Faecal Short-Chain, Long-Chain, and Branched-Chain Fatty Acids as Markers of Different Chronic Inflammatory Enteropathies in Dogs
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design and Animal Signalment
2.2. Faecal Sample Collection
2.3. Laboratory Analysis
2.3.1. Total Moisture, Fat Percentage, Total Fatty Acid, and Branched-Chain Fatty Acid Profile in Faecal Samples
2.3.2. Short-Chain Fatty Acid Analysis in Faecal Samples
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhukov, A.V.; Popov, V.N. Eukaryotic cell membranes: Structure, composition, research methods and computational modelling. Int. J. Mol. Sci. 2023, 24, 11226. [Google Scholar] [CrossRef]
- Boldyreva, L.V.; Morozova, M.V. Fat of the gut: Epithelial phospholipids in Inflammatory Bowel Diseases. Int. J. Mol. Sci. 2021, 22, 11682. [Google Scholar] [CrossRef]
- Harayama, T.; Riezman, H. Understanding the diversity of membrane lipid composition. Nat. Rev. Mol. Cell Biol. 2018, 19, 281–296. [Google Scholar] [CrossRef]
- Schneider, H.; Braun, A. Lipid based therapy for Ulcerative Colitis—Modulation of intestinal mucus membrane phospholipids as a tool to influence inflammation. Int. J. Mol. Sci. 2010, 11, 4149–4164. [Google Scholar] [CrossRef]
- Ezzine, C.; Loison, L. Fatty acids produced by the gut microbiota dampen host inflammatory responses by modulating intestinal SUMOylation. Gut Microbes 2022, 14, 2108280. [Google Scholar] [CrossRef]
- Gonçalves, P.; Araújo, J.R. A cross-talk between microbiota-derived Short-Chain Fatty Acids and the host mucosal immune system regulates intestinal homeostasis and Inflammatory Bowel Disease. Inflamm. Bowel Dis. 2018, 24, 558–572. [Google Scholar] [CrossRef]
- Mirzaei, R.; Afaghi, A. Role of microbiota-derived short-chain fatty acids in cancer development and prevention. Biomed. Pharmacother. 2021, 139, 111619. [Google Scholar] [CrossRef]
- Taormina, V.M.; Unger, A.L. Branched-Chain Fatty Acids—An underexplored class of dairy-derived fatty acids. Nutrients 2020, 12, 2875. [Google Scholar] [CrossRef]
- Tanno, H.; Sassa, T. Production of branched-chain very-long-chain fatty acids by fatty acid elongases and their tissue distribution in mammals. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2021, 1866, 158842. [Google Scholar] [CrossRef]
- Xin, H.; Ma, T. Characterization of fecal branched-chain fatty acid profiles and their associations with fecal microbiota in diarrheic and healthy dairy calves. J. Dairy Sci. 2021, 104, 2290–2301. [Google Scholar] [CrossRef]
- Yang, X.; Karrar, E. Identification and quantification of branched-chain fatty acids and odd-chain fatty acids of mammalian milk, dairy products, and vegetable oils using GC/TOF-MS. Int. Dairy J. 2023, 140, 105587. [Google Scholar] [CrossRef]
- Pfeuffer, M.; Jaudszus, A. Pentadecanoic and heptadecanoic acids: Multifaceted Odd-Chain Fatty Acids. AN/Adv. Nutr. 2016, 7, 730–734. [Google Scholar] [CrossRef]
