Effect of Bile Acids Supplementation in Fatty Liver Hemorrhagic Syndrome, Production Performance, Physiological and Quality Characteristics of Laying Hen Eggs
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Treatments
2.2. Production Performance
- ADFI = Total feed intake/Day
- AEW = Total egg weight/number
- FCR = ADFI/AEW
- LR = Number of eggs laid/number of days to lay eggs × 100%
2.3. Egg Quality Traits Evaluation
- HU = 100 log (H − 1.7W0.37 + 7.57)
- H: albumen height (mm)
- W: egg weight (g)
2.4. Liver Morphology
2.5. Serum Biochemical Indexes
2.6. Antioxidant Capacity
2.7. ELISA Assay
2.8. 16S rRNA Gene Sequencing
2.9. Bioinformatics Analysis
2.10. Statistical Analysis
3. Results
3.1. Production Performance
3.2. Egg Quality Traits Evaluation
3.3. Liver Morphology
3.4. Serum Biochemical Indexes
3.5. Antioxidant Capacity
3.6. Proinflammatory Cytokines
3.7. Correlation Analysis
3.7.1. Abundance
3.7.2. Alpha
3.7.3. Beta
3.7.4. Variance Analysis
3.7.5. Correlation Analysis between Production Performance and Intestinal Microbiota
3.7.6. Correlation Analysis between Egg Quality and Intestinal Microbiota
3.7.7. Correlation Analysis between Intestinal Microbiota and Serum Biochemical Indexes
3.7.8. Correlation Analysis between Intestinal Microbiota and Antioxidant Capacity
3.7.9. Correlation Analysis between Intestinal Microbiota and Proinflammatory Cytokines
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, W.; Shi, Y.; Li, G.; Huang, C.; Zhuang, Y.; Shu, B.; Cao, X.; Li, Z.; Hu, G.; Liu, P.; et al. Preparation of the peroxisome proliferator-activated receptor alpha polyclonal antibody: Its application in fatty liver hemorrhagic syndrome. Int. J. Biol. Macromol. 2021, 182, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Cai, H.; Liu, G.; Han, Y.; Qiu, K.; Liu, W.; Meng, K.; Yang, P. Lactiplantibacillus plantarum FRT4 attenuates high-energy low-protein diet-induced fatty liver hemorrhage syndrome in laying hens through regulating gut-liver axis. J. Anim. Sci. Biotechnol. 2024, 15, 31. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Kuang, J.; Zhuang, Y.; Jiang, J.; Shi, Y.; Huang, C.; Zhou, C.; Xu, P.; Liu, P.; Wu, C.; et al. Serum Metabolomic Profiling to Reveal Potential Biomarkers for the Diagnosis of Fatty Liver Hemorrhagic Syndrome in Laying Hens. Front. Physiol. 2021, 12, 590638. [Google Scholar] [CrossRef] [PubMed]
- San, J.; Hu, J.; Pang, H.; Zuo, W.; Su, N.; Guo, Z.; Wu, G.; Yang, J. Taurine Protects against the Fatty Liver Hemorrhagic Syndrome in Laying Hens through the Regulation of Mitochondrial Homeostasis. Int. J. Mol. Sci. 2023, 24, 10360. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.I.; Ahn, H.J.; Lee, B.K.; Oh, S.T.; An, B.K.; Kang, C.W. Nutritional and Hormonal Induction of Fatty Liver Syndrome and Effects of Dietary Lipotropic Factors in Egg-type Male Chicks. Asian-Australas. J. Anim. Sci. 2012, 25, 1145–1152. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Marsh, S.; Hu, J.; Feng, W.; Wu, C. The Pathogenesis of Nonalcoholic Fatty Liver Disease: Interplay between Diet, Gut Microbiota, and Genetic Background. Gastroenterol. Res. Pract. 2016, 2016, 2862173. [Google Scholar] [CrossRef] [PubMed]
