Evaluation of the Therapeutic Potential of Amantadine in a Vincristine-Induced Peripheral Neuropathy Model in Rats
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Housing Conditions
2.2. Chemotherapy-Induced Neuropathic Pain Model and Experimental Groups
- Naïve group (GN): animals did not receive any drug or vehicle;
- Negative control group (GCN): saline solution only (NaCl 0.9%);
- Positive control group (GCP): vincristine sulfate only 0.05 mg/kg/day;
- Group GA2: amantadine 2 mg/kg/day + vincristine sulfate 0.05 mg/kg/day;
- Group GA5: amantadine 5 mg/kg/day + vincristine sulfate 0.05 mg/kg/day;
- Group GA12: amantadine 12 mg/kg/day + vincristine sulfate 0.05 mg/kg/day;
- Group GA25: amantadine 25 mg/kg/day + vincristine sulfate 0.05 mg/kg/day;
- Group GA50: amantadine 50 mg/kg/day + vincristine sulfate 0.05 mg/kg/day.
2.3. Assessment of Mechanical Nociceptive Threshold
2.4. Euthanasia and Sample Collection
2.5. Enzyme Analyses
2.5.1. Catalase Activity Analysis
2.5.2. Analysis of Superoxide Dismutase Activity
2.6. Protein Quantification
2.7. Immunohistochemistry
2.8. Quantitative PCR
2.9. Statistical Analyses
3. Results
3.1. Effect of Chemotherapy on Mechanical Pain Hypersensitivity
3.2. Amantadine Increased the Nociceptive Mechanical Threshold in Rats with Vincristine-Induced Peripheral Neuropathy
3.3. Amantadine Treatment Inhibits the Expression of Pro-Inflammatory Cytokines in the Spinal Cord of Rats with Vincristine-Induced Peripheral Neuropathy
3.4. Amantadine Treatment Increased the Expression of Antioxidant Enzymes (CAT and SOD) in the Spinal Cord of Rats with Vincristine-Induced Peripheral Neuropathy
3.5. Amantadine Treatment Inhibits the Expression of Reticular Stress Mediators in the Spinal Cord of Rats with Vincristine-Induced Peripheral Neuropathy
4. Discussion
4.1. Vincristine Induces Neuropathic Pain in Chemotherapy
4.2. Amantadine Alleviates Mechanical Hyperalgesia in Chemotherapy-Induced Neuropathic Pain
4.3. Regulation of Inflammatory Mediators by Amantadine Demonstrates Anti-Inflammatory Effects in Chemotherapy-Induced Neuropathy
4.4. The Treatment with Amantadine Was Effective in Increasing Antioxidant Enzymes in the Cord of Rats with Vincristine-Induced Peripheral Neuropathy
4.5. Amantadine Treatment Inhibits the Expression of Reticular Stress Mediators in the Spinal Cord of Rats with Vincristine-Induced Peripheral Neuropathy
4.6. Modulatory Effect of the Spinal Cord Response to the Apoptotic Mechanisms of Amantadine in Chemotherapy-Induced Neuropathy
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bray, F.; Laversanne, M.; Cao, B.; Varghese, C.; Mikkelsen, B.; Weiderpass, E.; Soerjomataram, I. Comparing cancer and cardiovascular disease trends in 20 middle- or high-income countries 2000–2019: A pointer to national trajectories towards achieving Sustainable Development goal target. Cancer Treat. Rev. 2021, 100, 102290. [Google Scholar] [CrossRef] [PubMed]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Ferlay, J.; Colombet, M.; Soerjomataram, I.; Mathers, C.; Parkin, D.; Piñeros, M.; Bray, A. Estimating the global cancer incidence and mortality in 2018: Globocan sources and methods. Int. J. Cancer 2020, 144, 1941–1953. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). Global Health Estimates 2020: Deaths by Cause, Age, Sex, by Country and by Region, 2000–2019; WHO: Geneva, Switzerland, 2020; Available online: https://who.int/data/gho/data/themes/mortality-and-global-health-estimates/ghe-leading-causes-of-death (accessed on 4 April 2022).