- Jenkins, B.J.; Seyssel, K. Odd Chain Fatty Acids; new insights of the relationship between the gut microbiota, dietary intake, biosynthesis and glucose intolerance. Sci. Rep. 2017, 7, 44845. [Google Scholar] [CrossRef]
- Galler, A.I.; Klavins, K. A preliminary metabolomic study of Yorkshire Terrier Enteropathy. Metabolites 2022, 12, 264. [Google Scholar] [CrossRef]
- Walker, H.K.; Boag, A.M. Serum metabolomic profiles in dogs with chronic enteropathy. J. Vet. Intern. Med. 2022, 36, 1752–1759. [Google Scholar] [CrossRef]
- Higueras, C.; Rey, A.I. Short-Chain and total fatty acid profile of faeces or plasma as predictors of Food-Responsive Enteropathy in dogs: A preliminary study. Animals 2021, 12, 89. [Google Scholar] [CrossRef]
- Crisi, P.E.; Luciani, A. The Fatty Acid-Based Erythrocyte Membrane Lipidome in dogs with Chronic Enteropathy. Animals 2021, 11, 2604. [Google Scholar] [CrossRef]
- Galler, A.; Suchodolski, J.S. Microbial dysbiosis and fecal metabolomic perturbations in Yorkshire Terriers with chronic enteropathy. Sci. Rep. 2022, 12, 12977. [Google Scholar] [CrossRef]
- Minamoto, Y.; Minamoto, T. Fecal short-chain fatty acid concentrations and dysbiosis in dogs with chronic enteropathy. J. Vet. Intern. Med. 2019, 33, 1608–1618. [Google Scholar] [CrossRef]
- Perrucci, S.; Berrilli, F. Giardia duodenalis infection in dogs affected by primary chronic enteropathy. Open Vet. J. 2020, 10, 74–79. [Google Scholar] [CrossRef]
- Adell-Aledón, M.; Köster, P.C. Occurrence and molecular epidemiology of Giardia duodenalis infection in dog populations in eastern Spain. BMC Vet. Res. 2018, 14, 26. [Google Scholar] [CrossRef]
- Faria, C.P.; Ferreira, B. Lipidome of extracellular vesicles from Giardia lamblia. PLoS ONE 2023, 18, e0291292. [Google Scholar] [CrossRef]
- Allenspach, K.; Mochel, J.P. Current diagnostics for chronic enteropathies in dogs. Vet. Clin. Pathol. 2021, 50, 18–28. [Google Scholar] [CrossRef]
- Dandrieux, J.R.S. Inflammatory bowel disease versus chronic enteropathy in dogs: Are they one and the same? J. Small Anim. Pract. 2016, 57, 589–599. [Google Scholar] [CrossRef]
- Jergens, A.E.; Schreiner, C.A. A scoring index for disease activity in Canine Inflammatory Bowel Disease. J. Vet. Intern. Med. 2003, 17, 291–297. [Google Scholar] [CrossRef]
- Freeman, L.; Becvarova, I. WSAVA Nutritional Assessment Guidelines. J. Small Anim. Pract. 2011, 52, 385–396. [Google Scholar] [CrossRef]
- European Scientific Counsel Companion Animal Parasites (ESCCAP). Available online: https://www.esccap.org/guidelines/gl4/ (accessed on 3 March 2024).
- Cerquetella, M.; Rossi, G. Proposal for rational antibacterial use in the diagnosis and treatment of dogs with chronic diarrhoea. J. Small Anim. Pract. 2020, 61, 211–215. [Google Scholar] [CrossRef]
- Cavett, C.L.; Tonero, M. Consistency of faecal scoring using two canine faecal scoring systems. J. Small Anim. Pract. 2021, 62, 167–173. [Google Scholar] [CrossRef]
- Rey, A.I.; de-Cara, A. Changes in plasma fatty acids, free amino acids, antioxidant defense, and physiological stress by oleuropein supplementation in pigs prior to slaughter. Antioxidants 2020, 9, 56. [Google Scholar] [CrossRef]