- Shini, A.; Shini, S.; Bryden, W.L. Fatty liver haemorrhagic syndrome occurrence in laying hens: Impact of production system. Avian Pathol. 2019, 48, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Anene, D.O.; Akter, Y.; Groves, P.J.; Horadagoda, N.; Liu, S.Y.; Moss, A.; Hutchison, C.; O’Shea, C.J. Association of feed efficiency with organ characteristics and fatty liver haemorrhagic syndrome in laying hens. Sci. Rep. 2023, 13, 5872. [Google Scholar] [CrossRef] [PubMed]
- Bing, H.; Li, Y. The role of bile acid metabolism in the occurrence and development of NAFLD. Front. Mol. Biosci. 2022, 9, 1089359. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, J. Bile acid metabolism and circadian rhythms. Am. J. Physiol. Gastrointest. Liver Physiol. 2020, 319, G549–G563. [Google Scholar] [CrossRef]
- Li, J.; Dawson, P.A. Animal models to study bile acid metabolism. Biochim. Biophys. Acta Mol. Basis Dis. 2019, 1865, 895–911. [Google Scholar] [CrossRef] [PubMed]
- Xiong, J.; Zheng, T.J.; Shi, Y.; Wei, F.; Ma, S.C.; He, L.; Wang, S.C.; Liu, X.S. Analysis of the fingerprint profile of bioactive constituents of traditional Chinese medicinal materials derived from animal bile using the HPLC-ELSD and chemometric methods: An application of a reference scaleplate. J. Pharm. Biomed. Anal. 2019, 174, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Liu, D.; Wang, C.; Yan, G.; Zhang, S.; Jiang, Y.; Shen, M.; Jia, B.; Xu, L.; Huang, B.; et al. Comparison study of protective effects of porcine bile acids and sheep bile acids against heat stress in chickens. J. Sci. Food Agric. 2023, 103, 5687–5696. [Google Scholar] [CrossRef] [PubMed]
- Tsai, S.J.; Zhong, Y.S.; Weng, J.F.; Huang, H.H.; Hsieh, P.Y. Determination of bile acids in pig liver, pig kidney and bovine liver by gas chromatography-chemical ionization tandem mass spectrometry with total ion chromatograms and extraction ion chromatograms. J. Chromatogr. A 2011, 1218, 524–533. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Sun, Y. Revealing the pharmacological effect and mechanism of darutoside on gouty arthritis by liquid chromatography/mass spectrometry and metabolomics. Front. Mol. Biosci. 2022, 9, 942303. [Google Scholar] [CrossRef] [PubMed]
- Toldrá, F.; Aristoy, M.C.; Mora, L.; Reig, M. Innovations in value-addition of edible meat by-products. Meat. Sci. 2012, 92, 290–296. [Google Scholar] [CrossRef] [PubMed]
- Hamid, H.; Zhang, J.Y.; Li, W.X.; Liu, C.; Li, M.L.; Zhao, L.H.; Ji, C.; Ma, Q.G. Interactions between the cecal microbiota and non-alcoholic steatohepatitis using laying hens as the model. Poult. Sci. 2019, 98, 2509–2521. [Google Scholar] [CrossRef] [PubMed]
- Piekarski, A.; Decuypere, E.; Buyse, J.; Dridi, S. Chenodeoxycholic acid reduces feed intake and modulates the expression of hypothalamic neuropeptides and hepatic lipogenic genes in broiler chickens. Gen. Comp. Endocrinol. 2016, 229, 74–83. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Wang, J.; Ding, X.; Bai, S.; Zeng, Q.; Xuan, Y.; Fraley, G.S.; Zhang, K. Serum trimethylamine-N-oxide and gut microbiome alterations are associated with cholesterol deposition in the liver of laying hens fed with rapeseed meal. Anim. Nutr. 2021, 7, 1258–1270. [Google Scholar] [CrossRef]
- Pashtetsky, V.; Il’Yazov, R.; Ostapchuk, P.; Kuevda, T.; Zubochenko, A.; Zubochenko, D. Influence of iodine based exogenous antioxidants on the productive indicators of laying hens. IOP Conf. Ser. Earth Environ. Sci. 2019, 341, 12013. [Google Scholar] [CrossRef]