- Cavaletti, G.; Alberti, P.; Marmiroli, P. Chemotherapy-induced peripheral neurotoxicity in the era of pharmacogenomics. Lancet Oncol. 2017, 12, 1151–1161. [Google Scholar] [CrossRef] [PubMed]
- Noble, C.O.; Guo, Z.; Hayes, M.E.; Marks, J.D.; Park, J.W.; Benz, C.C.; Drummond, D.C. Characterization of highly stable liposomal and immunoliposomal formulations of vincristine and vinblastine. Cancer Chemother. Pharmacol. 2009, 64, 741–751. [Google Scholar] [CrossRef] [PubMed]
- Peters, C.M.; Jimenez-Andrade, J.M.; Jonas, B.M.; Sevcik, M.A.; Koewler, N.J.; Ghilardi, J.R.; Wong, G.Y.; Mantyh, P.W. Intravenous paclitaxel administration in the rat induces a peripheral sensory neuropathy characterized by macrophage infiltration and injury to sensory neurons and their supporting cells. Exp. Neurol. 2007, 203, 42–54. [Google Scholar] [CrossRef] [PubMed]
- Starobova, H.; Vetter, I. Pathophysiology of Chemotherapy-Induced Peripheral Neuropathy. Front. Mol. Neurosci. 2017, 10, 174–195. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Kavelaars, A.; Dougherty, P.M.; Heijnen, C.J. Beyond symptomatic relief for chemotherapy-induced peripheral neuropathy: Targeting the source. Cancer 2018, 124, 2289–2298. [Google Scholar] [CrossRef] [PubMed]
- Marmiroli, P.; Scuteria, A.; Cornblath, D.R.; Cavaletti, G. Pain in chemotherapy-induced peripheral neurotoxicity. J. Peripher. Nerv. Syst. 2017, 22, 156–161. [Google Scholar] [CrossRef] [PubMed]
- Boehmerle, W.; Huehnchen, P.; Peruzzaro, S.; Balkaya, M.; Endres, M. Electrophysiological, behavioral and histological characterization of paclitaxel, cisplatin, vincristine and bortezomib-induced neuropathy in C57Bl/6 mice. Sci. Rep. 2014, 4, 6370. [Google Scholar] [CrossRef] [PubMed]
- Seretny, M.; Currie, G.L.; Sena, E.S.; Ramnarine, S.; Grant, R.; MacLeod, M.R.; Colvin, L.A.; Fallon, M. Incidence, prevalence, and predictors of chemotherapy-induced peripheral neuropathy: A systematic review and meta-analysis. Pain 2014, 155, 2461–2470. [Google Scholar] [CrossRef] [PubMed]
- Gaynor, J.S.; Muir, I.W. Manual of Pain Control in Veterinary Medicine, 2nd ed.; Mosby: St. Louis, MO, USA, 2009; Volume 2, pp. 13–41. [Google Scholar]
- Childers, W.E.; Baudy, R.B. N-Methyl-d-Aspartate Antagonists and Neuropathic Pain: The Search for Relief. J. Med. Chem. 2007, 50, 2557–2562. [Google Scholar] [CrossRef] [PubMed]
- Bozic, M.; Valdivielso, J.M. The potential of targeting NMDA receptors outside the CNS. Expert Opin. Ther. Targets 2015, 19, 399–413. [Google Scholar] [CrossRef] [PubMed]
- Pickering, G.; Morel, V. Memantine for the treatment of general neuropathic pain: A narrative review. Fundam. Clin. Pharmacol. 2017, 32, 4–13. [Google Scholar] [CrossRef] [PubMed]
- Blanpied, T.A.; Clarke, R.J.; Johnson, J.W. Amantadines inhibits NMDA receptors by accelerating channel closure during channel block. J. Neurosci. 2005, 25, 312. [Google Scholar] [CrossRef] [PubMed]