- Peruzzo, A.; Vascellari, M. Giardia duodenalis colonization slightly affects gut microbiota and hematological parameters in clinically healthy dogs. Animals 2023, 13, 958. [Google Scholar] [CrossRef]
- Vítek, L. Bile Acid Malabsorption in Inflammatory Bowel Disease. Inflamm. Bowel Dis. 2015, 21, 476–483. [Google Scholar] [CrossRef]
- Di Ciaula, A.; Garruti, G. Bile Acid Physiology. Ann. Hepatol. 2017, 16, S4–S14. [Google Scholar] [CrossRef]
- Giaretta, P.R.; Rech, R.R. Comparison of intestinal expression of the apical sodium-dependent bile acid transporter between dogs with and without chronic inflammatory enteropathy. J. Vet. Intern. Med. 2018, 32, 1918–1926. [Google Scholar] [CrossRef]
- Welch, A.A.; MacGregor, A.J. Dietary fat and Fatty Acid Profile are associated with indices of skeletal muscle mass in women aged 18–79 years. J. Nutr. 2014, 144, 327–334. [Google Scholar] [CrossRef]
- Schaap, L.A.; Pluijm, S.M.F. Higher inflammatory marker levels in older persons: Associations with 5-year change in muscle mass and muscle strength. J. Gerontol. A Biol. Sci. Med. Sci. 2009, 64A, 1183–1189. [Google Scholar] [CrossRef]
- Wang, B.; Wu, L. Metabolism pathways of arachidonic acids: Mechanisms and potential therapeutic targets. Signal Transduct. Target. Ther. 2021, 6, 94. [Google Scholar] [CrossRef]
- Bueno-Hernández, N.; Dominguez-López, A. Quantification of low expressed SCD1 gene in colonic mucosa from patients with active ulcerative colitis. Inflamm. Bowel Dis. 2011, 17, E155. [Google Scholar] [CrossRef]
- Chen, C.; Shah, Y.M. Metabolomics reveals that hepatic Stearoyl-CoA desaturase 1 downregulation exacerbates inflammation and acute colitis. Cell Metab. 2008, 7, 135–147. [Google Scholar] [CrossRef]
- Wang, R.; Gu, X. A lipidomics investigation into the intervention of celastrol in experimental colitis. Mol. Biosyst. 2016, 12, 1436–1444. [Google Scholar] [CrossRef]
- Bermúdez, M.A.; Pereira, L. Roles of palmitoleic acid and its positional isomers, hypogeic and sapienic acids, in inflammation, metabolic diseases and cancer. Cells 2022, 11, 2146. [Google Scholar] [CrossRef]
- Akazawa, Y.; Morisaki, T. Significance of serum palmitoleic acid levels in inflammatory bowel disease. Sci. Rep. 2021, 11, 16260. [Google Scholar] [CrossRef]
- Chen, Y.; Mai, Q. Dietary palmitoleic acid reprograms gut microbiota and improves biological therapy against colitis. Gut Microbes 2023, 15, 2211501. [Google Scholar] [CrossRef]
- Garg, M.L.; Keelan, M. Fatty acid desaturation in the intestinal mucosa. Biochim. Biophys. Acta 1988, 958, 139–141. [Google Scholar] [CrossRef]
- Skrzypski, J.; Bellenger, S. Revisiting delta-6 desaturase regulation by C18 unsaturated fatty acids, depending on the nutritional status. Biochimie 2009, 91, 1443–1449. [Google Scholar] [CrossRef]