- Gao, Z.; Duan, Z.; Zhang, J.; Zheng, J.; Li, F.; Xu, G. Effects of Oil Types and Fat Concentrations on Production Performance, Egg Quality, and Antioxidant Capacity of Laying Hens. Animals 2022, 12, 315. [Google Scholar] [CrossRef] [PubMed]
- Neuman, M.G.; Cohen, L.B.; Nanau, R.M. Biomarkers in nonalcoholic fatty liver disease. Can. J. Gastroenterol. Hepatol. 2014, 28, 607–618. [Google Scholar] [CrossRef] [PubMed]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.; Holmes, S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef] [PubMed]
- Bokulich, N.A.; Kaehler, B.D.; Rideout, J.R.; Dillon, M.; Bolyen, E.; Knight, R.; Huttley, G.A.; Gregory, C.J. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 2018, 6, 90. [Google Scholar] [CrossRef] [PubMed]
- Mandal, S.; Van Treuren, W.; White, R.A.; Eggesbo, M.; Knight, R.; Peddada, S.D. Analysis of composition of microbiomes: A novel method for studying microbial composition. Microb. Ecol. Health Dis. 2015, 26, 27663. [Google Scholar] [CrossRef] [PubMed]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [PubMed]
- Xue, R.; Su, L.; Lai, S.; Wang, Y.; Zhao, D.; Fan, J.; Chen, W.; Hylemon, P.B.; Zhou, H. Bile Acid Receptors and the Gut-Liver Axis in Nonalcoholic Fatty Liver Disease. Cells 2021, 10, 2806. [Google Scholar] [CrossRef] [PubMed]
- Chow, M.D.; Lee, Y.H.; Guo, G.L. The role of bile acids in nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Mol. Asp. Med. 2017, 56, 34–44. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Ma, H.; Yue, Y.; Wang, L.; Hao, K.; Zhang, Y.; Li, J.; Xiang, Y.; Min, Y. Saikosaponin a ameliorates diet-induced fatty liver via regulating intestinal microbiota and bile acid profile in laying hens. Poult. Sci. 2023, 102, 103155. [Google Scholar] [CrossRef]
- Rozenboim, I.; Mahato, J.; Cohen, N.A.; Tirosh, O. Low protein and high-energy diet: A possible natural cause of fatty liver hemorrhagic syndrome in caged White Leghorn laying hens. Poult. Sci. 2016, 95, 612–621. [Google Scholar] [CrossRef]
- Neijat, M.; Gakhar, N.; Neufeld, J.; House, J.D. Performance, egg quality, and blood plasma chemistry of laying hens fed hempseed and hempseed oil. Poult. Sci. 2014, 93, 2827–2840. [Google Scholar] [CrossRef] [PubMed]
- Han, G.P.; Kim, J.H.; Lee, J.H.; Kim, H.W.; Kil, D.Y. Research Note: Effect of increasing fat supplementation in diets on productive performance, egg quality, and fatty liver incidence in laying hens throughout the entire laying cycle. Poult. Sci. 2023, 102, 103069. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Huang, S.; Li, S.; Feng, Z.; Zhao, G.; Ma, Q. Safety Evaluation of Porcine Bile Acids in Laying Hens: Effects on Laying Performance, Egg Quality, Blood Parameters, Organ Indexes, and Intestinal Development. Front. Vet. Sci. 2022, 9, 895831. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Yang, Y.; Chen, J.; Dai, X.; Xing, C.; Zhang, C.; Cao, H.; Guo, X.; Hu, G.; Zhuang, Y. Berberine Protects against High-Energy and Low-Protein Diet-Induced Hepatic Steatosis: Modulation of Gut Microbiota and Bile Acid Metabolism in Laying Hens. Int. J. Mol. Sci. 2023, 24, 17304. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Xu, H.; Wang, Y.; Zhang, Y.; Ye, R.; Li, W.; Yang, J.; Wu, J.; Li, J.; Jin, E.; et al. From inflammation to pyroptosis: Understanding the consequences of cadmium exposure in chicken liver cells. Ecotoxicol. Environ. Saf. 2024, 272, 116004. [Google Scholar] [CrossRef]