- Schoen, B.; Eickmeyer, S. Poster 52 Acute Hallucinosis Related to Amantadine Use in the Setting of Traumatic Brain Injury: A Case Report. PM&R J. Inj. Funct. Rehabil. 2016, 8, 178. [Google Scholar] [CrossRef] [PubMed]
- Aiyer, R.; Mehta, N.; Gungor, S.; Gulati, A. Systematic Review of NMDA Receptor Antagonists for Treatment of Neuropathic Pain in Clinical Practice. Clin. J. Pain 2016, 34, 450–467. [Google Scholar] [CrossRef] [PubMed]
- Mata-Bermudez, A.; Rios, C.; Burelo, M.; Pérez-González, C.; García-Martínez, B.A.; Jardon-Guadarrama, G.; Calderón-Estrella, F.; Manning-Balpuesta, N.; Diaz-Ruiz, A. Amantadine prevented hypersensitivity and decreased oxidative stress by NMDA receptor antagonism after spinal cord injury in rats. Eur. J. Pain 2021, 25, 1839–1851. [Google Scholar] [CrossRef] [PubMed]
- Kerschner, D.; Von Ritgen, S. Amantadin, ein NMDA-Rezeptorantagonist, zur Behandlung von neuropathischen Schmerzen bei einer Katze. Vet. Med. Austria 2021, 108, 205–212. [Google Scholar]
- Nozaki-Taguchi, N.; Chaplan, S.R.; Higuera, E.S.; Ajakwe, R.C.; Yaksh, T.L. Vincristine-induced allodynia in the rat. Pain 2001, 93, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Moghaddasi, R. An ex vivo preparation of mature mice spinal Cord to study synaptic transmission on motoneurons. J. Neurosci. Methods 2007, 159, 1–7. [Google Scholar] [CrossRef]
- Ilie, M.; Khambata-Ford, S.; Copie-Bergman, C.; Huang, L.; Juco, J.; Hofman, V. Use of the 22C3 anti–PD-L1 antibody to determine PD-L1 expression in multiple automated immunohistochemistry platforms. PLoS ONE 2017, 12, e0183023. [Google Scholar] [CrossRef] [PubMed]
- Authier, N.; Gillet, J.P.; Fialip, J.; Eschalier, A.; Coudore, F.A. New Animal Model of Vincristine-Induced Nociceptive Peripheral Neuropathy. NeuroToxicology 2003, 24, 797–805. [Google Scholar] [CrossRef] [PubMed]
- Kiguchi, N.; Maeda, T.; Kobayashi, Y.; Kondo, T.; Ozaki, M.; Kishioka, S. The critical role of invading peripheral macrophage-derived interleukin-6 in vincristine-induced mechanical allodynia in mice. Eur. J. Pharmacol. 2008, 592, 87–92. [Google Scholar] [CrossRef] [PubMed]
- Chiba, T.; Okay, Y.; Sashida, H.; Kanbe, T.; Abe, K.; Utsunomiya, I.; Taguchi, K. Vincristine-induced peripheral neuropathic pain and expression of transient receptor potential vanilloid 1 in rat. J. Pharmacol. Sci. 2017, 133, 254–260. [Google Scholar] [CrossRef] [PubMed]
- Vashistha, B.; Sharma, A.; Jain, V. Ameliorative potential of ferulic acid in vincristine-induced painful neuropathy in rats: An evidence of behavioral and biochemical examination. Nutr. Neurosci. 2016, 20, 60–70. [Google Scholar] [CrossRef] [PubMed]
- Maksymiuk, A.W.; Tappia, P.S.; Bux, R.A.; Moyer, D.; Huang, G.; Joubert, P.; Sitar, D.S. Use of Amantadine in the Evaluation of Response to Chemotherapy in Lung Cancer: A Pilot Study. Futur. Sci. OA 2021, 7, 4. [Google Scholar] [CrossRef]