- Bellenger, J.; Bellenger, S. A new hypotensive polyunsaturated fatty acid dietary combination regulates oleic acid accumulation by suppression of stearoyl CoA desaturase 1 gene expression in the SHR model of genetic hypertension. FASEB J. 2004, 18, 773–775. [Google Scholar] [CrossRef]
- Rey, A.I.; Menoyo, D. Combination of dietary glycaemic index and fasting time prior to slaughter as strategy to modify quality of pork. Meat Sci. 2020, 161, 108013. [Google Scholar] [CrossRef]
- James, M.J.; Gibson, R.A. Dietary polyunsaturated fatty acids and inflammatory mediator production. Am. J. Clin. Nutr. 2000, 71, 343s–348s. [Google Scholar] [CrossRef]
- Uchiyama, K.; Odahara, S. The fatty acid profile of the erythrocyte membrane in initial-onset Inflammatory Bowel Disease patients. Dig. Dis. Sci. 2013, 58, 1235–1243. [Google Scholar] [CrossRef]
- Gabbs, M.; Leng, S. Advances in our understanding of oxylipins derived from dietary PUFAs. Adv. Nutr. 2015, 6, 513–540. [Google Scholar] [CrossRef]
- Yichoy, M.; Duarte, T.T. Lipid metabolism in Giardia: A post-genomic perspective. Parasitology 2010, 138, 267–278. [Google Scholar] [CrossRef]
- Abdoul-Aziz, S.K.A.; Zhang. Milk Odd and Branched Chain Fatty Acids in dairy cows: A review on dietary factors and its consequences on human health. Animals 2021, 11, 3210. [Google Scholar] [CrossRef]
- Yan, Y.; Wang, Z. BCFA suppresses LPS induced IL-8 mRNA expression in human intestinal epithelial cells. PLEFA 2017, 116, 27–31. [Google Scholar] [CrossRef]
- Allenspach, K.; Culverwell, C. Long-term outcome in dogs with chronic enteropathies: 203 cases. Vet. Rec. 2016, 178, 368. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, H. Regulatory role of short-chain fatty acids in inflammatory bowel disease. Cell Commun. Signal. 2022, 20, 64. [Google Scholar] [CrossRef]
- Díaz-Regañón, D.; García-Sancho, M. Characterization of the fecal and mucosa-associated microbiota in dogs with Chronic Inflammatory Enteropathy. Animals 2023, 13, 326. [Google Scholar] [CrossRef]
- Kalenyak, K.; Isaiah, A. Comparison of the intestinal mucosal microbiota in dogs diagnosed with idiopathic inflammatory bowel disease and dogs with food-responsive diarrhea before and after treatment. FEMS Microbiol. Ecol. 2018, 94, fix173. [Google Scholar] [CrossRef]
- Dupouy-Manescau, N.; Méric, T. Updating the classification of Chronic Inflammatory Enteropathies in Dogs. Animals 2024, 14, 681. [Google Scholar] [CrossRef]
- Kuzi, S.; Zgairy, S. Giardiasis and diarrhea in dogs: Does the microbiome matter? J. Vet. Intern. Med. 2023, 38, 152–160. [Google Scholar] [CrossRef]
- Weitkunat, K.; Bishop, C.A. Effect of Microbial Status on Hepatic Odd-Chain Fatty Acids Is Diet-Dependent. Nutrients 2021, 13, 1546. [Google Scholar] [CrossRef]
- Buitenhuis, B.; Lassen, J. Impact of the rumen microbiome on milk fatty acid composition of Holstein cattle. Genet. Sel. Evol. 2019, 51, 23. [Google Scholar] [CrossRef]
- Kaneda, T. Iso- and anteiso-fatty acids in bacteria: Biosynthesis, function, and taxonomic significance. Microbiol. Rev. 1991, 55, 288–302. [Google Scholar] [CrossRef]
