J.; et al. Changes in Salivary Biomarkers of Stress, Inflammation, Redox Status, and Muscle Damage Due to Streptococcus Suis Infection in Pigs. BMC Vet. Res. 2023, 19, 100. [Google Scholar] [CrossRef]
- Gröschl, M. Stability of Salivary Steroids: The Influences of Storage, Food and Dental Care. Steroids 2001, 66, 737–741. [Google Scholar] [CrossRef]
- Guidance for Industry: Bioanalytical Method Validation 2001. Available online: https://www.moh.gov.bw/Publications/drug_regulation/Bioanalytical%20Method%20Validation%20FDA%202001.pdf (accessed on 1 May 2024).
- Huizenga, J.R.; Gips, C.H. Determination of Ammonia in Saliva Using Indophenol, an Ammonium Electrode and an Enzymatic Method: A Comparative Investigation. cclm 1982, 20, 571–574. [Google Scholar] [CrossRef]
- Shamsi, A.; Bano, B. Journey of Cystatins from Being Mere Thiol Protease Inhibitors to at Heart of Many Pathological Conditions. Int. J. Biol. Macromol. 2017, 102, 674–693. [Google Scholar] [CrossRef]
- Blancas-Luciano, B.E.; Becker-Fauser, I.; Zamora-Chimal, J.; Delgado-Domínguez, J.; Ruíz-Remigio, A.; Leyva-Huerta, E.R.; Portilla-Robertson, J.; Fernández-Presas, A.M. Antimicrobial and Anti-Inflammatory Activity of Cystatin C on Human Gingival Fibroblast Incubated with Porphyromonas gingivalis. PeerJ 2022, 10, e14232. [Google Scholar] [CrossRef]
- Vray, B.; Hartmann, S.; Hoebeke, J. Immunomodulatory Properties of Cystatins. Cell Mol. Life Sci. 2002, 59, 1503–1512. [Google Scholar] [CrossRef]
- Hu, C.; Zhang, Z.; Hou, B.; Xue, H.; Pu, X.; Ye, J. Prognostic Value of Serum Cystatin C in Patients with Sepsis. Indian. J. Pathol. Microbiol. 2023, 66, 573. [Google Scholar] [CrossRef]
- Chen, C.-C.; Hsieh, J.-C.; Chao, C.-H.; Yang, W.-S.; Cheng, H.-T.; Chan, C.-K.; Lu, C.-J.; Meng, H.-F.; Zan, H.-W. Correlation between Breath Ammonia and Blood Urea Nitrogen Levels in Chronic Kidney Disease and Dialysis Patients. J. Breath Res. 2020, 14, 036002. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Deng, F. Positive Pathogens in Stool Could Predict the Clinical Outcomes of Sepsis-Associated Acute Kidney Injury in Critical Ill Patient. Sci. Rep. 2024, 14, 11227. [Google Scholar] [CrossRef] [PubMed]
Percentage of Sample 1 | Expected Concentrations | Observed Concentrations | Percentage of Sample 2 | Recovery (%) |
---|---|---|---|---|
100 | 1.49 | 1.49 | 0 | |
75 | 1.24 | 1.35 | 25 | 91.9 |
50 | 0.99 | 0.94 | 50 | 105.3 |
25 | 0.74 | 0.66 | 75 | 112.1 |
0 | 0.49 | 0.49 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Llamas-Amor, E.; Goyena, E.; González-Bulnes, A.; García Manzanilla, E.; Cerón, J.J.; Martínez-Subiela, S.; López-Martínez, M.J.; Muñoz-Prieto, A. Cystatin C, Ammonia, and Bicarbonate Measurements in the Saliva of Pigs: Analytical Validation and Changes in S. suis Infection. Animals 2024, 14, 1580. https://doi.org/10.3390/ani14111580
Llamas-Amor E, Goyena E, González-Bulnes A, García Manzanilla E, Cerón JJ, Martínez-Subiela S, López-Martínez MJ, Muñoz-Prieto A. Cystatin C, Ammonia, and Bicarbonate Measurements in the Saliva of Pigs: Analytical Validation and Changes in S. suis Infection. Animals. 2024; 14(11):1580. https://doi.org/10.3390/ani14111580
Chicago/Turabian StyleLlamas-Amor, Eva, Elena Goyena, Antonio González-Bulnes, Edgar García Manzanilla, José Joaquín Cerón, Silvia Martínez-Subiela, María José López-Martínez, and Alberto Muñoz-Prieto. 2024. "Cystatin C, Ammonia, and Bicarbonate Measurements in the Saliva of Pigs: Analytical Validation and Changes in S. suis Infection" Animals 14, no. 11: 1580. https://doi.org/10.3390/ani14111580
APA StyleLlamas-Amor, E., Goyena, E., González-Bulnes, A., García Manzanilla, E., Cerón, J. J., Martínez-Subiela, S., López-Martínez, M. J., & Muñoz-Prieto, A. (2024). Cystatin C, Ammonia, and Bicarbonate Measurements in the Saliva of Pigs: Analytical Validation and Changes in S. suis Infection. Animals, 14(11), 1580. https://doi.org/10.3390/ani14111580