- Rigo, F.K.; Trevisan, G.; Godoy, M.C.; Rossato, M.F.; Dalmolin, G.D.; Silva, M.A.; Menezes, M.S.; Caumo, W.; Ferreira, J. Management of Neuropathic Chronic Pain with Methadone Combined with Ketamine: A Randomized, Double Blind, Active-Controlled Clinical Trial. Pain Physician 2017, 20, 207–215. [Google Scholar] [CrossRef]
- Trafton, J.A.; Ramani, A. Methadone: A new old drug with promises and pitfalls. Curr. Pain Headache Rep. 2009, 13, 24–30. [Google Scholar] [CrossRef]
- Eisenberg, E.; Pud, D. Can patients with chronic neuropathic pain be cured by acute administration of the NMDA receptor antagonist amantadine? Pain 1998, 74, 337–339. [Google Scholar] [CrossRef] [PubMed]
- Pud, D.; Eisenberg, E.; Spitzer, A.; Adler, R.; Fried, G.; Yarnitsky, D. The NMDA receptor antagonist amantadine reduces surgical neuropathic pain in cancer patients: A double blind, randomized, placebo controlled trial. Pain 1998, 75, 349–354. [Google Scholar] [CrossRef] [PubMed]
- Kleinbohl, D.; Gortelmeyer, R.; Bender, H.J. Amantadine sulfate reduces experimental sensitization and pain in chronic back pain patients. Anesth. Analg. 2006, 102, 840–847. [Google Scholar] [CrossRef] [PubMed]
- Bujak-Giżycka, B.; Kącka, K.; Suski, M.; Olszanecki, R.; Madej, J.; Dobrogowski, J.; Korbut, R. Beneficial effect of amantadine on Reduction of postoperative pain and morphine consumption in patients undergoing elective spine surgery. Pain Med. 2012, 13, 459–465. [Google Scholar] [CrossRef] [PubMed]
- Kubera, M.; Basta-Kaim, A.; Budziszewska, B.; Rogóż, Z.; Skuza, G.; Leśkiewicz, M.; Tetich, M.; Jaworska-Feil, L.; Maes, M.; Lasoń, W. Effect of amantadine and imipramine on immunological parameters of rats subjected to a forced swimming test. Int. J. Neuropsychopharmacol. 2006, 9, 297–305. [Google Scholar] [CrossRef] [PubMed]
- Tan, L.; Ge, H.; Tang, J.; Fu, C.; Duanmu, W.; Chen, Y.; Feng, H. Amantadine preserves dopamine level and attenuates depression-like behavior induced by traumatic brain injury in rats. Behav. Brain Res. 2015, 279, 274–282. [Google Scholar] [CrossRef] [PubMed]
- Müller, T. GOCOVRI® (amantadine) extended-release Capsules in Parkinson’s Disease. Neurodegener. Dis. Manag. 2022, 12, 15–28. [Google Scholar] [CrossRef]
- Lascelles, B.; Gaynor, J.; Smith, E.; Roe, S.; Marcellin-Little, D.; Davidson, G.; Boland, E.; Carr, J. Amantadine in a Multimodal Analgesic Regimen for Alleviation of Refractory Osteoarthritis Pain in Dogs. J. Vet. Intern. Med. 2008, 22, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Coffeen, U.; López-Ávila, A.; Pellicer, F. Systemic amantadine decreases inflammatory and neuropathic nociception in the rat. Ment. Health 2009, 32, 139–144. [Google Scholar]
- Zhang, J.; Tan, H.; Jiang, W.; Zuo, Z. Amantadine Alleviates Postoperative Cognitive Dysfunction Possibly by Increasing Glial Cell Line-derived Neurotrophic Factor in Rats. Anesthesiology 2014, 121, 773–785. [Google Scholar] [CrossRef] [PubMed]