- Wallace, M.; Green, C.R. Enzyme promiscuity drives branched-chain fatty acid synthesis in adipose tissues. Nat. Chem. Biol. 2018, 14, 1021–1031. [Google Scholar] [CrossRef]
Variables | HC (n = 22) | FRE (n = 35) | IRE (n = 18) | GIA (n = 9) | RMSE 4 | p-Value | ||||
---|---|---|---|---|---|---|---|---|---|---|
Age (months; mean[range]) | 60.23 | [7–144] | 57.31 | [8–144] | 76.17 | [9–136] | 64.22 | [4–144] | 42.066 | 0.4786 |
Sex (male/female) | 9/13 | 19/16 | 6/12 | 7/2 | 0.494 | 0.1286 | ||||
Fertile status (neutered/entire) | 12/10 | 20/15 | 12/6 | 4/5 | 0.503 | 0.7351 | ||||
Breed (pure/mixed) | 15/7 | 30/5 | 13/5 | 8/1 | 0.411 | 0.3344 | ||||
Weight (kg); (median [range]) | 19.40 a | [7.5–55] | 10.60 ba | [2.6–45.5] | 7.32 ba | [1.19–36.2] | 12.60 b | [2.7–26.3] | 12.358 | 0.0059 |
CIBDAI 1 (median [range]) | 0.00 b | [0] | 5.00 a | [1–8] | 6.00 a | [1–9] | 6.00 a | [1–10] | 2.004 | 0.0001 |
BCS 2 (1–9); (median [range]) | 5.00 | [3–6] | 5.00 | [2–8] | 4.00 | [2–8] | 3.00 | [3–6] | 1.467 | 0.2625 |
MCS 3 (0–3); (median [range]) | 3.00 a | [3] | 3.00 b | [1–3] | 2.50 b | [1–3] | 2.00 b | [1–3] | 0.538 | 0.0006 |
Faecal characteristics | ||||||||||
Purina® faecal score (1–7); (mean [range]) | 2.50 b | [1–5] | 3.14 ba | [1–7] | 3.56 ba | [1–7] | 4.11 a | [2–6] | 1.586 | 0.0497 |
Moisture (%); (mean [range]) | 67.53 | [57.05–75.22] | 68.40 | [55.63–90.73] | 71.15 | [53.46–91.14] | 71.51 | [58.24–84.90] | 7.651 | 0.3391 |
Fat (%); (mean [range]) | 6.53 b | [4.25–11.93] | 6.76 b | [2.97–15.05] | 10.02 a | [3.40–23.39] | 10.40 a | [3.85–19.48] | 3.839 | 0.0080 |
% | HC (n = 22) | FRE (n = 35) | IRE (n = 18) | GIA (n = 9) | RMSE 10 | p-Value | ||||
---|---|---|---|---|---|---|---|---|---|---|
C14:0 | 1.231 | b | 1.393 | b | 1.773 | a | 1.503 | ba | 0.513 | 0.0122 |
C14:1 | 0.319 | 0.261 | 0.300 | 0.250 | 0.107 | 0.1591 | ||||
C15:0 | 0.716 | 0.641 | 0.647 | 0.617 | 0.233 | 0.6041 | ||||
C16:0 | 25.158 | b | 26.852 | b | 28.088 | ba | 30.564 | a | 4.078 | 0.0079 |
C16:1n-9 | 0.238 | 0.229 | 0.264 | 0.259 | 0.090 | 0.5417 | ||||
C16:1n-7 | 1.968 | a | 1.571 | b | 1.054 | c | 1.834 | ba | 0.475 | 0.0001 |
C17:0 | 0.526 | 0.533 | 0.581 | 0.547 | 0.156 | 0.6829 | ||||
C18:0 | 15.613 | b | 21.654 | a | 25.164 | a | 20.821 | a | 6.599 | 0.0002 |
C18:1n-9 | 25.155 | a | 19.165 | b | 17.640 | b | 19.338 | b | 6.111 | 0.0007 |
C18:1n-7 | 4.726 | 5.221 | 5.299 | 6.145 | 1.845 | 0.2838 | ||||
C18:2n-6 | 16.343 | a | 14.099 | ba | 11.448 | b | 11.490 | b | 5.053 | 0.0128 |
C18:3n-6 | 0.098 | 0.114 | 0.126 | 0.109 | 0.040 | 0.1718 | ||||
C18:3n-3 | 1.248 | a | 1.072 | a | 1.087 | a | 0.754 | b | 0.399 | 0.0240 |
C18:4n-3 | 0.061 | 0.057 | 0.063 | 0.048 | 0.021 | 0.3244 | ||||
C20:0 | 0.686 | 0.764 | 0.700 | 0.890 | 0.255 | 0.1938 | ||||
C20:1n-9 | 0.550 | a | 0.513 | ba | 0.412 | b | 0.503 | ba | 0.149 | 0.0336 |
C20:2 | 0.250 | 0.248 | 0.265 | 0.277 | 0.087 | 0.7631 | ||||
C20:3n-6 | 1.540 | 1.666 | 1.467 | 1.136 | 0.582 | 0.1070 | ||||
C20:4n-6 | 1.658 | 1.903 | 1.684 | 1.400 | 0.638 | 0.1562 | ||||
