Mitochondrial Control Region Database of Hungarian Fallow Deer (Dama dama) Populations for Forensic Use
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling and DNA Extraction
2.2. Mitochondrial Control Region Amplification, Sequencing, and Haplotype Determination
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chapman, N.G.; Chapman, D.I. The distribution of fallow deer: A worldwide review. Mammal Rev. 1980, 10, 61–138. [Google Scholar] [CrossRef]
- Pemberton, J.; Smith, R. Lack of biochemical polymorphism in British fallow deer. Heredity 1985, 55, 199–207. [Google Scholar] [CrossRef] [PubMed]
- Faragó, S.; Köller, J.; Zoltán, A. Természeti-Vadászati Örökségünk. A Legkiválóbb Magyar Vadásztrófeák; Nimród Vadászújság: Budapest, Hungary, 2009. [Google Scholar]
- Évi, L.V. Törvény—Nemzeti Jogszabálytár. 1996. Available online: https://njt.hu/jogszabaly/1996-55-00-00.49 (accessed on 23 September 2023).
- Elek, B.S. The criminalization of poaching in Hungary. Zb. Rad. 2019, 53, 639–648. [Google Scholar] [CrossRef]
- Szabolcsi, Z.; Egyed, B.; Zenke, P.; Padar, Z.; Borsy, A.; Steger, V.; Pasztor, E.; Csanyi, S.; Buzas, Z.; Orosz, L. Constructing STR multiplexes for individual identification of Hungarian red deer. J. Forensic Sci. 2014, 59, 1090–1099. [Google Scholar] [CrossRef] [PubMed]
- Zorkóczy, O.K.; Turi, O.; Wagenhoffer, Z.; Ózsvári, L.; Lehotzky, P.; Pádár, Z.; Zenke, P. A Selection of 14 Tetrameric Microsatellite Markers for Genetic Investigations in Fallow Deer (Dama dama). Animals 2023, 13, 2083. [Google Scholar] [CrossRef] [PubMed]
- Alacs, E.A.; Georges, A.; FitzSimmons, N.N.; Robertson, J. DNA detective: A review of molecular approaches to wildlife forensics. Forensic Sci. Med. Pathol. 2010, 6, 180–194. [Google Scholar] [CrossRef] [PubMed]
- Baker, K.; Gray, H.; Ramovs, V.; Mertzanidou, D.; Akın Pekşen, Ç.; Bilgin, C.C.; Sykes, N.; Hoelzel, A. Strong population structure in a species manipulated by humans since the Neolithic: The European fallow deer (Dama dama dama). Heredity 2017, 119, 16–26. [Google Scholar] [CrossRef] [PubMed]
- Kusza, S.; Ashrafzadeh, M.R.; Tóth, B.; Jávor, A. Maternal genetic variation in the northeastern Hungarian fallow deer (Dama dama) population. Mamm. Biol. 2018, 93, 21–28. [Google Scholar] [CrossRef]
- Ludwig, A.; Vernesi, C.; Lieckfeldt, D.; Lattenkamp, E.Z.; Wiethölter, A.; Lutz, W. Origin and patterns of genetic diversity of German fallow deer as inferred from mitochondrial DNA. Eur. J. Wildl. Res. 2012, 58, 495–501. [Google Scholar] [CrossRef]
- Masseti, M.; Pecchioli, E.; Vernesi, C. Phylogeography of the last surviving populations of Rhodian and Anatolian fallow deer (Dama dama dama L., 1758). Biol. J. Linn. Soc. 2008, 93, 835–844. [Google Scholar] [CrossRef]
- Cronin, M.A.; Palmisciano, D.A.; Vyse, E.R.; Cameron, D.G. Mitochondrial DNA in wildlife forensic science: Species identification of tissues. Wildl. Soc. Bull. 1991, 19, 94–105. [Google Scholar]
- Randi, E.; Apollonio, M. Low biochemical variability in European fallow deer (Dama dama L.): Natural bottlenecks and the effects of domestication. Heredity 1988, 61, 405–410. [Google Scholar] [CrossRef] [PubMed]
- Markov, G.G.; Kuznetsova, M.V.; Danilkin, A.A.; Kholodova, M.V.; Sugár, L.; Heltai, M. Genetic diversity of the red deer (Cervus elphus L.) in Hungary revealed by cytochrome b gene. Acta Zool. Bulg. 2015, 67, 11–17. [Google Scholar]
- Fajardo, V.; González, I.; López-Calleja, I.; Martín, I.; Rojas, M.; Hernández, P.; García, T.; Martín, R. Identification of meats from red deer (Cervus elaphus), fallow deer (Dama dama), and roe deer (Capreolus capreolus) using polymerase chain reaction targeting specific sequences from the mitochondrial 12S rRNA gene. Meat Sci. 2007, 76, 234–240. [Google Scholar] [CrossRef]
- Brodmann, P.; Nicholas, G.; Schaltenbrand, P.; Ilg, E. Identifying unknown game species: Experience with nucleotide sequencing of the mitochondrial cytochrome b gene and a subsequent basic local alignment search tool search. Eur. Food Res. Technol. 2001, 212, 491–496. [Google Scholar] [CrossRef]