- Gottschalk, A.; Smith, D.S. New concepts in acute pain therapy: Preemptive analgesia. Am. Fam. Physician 2001, 15, 1979–1984. [Google Scholar] [PubMed]
- Fumagalli, G.; Monza, L.; Cavaletti, G.; Rigolio, R.; Meregalli, C. Neuroinflammatory Process Involved in Different Preclinical Models of Chemotherapy-Induced Peripheral Neuropathy. Front Immunol. 2021, 11, 626687. [Google Scholar] [CrossRef]
- Zhou, Y.Q.; Liu, Z.; Liu, Z.H.; Chen, S.P.; Li, M.; Shahveranov, A.; Tian, Y.K. Interleukin-6: An emerging regulator of pathological pain. J. Neuroinflamm. 2016, 13, 141. [Google Scholar] [CrossRef] [PubMed]
- Melemedjian, O.K.; Tillu, D.V.; Moy, J.K.; Asiedu, M.N.; Mandell, E.K.; Ghosh, S.; Price, T.J. Local Translation and Retrograde Axonal Transport of CREB Regulates IL-6-Induced Nociceptive Plasticity. Mol. Pain 2014, 10, 45. [Google Scholar] [CrossRef] [PubMed]
- Obreja, O.; Schmelz, M.; Poole, S.; Kress, M. Interleukin-6 in combination with its soluble IL-6 receptor sensitises rat skin nociceptors to heat, in vivo. Pain 2002, 96, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Brenn, D.; Richter, F.; Schaible, H.G. Sensitization of unmyelinated sensory fibers of the joint nerve to mechanical stimuli by interleukin-6 in the rat: An inflammatory mechanism of joint pain. Arthritis Rheumatol. 2007, 56, 351–359. [Google Scholar] [CrossRef] [PubMed]
- Vazquez, E.; Kahlenbach, J.; Segond von Banchet, G.; König, C.; Schaible, H.G.; Ebersberger, A. Spinal interleukin-6 is an amplifier of arthritic pain in the rat. Arthritis Rheumatol. 2012, 64, 2233–2242. [Google Scholar] [CrossRef] [PubMed]
- Cunha, F.Q.; Poole, S.; Lorenzetti, B.B.; Ferreira, S.H. The pivotal role of tumor necrosis factor alpha in the development of inflammatory hyperalgesia. Br. J. Pharmacol. 1992, 107, 660–664. [Google Scholar] [CrossRef] [PubMed]
- Morgan, M.J.; Kim, Y.S.; Liu, Z.G. TNFalpha and reactive oxygen species in necrotic cell death. Cell Res. 2008, 18, 343–349. [Google Scholar] [CrossRef] [PubMed]
- Stellwagen, D.; Beattie, E.C.; Seo, J.Y.; Malenka, R.C. Differential regulation of AMPA receptor and GABA receptor trafficking by tumor necrosis factor-alpha. J. Neurosci. 2005, 25, 3219–3228. [Google Scholar] [CrossRef] [PubMed]
- Dumont, A.O.; Goursaud, S.; Desmet, N.; Herman, S.E. Differential regulation of glutamate transporter subtypes by pro-inflammatory cytokine TNF-alpha in cortical astrocytes from a rat model of amyotrophic lateral sclerosis. PLoS ONE 2014, 9, e97649. [Google Scholar] [CrossRef] [PubMed]
- Clark, I.A.; Vissel, B. Excess cerebral TNF causing glutamate excitotoxicity rationalizes treatment of neurodegenerative diseases and neurogenic pain by anti-TNF agents. J. Neuroinflamm. 2016, 13, 236. [Google Scholar] [CrossRef] [PubMed]
- Park, C.; Lü, N.; Xu, Z.; Liu, T.; Serhan, C.; Ji, R. Resolving TRPV1- and TNF-α-mediated spinal cord synaptic plasticity and inflammatory pain with neuroprotectin D1. J. Neurosci. 2011, 31, 15072–15085. [Google Scholar] [CrossRef] [PubMed]