C20:5n-3 | 0.577 | 0.437 | 0.440 | 0.489 | 0.167 | 0.1119 | ||||
C22:4n-6 | 0.361 | 0.325 | 0.319 | 0.272 | 0.121 | 0.3011 | ||||
C22:5n-3 | 0.978 | ba | 1.282 | a | 1.180 | a | 0.755 | b | 0.491 | 0.0160 |
∑SAT 1 | 43.930 | b | 51.837 | a | 56.953 | a | 54.940 | a | 9.143 | 0.0002 |
∑MUFA 2 | 32.956 | a | 26.961 | b | 24.969 | b | 28.329 | b | 6.401 | 0.0008 |
∑PUFA 3 | 22.865 | a | 20.954 | ba | 17.813 | bc | 16.453 | c | 5.177 | 0.0032 |
∑n-6 4 | 20.000 | a | 18.107 | ba | 15.043 | bc | 14.408 | c | 5.046 | 0.0055 |
∑n-3 5 | 2.864 | a | 2.847 | a | 2.770 | a | 2.046 | b | 0.607 | 0.0020 |
C14:1n-5/C14:0 | 0.259 | a | 0.188 | ba | 0.170 | b | 0.166 | b | 0.102 | 0.0412 |
C16:1n-7/C16:0 | 0.078 | a | 0.059 | b | 0.038 | c | 0.060 | b | 0.018 | 0.0001 |
C18:1n-9/C18:0 | 1.611 | a | 0.885 | b | 0.701 | b | 0.929 | b | 0.780 | 0.0003 |
C20:1n-9/C20:0 | 0.802 | a | 0.672 | ba | 0.589 | b | 0.566 | b | 0.287 | 0.0314 |
C18:3n-6/C18:2n-6 | 0.006 | b | 0.008 | ba | 0.011 | a | 0.010 | ba | 0.005 | 0.0019 |
C18:4n-3/C18:3n-3 | 0.049 | 0.053 | 0.058 | 0.063 | 0.033 | 0.6247 | ||||
Δ-9-desaturase 6 | 2.750 | a | 1.803 | b | 1.497 | b | 1.721 | b | 0.825 | 0.0001 |
Δ-6-desaturase 7 | 0.055 | 0.061 | 0.069 | 0.073 | 0.036 | 0.3470 | ||||
Elongase C18/C16 | 0.621 | c | 0.806 | ba | 0.896 | a | 0.681 | bc | 0.236 | 0.0028 |
Elongase C22:5/C20:5 | 1.695 | 2.936 | 2.679 | 1.543 | 2.949 | 0.0943 | ||||
OCFAs 8 | 1.241 | 1.174 | 1.229 | 1.163 | 0.305 | 0.8098 | ||||
ECFAs 9 | 42.689 | b | 50.663 | a | 55.724 | a | 53.777 | a | 9.122 | 0.0001 |
Variable | HC (n = 22) | FRE (n = 35) | IRE (n = 18) | GIA (n = 9) | RMSE 3 | p-Value | ||||
---|---|---|---|---|---|---|---|---|---|---|
Iso C15:0 | 11.57 | b | 11.21 | b | 13.41 | ba | 14.38 | a | 3.473 | 0.0313 |
Anteiso C15:0 | 57.87 | a | 54.76 | ba | 47.80 | bc | 43.09 | c | 12.121 | 0.0054 |
Iso C16:0 | 4.92 | 4.30 | 4.80 | 6.05 | 1.755 | 0.0651 | ||||
Iso C17:0 | 20.40 | b | 24.97 | ba | 28.51 | a | 30.26 | a | 10.119 | 0.0333 |
Anteiso C17:0 | 5.24 | 4.76 | 5.48 | 6.21 | 1.983 | 0.2195 | ||||
Total iso | 36.89 | c | 40.49 | bc | 46.72 | ba | 50.69 | a | 11.291 | 0.0054 |
Total anteiso | 63.11 | a | 59.51 | ba | 53.28 | bc | 49.31 | c | 11.291 | 0.0054 |
Iso/anteiso | 0.61 | b | 0.74 | b | 1.05 | a | 1.15 | a | 0.433 | 0.0017 |
∑OCBFAs 1/∑ECBFAs 2 | 20.55 | ba | 27.08 | a | 22.95 | ba | 17.19 | b | 9.360 | 0.0122 |
Variable | HC (n = 22) | FRE (n = 35) | IRE (n = 18) | GIA (n = 9) | RMSE 7 | p-Value | ||||
---|---|---|---|---|---|---|---|---|---|---|
C2 1 | 3.196 | a | 3.113 | a | 1.630 | b | 2.742 | a | 1.134 | 0.0007 |
C3 2 | 3.019 | a | 2.046 | ba | 1.326 | b | 2.111 | ba | 1.222 | 0.0022 |
iC4 3 | 0.140 | 0.154 | 0.090 | 0.122 | 0.108 | 0.3451 | ||||
C4 4 | 1.319 | 1.131 | 0.834 | 1.163 | 0.763 | 0.3577 | ||||
iC5 5 | 0.259 | 0.312 | 0.184 | 0.244 | 0.205 | 0.2910 | ||||
C5 6 | 0.141 | 0.119 | 0.058 | 0.070 | 0.197 | 0.6709 | ||||
Total SCFAs | 8.075 | a | 6.850 | a | 4.111 | b | 6.451 | a | 2.632 | 0.0008 |