- Xu, S.; Liu, Z.; Liu, P. HDL cholesterol in cardiovascular diseases: The good, the bad, and the ugly? Int. J. Cardiol. 2013, 168, 3157–3159. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Hou, Y.; Hu, J.; Li, J.; Liang, Y.; Lu, Y.; Liu, X. Dietary naringin supplementation on hepatic yolk precursors formation and antioxidant capacity of Three-Yellow breeder hens during the late laying period. Poult. Sci. 2023, 102, 102605. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Liu, M.; Zhao, M.; Zhi, S.; Zhang, W.; Qu, L.; Xiong, J.; Yan, X.; Qin, C.; Nie, G.; et al. Dietary Bile Acid Supplementation Could Regulate the Glucose, Lipid Metabolism, and Microbiota of Common Carp (Cyprinus carpio L.) Fed with a High-Lipid Diet. Aquac. Nutr. 2023, 2023, 9953927. [Google Scholar] [CrossRef]
- Robea, M.A.; Balmus, I.; Girleanu, I.; Huiban, L.; Muzica, C.; Ciobica, A.; Stanciu, C.; Cimpoesu, C.D.; Trifan, A. Coagulation Dysfunctions in Non-Alcoholic Fatty Liver Disease—Oxidative Stress and Inflammation Relevance. Medicina 2023, 59, 1614. [Google Scholar] [CrossRef]
- Chen, Z.; Tian, R.; She, Z.; Cai, J.; Li, H. Role of oxidative stress in the pathogenesis of nonalcoholic fatty liver disease. Free Radic. Biol. Med. 2020, 152, 116–141. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.L.; Gao, S.T.; Wang, K.; Xu, J.C.; Sanz-Fernandez, M.V.; Baumgard, L.H.; Bu, D.P. Effects of source on bioavailability of selenium, antioxidant status, and performance in lactating dairy cows during oxidative stress-inducing conditions. J. Dairy Sci. 2019, 102, 311–319. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Yin, Y.; Yang, M.; Chen, J.; Fu, C.; Huang, K. Effects of Combined Supplementation of Macleaya cordata Extract and Benzoic Acid on the Growth Performance, Immune Responses, Antioxidant Capacity, Intestinal Morphology, and Microbial Composition in Weaned Piglets. Front. Vet. Sci. 2021, 8, 708597. [Google Scholar] [CrossRef] [PubMed]
- Vlaicu, P.A.; Panaite, T.D.; Turcu, R.P. Enriching laying hens eggs by feeding diets with different fatty acid composition and antioxidants. Sci. Rep. 2021, 11, 20707. [Google Scholar] [CrossRef] [PubMed]
- Friedman, S.L.; Neuschwander-Tetri, B.A.; Rinella, M.; Sanyal, A.J. Mechanisms of NAFLD development and therapeutic strategies. Nat. Med. 2018, 24, 908–922. [Google Scholar] [CrossRef] [PubMed]
- Farzanegi, P.; Dana, A.; Ebrahimpoor, Z.; Asadi, M.; Azarbayjani, M.A. Mechanisms of beneficial effects of exercise training on non-alcoholic fatty liver disease (NAFLD): Roles of oxidative stress and inflammation. Eur. J. Sport Sci. 2019, 19, 994–1003. [Google Scholar] [CrossRef]
- Tao, W.; Jin, F.; Fan, Q.; Zhao, N.; Wang, G.; Du, E.; Chen, F.; Guo, W.; Huang, S.; Chen, M.; et al. Effects of Chitosan Oligosaccharide on Production Performance, Egg Quality and Ovarian Function in Laying Hens with Fatty Liver Syndrome. Animals 2022, 12, 2465. [Google Scholar] [CrossRef] [PubMed]
- Cani, P.D. When specific gut microbes reveal a possible link between hepatic steatosis and adipose tissue. J. Hepatol. 2014, 61, 5–6. [Google Scholar] [CrossRef]
- Tilg, H.; Burcelin, R.; Tremaroli, V. Liver tissue microbiome in NAFLD: Next step in understanding the gut-liver axis? Gut 2020, 69, 1373–1374. [Google Scholar] [CrossRef]