- Echeverry, S.; Wu, Y.; Zhang, J. Selectively reducing cytokine/chemokine expressing macrophages in injured nerves impairs the development of neuropathic pain. Neurol Exp. 2012, 240, 205–218. [Google Scholar] [CrossRef] [PubMed]
- Kiguchi, N.; Kobayashi, Y.; Maeda, T.; Saika, F.; Kishioka, S. CC-chemokine MIP-1α in the spinal cord contributes to nerve injury-induced neuropathic pain. Neurosci. Lett. 2010, 484, 17–21. [Google Scholar] [CrossRef] [PubMed]
- Dogan, G.; Karaca, O. N-methyl-D-aspartate receptor antagonists may ameliorate spinal cord injury by inhibiting oxidative stress: An experimental study in rats. Turk. Neurosurg. 2020, 30, 60–68. [Google Scholar] [CrossRef]
- Xing, W.; Huang, P.; Lu, Y.; Zeng, W.; Zuo, Z. Amantadine attenuates sepsis-induced cognitive dysfunction possibly not through inhibiting toll-like receptor 2. J. Mol. Med. 2018, 96, 391–402. [Google Scholar] [CrossRef]
- Milligan, E.D.; Sloane, E.M.; Langer, S.J.; Hughes, T.S.; Jekich, B.M.; Frank, M.G. Repeated intrathecal injections of plasmid DNA encoding interleukin-10 produce prolonged reversal of neuropathic pain. Pain 2006, 126, 294–308. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.J.; Wang, L.; Song, X.Y. Mitoquinone alleviates vincristine-induced neuropathic pain through inhibiting oxidative stress and apoptosis via the improvement of mitochondrial dysfunction. Biomed. Pharmacother. 2020, 125, 110003. [Google Scholar] [CrossRef] [PubMed]
- Clark, A.K.; Malcangio, M. Fractalkine/CX3CR1 signaling during neuropathic pain. Front. Cell. Neurosci. 2014, 8, 121. [Google Scholar] [CrossRef] [PubMed]
- Döring, Y.; Pawig, L.; Weber, C.; Noels, H. The CXCL12/CXCR4 chemokine ligand/receptor axis in cardiovascular disease. Front. Physiol. 2014, 5, 212. [Google Scholar] [CrossRef] [PubMed]
- Bai, L.; Wang, X.; Li, Z.; Kong, C.; Zhao, Y.; Qian, J.L.; Kan, Q.; Zhang, W.; Xu, J.T. Upregulation of Chemokine CXCL12 in the Dorsal Root Ganglia and Spinal Cord Contributes to the Development and Maintenance of Neuropathic Pain Following Spared Nerve Injury in Rats. Neurosci. Bull. 2016, 32, 27–40. [Google Scholar] [CrossRef] [PubMed]
- Deng, L.; Guindon, J.; Vemuri, V.K.; Thakur, G.A.; White, F.A.; Makriyannis, A.; Hohmann, A.G. The maintenance of cisplatin-and paclitaxel-induced mechanical and cold allodynia is suppressed by cannabinoid CB2 receptor activation and independent of CXCR4 signaling in models of chemotherapy-induced peripheral neuropathy. Mol. Pain 2012, 8, 1744–8069. [Google Scholar] [CrossRef] [PubMed]
- Kesik, V.; Kurt, B.; Tunc, T.; Karslioglu, Y.; Citak, E.C.; Kismet, E.; Koseoglu, V. Adrenomedullin worsens skin necrosis in rats subjected to vincristine-induced extravasation. Clin. Exp. Dermatol. 2010, 35, 897–901. [Google Scholar] [CrossRef] [PubMed]
- Carozzi, V.A.; Canta, A.; Chiorazzi, A. Chemotherapy-induced peripheral neuropathy: What do we know about mechanisms? Neurosci. Lett. 2015, 596, 90–107. [Google Scholar] [CrossRef] [PubMed]