∑C2 + C3 + C4 | 7.535 | a | 6.291 | a | 3.791 | b | 6.016 | a | 2.452 | 0.0008 |
∑iC4 + iC5 | 0.399 | 0.465 | 0.274 | 0.365 | 0.309 | 0.3045 |
Variable | CIBDAI | MCS | Purina® Faecal Score | Faecal Moisture (%) | Faecal Fat (%) | |||||
---|---|---|---|---|---|---|---|---|---|---|
Faecal fatty acids | ||||||||||
C14:1 | –0.18 | 0.05 | –0.33 | b | –0.14 | –0.27 | a | |||
C15:0 | –0.11 | 0.27 | a | –0.25 | a | –0.22 | –0.23 | a | ||
C16:1n-7 | –0.39 | b | 0.25 | a | –0.08 | 0.08 | –0.34 | b | ||
C18:0 | 0.40 | b | –0.14 | 0.24 | a | 0.18 | 0.16 | |||
C18:2n-6 | –0.32 | b | 0.11 | –0.18 | –0.14 | –0.24 | a | |||
C20:3n-6 | 0.08 | 0.08 | –0.28 | b | –0.22 | a | –0.21 | |||
C20:4n-6 | 0.13 | 0.00 | –0.27 | a | –0.12 | –0.21 | ||||
C20:5n-3 | –0.22 | a | 0.14 | –0.33 | b | –0.05 | –0.02 | |||
C22:5n-3 | 0.33 | b | –0.26 | a | –0.01 | –0.07 | 0.22 | |||
∑SAT 1 | 0.36 | b | –0.13 | 0.22 | a | 0.16 | 0.15 | |||
∑PUFA 2 | –0.28 | a | 0.10 | –0.26 | a | –0.18 | –0.30 | b | ||
∑n-6 3 | –0.30 | b | 0.12 | –0.25 | a | –0.18 | –0.31 | b | ||
C16:1n-7/C16:0 | –0.46 | b | 0.27 | a | –0.20 | –0.04 | –0.33 | b | ||
Δ-9-desaturase 4 | –0.47 | b | 0.21 | –0.12 | –0.08 | –0.09 | ||||
Δ-6-desaturase 5 | 0.32 | b | –0.10 | 0.11 | 0.07 | –0.14 | ||||
Elongase C18/C16 | 0.38 | b | –0.16 | 0.25 | a | 0.18 | 0.13 | |||
Elongase C22:5/C20:5 | 0.29 | b | –0.24 | 0.22 | 0.07 | 0.15 | ||||
Branched-chain fatty acids | ||||||||||
Anteiso C15:0 | –0.04 | 0.12 | –0.23 | a | –0.20 | –0.12 | ||||
Short-chain fatty acids | ||||||||||
C2 6 | –0.20 | 0.10 | –0.11 | –0.01 | –0.27 | a | ||||
iC4 7 | 0.06 | –0.04 | –0.16 | –0.25 | a | –0.04 |
FRE | GIA | IRE | HC | TOTAL (%) | |
---|---|---|---|---|---|
FRE | 41.38 | 24.14 | 13.79 | 20.69 | 100 |
GIA | 0 | 100 | 0 | 0 | 100 |
IRE | 0 | 7.69 | 92.31 | 0 | 100 |
HC | 16.67 | 16.67 | 0 | 66.67 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Higueras, C.; Sainz, Á.; García-Sancho, M.; Rodríguez-Franco, F.; Rey, A.I. Faecal Short-Chain, Long-Chain, and Branched-Chain Fatty Acids as Markers of Different Chronic Inflammatory Enteropathies in Dogs. Animals 2024, 14, 1825. https://doi.org/10.3390/ani14121825
Higueras C, Sainz Á, García-Sancho M, Rodríguez-Franco F, Rey AI. Faecal Short-Chain, Long-Chain, and Branched-Chain Fatty Acids as Markers of Different Chronic Inflammatory Enteropathies in Dogs. Animals. 2024; 14(12):1825. https://doi.org/10.3390/ani14121825
Chicago/Turabian StyleHigueras, Cristina, Ángel Sainz, Mercedes García-Sancho, Fernando Rodríguez-Franco, and Ana I. Rey. 2024. "Faecal Short-Chain, Long-Chain, and Branched-Chain Fatty Acids as Markers of Different Chronic Inflammatory Enteropathies in Dogs" Animals 14, no. 12: 1825. https://doi.org/10.3390/ani14121825
APA StyleHigueras, C., Sainz, Á., García-Sancho, M., Rodríguez-Franco, F., & Rey, A. I. (2024). Faecal Short-Chain, Long-Chain, and Branched-Chain Fatty Acids as Markers of Different Chronic Inflammatory Enteropathies in Dogs. Animals, 14(12), 1825. https://doi.org/10.3390/ani14121825