- Parkanyi, V.; Ondruska, L.; Vasicek, D.; Slamecka, J. Multilevel D-loop PCR identification of hunting game. Appl. Transl. Genom. 2014, 3, 1–7. [Google Scholar] [CrossRef]
- Douzery, E.; Randi, E. The mitochondrial control region of Cervidae: Evolutionary patterns and phylogenetic content. Mol. Biol. Evol. 1997, 14, 1154–1166. [Google Scholar] [CrossRef]
- Polziehn, R.; Strobeck, C. Phylogeny of wapiti, red deer, sika deer, and other North American cervids as determined from mitochondrial DNA. Mol. Phylogenetics Evol. 1998, 10, 249–258. [Google Scholar] [CrossRef] [PubMed]
- Polziehn, R.O.; Strobeck, C. A phylogenetic comparison of red deer and wapiti using mitochondrial DNA. Mol. Phylogenetics Evol. 2002, 22, 342–356. [Google Scholar] [CrossRef]
- Kanthaswamy, S. domestic animal forensic genetics–biological evidence, genetic markers, analytical approaches and challenges. Anim. Genet. 2015, 46, 473–484. [Google Scholar] [CrossRef]
- Tully, G.; Wetton, J.H. Interpretation of mitochondrial DNA evidence. In Wiley Encyclopedia of Forensic Science; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2009; pp. 1–10. [Google Scholar]
- Khademi, T.G. A review of the biological status of Persian fallow deer (Dama mesopotamica), a precious and endangered animal species in Iran. J. Middle East Appl. Sci. Technol. 2014, 18, 638–642. [Google Scholar]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef] [PubMed]
- Rozas, J.; Ferrer-Mata, A.; Sánchez-DelBarrio, J.C.; Guirao-Rico, S.; Librado, P.; Ramos-Onsins, S.E.; Sánchez-Gracia, A. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 2017, 34, 3299–3302. [Google Scholar] [CrossRef] [PubMed]
- Balding, D.J.; Nichols, R.A. DNA profile match probability calculation: How to allow for population stratification, relatedness, database selection and single bands. Forensic Sci. Int. 1994, 64, 125–140. [Google Scholar] [CrossRef]
- Johnson, R.N.; Wilson-Wilde, L.; Linacre, A. Current and future directions of DNA in wildlife forensic science. Forensic Sci. Int. Genet. 2014, 10, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Duleba, A.; Skonieczna, K.; Bogdanowicz, W.; Malyarchuk, B.; Grzybowski, T. Complete mitochondrial genome database and standardized classification system for Canis lupus familiaris. Forensic Sci. Int. Genet. 2015, 19, 123–129. [Google Scholar] [CrossRef]
- Ottolini, B.; Lall, G.M.; Sacchini, F.; Jobling, M.A.; Wetton, J.H. Application of a mitochondrial DNA control region frequency database for UK domestic cats. Forensic Sci. Int. Genet. 2017, 27, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Zhao, K.; Ishida, Y.; Green, C.E.; Davidson, A.G.; Sitam, F.A.; Donnelly, C.L.; De Flamingh, A.; Perrin-Stowe, T.I.; Bourgeois, S.; Brandt, A.L.; et al. Loxodonta Localizer: A software tool for inferring the provenance of African elephants and their ivory using mitochondrial DNA. J. Hered. 2019, 110, 761–768. [Google Scholar] [CrossRef] [PubMed]
- Syndercombe Court, D. Mitochondrial DNA in forensic use. Emerg. Top. Life Sci. 2021, 5, 415–426. [Google Scholar]
- Nei, M. Molecular Evolutionary Genetics; Columbia University Press: New York, NY, USA, 1987. [Google Scholar]
- Grahn, R.A.; Alhaddad, H.; Alves, P.C.; Randi, E.; Waly, N.E.; Lyons, L.A. Feline mitochondrial DNA sampling for forensic analysis: When enough is enough! Forensic Sci. Int. Genet. 2015, 16, 52–57. [Google Scholar] [CrossRef]
- Verscheure, S.; Backeljau, T.; Desmyter, S. Reviewing population studies for forensic purposes: Dog mitochondrial DNA. ZooKeys 2013, 365, 381–411. [Google Scholar] [CrossRef]
- Webb, K.; Allard, M. Assessment of minimum sample sizes required to adequately represent diversity reveals inadequacies in datasets of domestic dog mitochondrial DNA. Mitochondrial DNA 2010, 21, 19–31. [Google Scholar] [CrossRef] [PubMed]