- Kelley, M.R.; Fehrenbacher, J.C. Challenges and opportunities identifying therapeutic targets for chemotherapy-induced peripheral neuropathy resulting from oxidative DNA damage. Neural Regen. Res. 2017, 12, 72–74. [Google Scholar] [CrossRef] [PubMed]
- Shim, H.S.; Bae, C.; Wang, J.; Lee, K.H.; Hankerd, K.M.; Kim, H.K.; La, J.H. Peripheral and central oxidative stress in chemotherapy-induced neuropathic pain. Mol. Pain 2019, 15, 1744806919840098. [Google Scholar] [CrossRef] [PubMed]
- Areti, A.; Yerra, V.G.; Naidu, V.; Kumar, A. Oxidative stress and nerve damage: Role in chemotherapy induced peripheral neuropathy. Redox Biol. 2014, 2, 289–295. [Google Scholar] [CrossRef] [PubMed]
- Culotta, V.S. Superoxide dismutase, oxidative stress, and cell metabolism. Curr. Top. Cell. Regul. 2001, 36, 117–132. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Mu, H.; Li, Z.; Ma, J.; Wang, Y. Suppression of chronic central pain by superoxide dismutase in rats with spinal cord injury: Inhibition of the NMDA receptor implicated. Exp. Ther. Med. 2014, 8, 1137–1141. [Google Scholar] [CrossRef] [PubMed]
- Orhan, M.; Taş Tuna, A.; Ünal, Y.; Arslan, M.; Yazar, H.; Sezen, Ş.C.; Gözükara, S.I.; Palabiyik, O. The effects of amantadine on lung tissue in lower limb ischemia/reperfusion injury model in rats. Turk. J. Thorac. Cardiovasc. Surg. 2021, 29, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, S.; Wang, Z.; Ding, M.; Li, X.; Guo, J.; Han, G.; Zhao, P. Dexmedetomidine Alleviated Endoplasmic Reticulum Stress via Inducing ER-phagy in the Spinal Cord of Neuropathic Pain Model. Front. Neurosci. 2020, 14, 90. [Google Scholar] [CrossRef] [PubMed]
- Seo, E.-H.; Piao, L.; Cho, E.-H.; Hong, S.-W.; Kim, S.-H. The Effect of Ketamine on Endoplasmic Reticulum Stress in Rats with Neuropathic Pain. Int. J. Mol. Sci. 2023, 24, 5336. [Google Scholar] [CrossRef] [PubMed]
- Batinic-Haberle, I.; Tovmasyan, A.; Spasojevic, I. Mn 1 Porphyrin-Based Redox-Active Drugs: Differential Effects as Cancer Therapeutics and Protectors of Normal Tissue against Oxidative Injury. Antioxid. Redox Signal. 2018, 29, 1691–1724. [Google Scholar] [CrossRef] [PubMed]
- Portt, L.; Norman, G.; Clapp, C.; Greenwood, M.; Greenwood, M.T. Anti-apoptosis and cell survival: A review. Biochem. Biophys. Acta 2010, 1813, 238–259. [Google Scholar] [CrossRef]
- Ahmed, S.; Ahmed, E.M.; Hantash, S.; Zakaria, S. Potential of Amantadine to Ameliorate Glutamate-Induced Pyramidal Cells Toxicity in Juvenile Rat’ Brain Cortex. Neurotox. Res. 2021, 39, 1203–1210. [Google Scholar] [CrossRef]
Antibody | Dilution | DAB Time | Code |
---|---|---|---|
Anti-CX3CR1 | 1:250 | 10 min | anti-CX3CR1, sc-377227 |
Anti-CXCR-4/IgC | 1:200 | 5 min | anti-CXCR-4, sc-53534 |
Anti-Catalase | 1:200 | 7 min | anti-CAT, sc-271803 |
Anti-GPx | 1:200 | 10 min | anti-GPx, sc-133152 |
Anti-IL-10 | 1:2500 | 3 min | anti-IL10, sc-365858 |
Anti-IL-6 | 1:1500 | 3 min | anti-IL6, sc-28343 |
Anti-MIP-1α | 1:100 | 12 min | anti-MIP-1α, sc-36569 |
Anti-SOD | 1:8000 | 15 s | anti-SOD, sc-101523 |
Anti-TNF-α | 1:500 | 3 min | anti-TNFα, sc-33639 |
Genes | Starters | NoAccess |
---|---|---|
Grp78 | Forward: TGAAGGGGAGCGTCTGATTG Reverse: TCATTCCAAGTGCGTCCGAT | NM_013083.2 |
Chop | Forward: TGGCACAGCTTGCTGAAGAG Reverse: TCAGGCGCTCGATTTCCT | NM_001109986.1 |
Perk | Forward: GGCTGGTGAGGGATGGTAAA Reverse: TTGGCTGTGTAACTTGTGTCATC | NM_031599.2 |
Ho1 | Forward: CAGCATACGTAAAGCGTCTCCA Reverse: CATGGCCTTCTGCGCAATCTTCTT | NM_012580.2 |
Bax | Forward: GCACGTCTGCGGGAG Reverse: ATCTGTTCAGAGCTGGTGGG | NM_017059.2 |
Bcl-xl | Forward: AGAACCTGGACTCAGACCTTC Reverse: TCCAGGATCCAAAGCCAAGA | XM_039104291.1 |
CASP 3 | Forward: GAGCTTGGAACGCGAAGAAA Reverse: AGTCCATCGACTTGCTTCCA | NM_012922.2 |
CASP 9 | Forward: TCCCCACTGATCAAGTCTCCT Reverse: CCAGGCTCACTTAGCAAGGAA | NM_031632.2 |
IL-6 | Forward: GACTTCCAGCCAGTTGCCTTR Reverse: AAGTCTCCTCTCCGGACTTGT | NM_053595.2 |
IL-1β | Forward: GCACAGTTCCCCCAACTGGTA Reverse: TGTCCCGACCATTGCTGTTT | NM_ 031512.2 |
IL-10 | Forward: ACCACTTTGGCAGACTTCCT Reverse: ACACAGGCGGGTTTCTTTTG | NM_053595.2 |
IL-18 | Forward: GACTTCCAGCCAGTTGCCTTR Reverse: AAGTCTCCTCTCCGGACTTGT | NM_019174.4 |
Gapdh | Forward: GCGCTACAGCGGATTTTTGA Reverse: GAAGGCATACACGGTGGACT | NM_031797.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Drummond, I.S.A.; de Oliveira, J.N.S.; Niella, R.V.; Silva, Á.J.C.; de Oliveira, I.S.; de Souza, S.S.; da Costa Marques, C.S.; Corrêa, J.M.X.; Silva, J.F.; de Lavor, M.S.L. Evaluation of the Therapeutic Potential of Amantadine in a Vincristine-Induced Peripheral Neuropathy Model in Rats. Animals 2024, 14, 1941. https://doi.org/10.3390/ani14131941
Drummond ISA, de Oliveira JNS, Niella RV, Silva ÁJC, de Oliveira IS, de Souza SS, da Costa Marques CS, Corrêa JMX, Silva JF, de Lavor MSL. Evaluation of the Therapeutic Potential of Amantadine in a Vincristine-Induced Peripheral Neuropathy Model in Rats. Animals. 2024; 14(13):1941. https://doi.org/10.3390/ani14131941
Chicago/Turabian StyleDrummond, Isabela Santana Albertazzi, Jéssica Natália Silva de Oliveira, Raquel Vieira Niella, Álvaro José Chávez Silva, Iago Santos de Oliveira, Sophia Saraiva de Souza, Claire Souza da Costa Marques, Janaina Maria Xavier Corrêa, Juneo Freitas Silva, and Mário Sérgio Lima de Lavor. 2024. "Evaluation of the Therapeutic Potential of Amantadine in a Vincristine-Induced Peripheral Neuropathy Model in Rats" Animals 14, no. 13: 1941. https://doi.org/10.3390/ani14131941
APA StyleDrummond, I. S. A., de Oliveira, J. N. S., Niella, R. V., Silva, Á. J. C., de Oliveira, I. S., de Souza, S. S., da Costa Marques, C. S., Corrêa, J. M. X., Silva, J. F., & de Lavor, M. S. L. (2024). Evaluation of the Therapeutic Potential of Amantadine in a Vincristine-Induced Peripheral Neuropathy Model in Rats. Animals, 14(13), 1941. https://doi.org/10.3390/ani14131941