- Salas, A.; Bandelt, H.-J.; Macaulay, V.; Richards, M.B. Phylogeographic investigations: The role of trees in forensic genetics. Forensic Sci. Int. 2007, 168, 1–13. [Google Scholar] [CrossRef]
- Say, L.; Naulty, F.; Hayden, T. Genetic and behavioural estimates of reproductive skew in male fallow deer. Mol. Ecol. 2003, 12, 2793–2800. [Google Scholar] [CrossRef]
- Pitarch, J.L.; Raksa, H.C.; Arnal, M.C.; Revilla, M.; Martínez, D.; Fernández de Luco, D.; Badiola, J.J.; Goldmann, W.; Acín, C. Low sequence diversity of the prion protein gene (PRNP) in wild deer and goat species from Spain. Vet. Res. 2018, 49, 33. [Google Scholar] [CrossRef]
- Webley, L.S.; Zenger, K.R.; Hall, G.P.; Cooper, D.W. Genetic structure of introduced European fallow deer (Dama dama dama) in Tasmania, Australia. Eur. J. Wildl. Res. 2007, 53, 40–46. [Google Scholar] [CrossRef]
- Luikart, G.; Allendorf, F.; Cornuet, J.; Sherwin, W. Distortion of allele frequency distributions provides a test for recent population bottlenecks. J. Hered. 1998, 89, 238–247. [Google Scholar] [CrossRef]
- Hartl, G.; Schleger, A.; Slowak, M. Genetic variability in fallow deer, Dama dama L. Anim. Genet. 1986, 17, 335–341. [Google Scholar] [CrossRef]
- Scandura, M.; Tiedemann, R.; Apollonio, M.; Hartl, G.B. Genetic variation in an isolated Italian population of fallow deer Dama dama as revealed by RAPD-PCR. Acta Theriol. 1998, 43, 163–169. [Google Scholar] [CrossRef]
- Ali Fadhil, I.; Qasim Hasan Alsaadi, B. Documentation of Genetic Diversity by Insulin-like Growth Factor1 Receptor (Exon2) Gene for Fallow Deer (Dama dama) in Iraq. Arch. Razi Inst. 2023, 78, 633–642. [Google Scholar]
- Frankham, R.; Briscoe, D.A.; Ballou, J.D. Introduction to Conservation Genetics; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Kanthaswamy, S. Wildlife forensic genetics—Biological evidence, DNA markers, analytical approaches, and challenges. Anim. Genet. 2023, 55, 177–192. [Google Scholar] [CrossRef] [PubMed]
- Leigh, J.W.; Bryant, D.; Nakagawa, S. POPART: Full-feature software for haplotype network construction. Methods Ecol. Evol. 2015, 6, 1110–1116. [Google Scholar] [CrossRef]
Region | NW | NM | NE [10] | SW | SM | SE | Overall |
---|---|---|---|---|---|---|---|
n | 34 | 42 | 41 | 37 | 31 | 7 | 192 |
S | 1 | 2 | 2 | 3 | 2 | 4 | 6 |
k | 2 | 3 | 3 | 3 | 3 | 3 | 6 |
Hd | 0.428 | 0.529 | 0.526 | 0.611 | 0.333 | 0.667 | 0.565 |
π | 0.00095 | 0.00123 | 0.00123 | 0.00221 | 0.00076 | 0.00423 | 0.00162 |
RMP | 0.585 | 0.484 | 0.487 | 0.617 | 0.677 | 0.429 | 0.547 |
NW | 0.025 | 0.017 | 0.084 | 0.177 | 0.345 | Fst | |
NM | 0.010 | −0.022 | 0.026 | 0.298 | 0.359 | (p < 0.001) | |
NE | 0.006 | −0.012 | 0.028 | 0.286 | 0.356 | ||
SW | 0.072 | 0.015 | 0.019 | 0.291 | 0.237 | ||
SM | 0.050 | 0.111 | 0.104 | 0.189 | 0.324 | Gst | |
SE | 0.211 | 0.148 | 0.151 | 0.100 | 0.265 | (p < 0.001) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zorkóczy, O.K.; Wagenhoffer, Z.; Lehotzky, P.; Pádár, Z.; Zenke, P. Mitochondrial Control Region Database of Hungarian Fallow Deer (Dama dama) Populations for Forensic Use. Animals 2024, 14, 1911. https://doi.org/10.3390/ani14131911
Zorkóczy OK, Wagenhoffer Z, Lehotzky P, Pádár Z, Zenke P. Mitochondrial Control Region Database of Hungarian Fallow Deer (Dama dama) Populations for Forensic Use. Animals. 2024; 14(13):1911. https://doi.org/10.3390/ani14131911
Chicago/Turabian StyleZorkóczy, Orsolya K., Zsombor Wagenhoffer, Pál Lehotzky, Zsolt Pádár, and Petra Zenke. 2024. "Mitochondrial Control Region Database of Hungarian Fallow Deer (Dama dama) Populations for Forensic Use" Animals 14, no. 13: 1911. https://doi.org/10.3390/ani14131911
APA StyleZorkóczy, O. K., Wagenhoffer, Z., Lehotzky, P., Pádár, Z., & Zenke, P. (2024). Mitochondrial Control Region Database of Hungarian Fallow Deer (Dama dama) Populations for Forensic Use. Animals, 14(13), 1911. https://doi.org/10.3390/ani14131911