- Downs, I.A.; Aroniadis, O.C.; Kelly, L.; Brandt, L.J. Postinfection Irritable Bowel Syndrome: The Links Between Gastroenteritis, Inflammation, the Microbiome, and Functional Disease. J. Clin. Gastroenterol. 2017, 51, 869–877. [Google Scholar] [CrossRef]
- Thomas, F.; Hehemann, J.H.; Rebuffet, E.; Czjzek, M.; Michel, G. Environmental and gut bacteroidetes: The food connection. Front. Microbiol. 2011, 2, 93. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Guo, Z.; Xue, Z.; Sun, Z.; Zhang, M.; Wang, L.; Wang, G.; Wang, F.; Xu, J.; Cao, H.; et al. A phylo-functional core of gut microbiota in healthy young Chinese cohorts across lifestyles, geography and ethnicities. ISME J. 2015, 9, 1979–1990. [Google Scholar] [CrossRef]
- Tan, Y.; Huang, Z.; Liu, Y.; Li, X.; Stalin, A.; Fan, X.; Wu, Z.; Wu, C.; Lu, S.; Zhang, F.; et al. Integrated serum pharmacochemistry, 16S rRNA sequencing and metabolomics to reveal the material basis and mechanism of Yinzhihuang granule against non-alcoholic fatty liver disease. J. Ethnopharmacol. 2023, 310, 116418. [Google Scholar] [CrossRef] [PubMed]
- Heeney, D.D.; Gareau, M.G.; Marco, M.L. Intestinal Lactobacillus in health and disease, a driver or just along for the ride? Curr. Opin. Biotechnol. 2018, 49, 140–147. [Google Scholar] [CrossRef]
- Li, S.; Yan, C.; Liu, T.; Xu, C.; Wen, K.; Liu, L.; Zhao, M.; Zhang, J.; Geng, T.; Gong, D. Research Note: Increase of bad bacteria and decrease of good bacteria in the gut of layers with vs. without hepatic steatosis. Poult. Sci. 2020, 99, 5074–5078. [Google Scholar] [CrossRef]
- Chang, Z.Y.; Liu, H.M.; Leu, Y.L.; Hsu, C.H.; Lee, T.Y. Modulation of Gut Microbiota Combined with Upregulation of Intestinal Tight Junction Explains Anti-Inflammatory Effect of Corylin on Colitis-Associated Cancer in Mice. Int. J. Mol. Sci. 2022, 23, 2667. [Google Scholar] [CrossRef]
- Li, N.; Zhou, Z.S.; Shen, Y.; Xu, J.; Miao, H.H.; Xiong, Y.; Xu, F.; Li, B.L.; Luo, J.; Song, B.L. Inhibition of the sterol regulatory element-binding protein pathway suppresses hepatocellular carcinoma by repressing inflammation in mice. Hepatology 2017, 65, 1936–1947. [Google Scholar] [CrossRef] [PubMed]
- Xia, F.; Xiang, S.; Chen, Z.; Song, L.; Li, Y.; Liao, Z.; Ge, B.; Zhou, B. The probiotic effects of AB23A on high-fat-diet-induced non-alcoholic fatty liver disease in mice may be associated with suppressing the serum levels of lipopolysaccharides and branched-chain amino acids. Arch. Biochem. Biophys. 2021, 714, 109080. [Google Scholar] [CrossRef]
- Xiang, L.; Du, T.; Zhang, J.; Zhang, Y.; Zhou, Y.; Zhao, Y.; Zhou, Y.; Ma, L. Vitamin D(3) supplementation shapes the composition of gut microbiota and improves some obesity parameters induced by high-fat diet in mice. Eur. J. Nutr. 2024, 63, 155–172. [Google Scholar] [CrossRef]
- Wang, C.; Zhao, J.; Zhang, H.; Lee, Y.K.; Zhai, Q.; Chen, W. Roles of intestinal bacteroides in human health and diseases. Crit. Rev. Food Sci. Nutr. 2021, 61, 3518–3536. [Google Scholar] [CrossRef]
Items | CON | HFD | HFD | |||
---|---|---|---|---|---|---|
0.01% CDCA | 0.02% CDCA | 0.01% HDCA | 0.02% HDCA | |||
Ingredients, % | ||||||
Corn | 61.00 | 61.00 | 60.99 | 60.98 | 60.99 | 60.98 |
Soybean meal | 21.00 | 21.00 | 21.00 | 21.00 | 21.00 | 21.00 |
Wheat bran | 10.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Limestone | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 |
CDCA | 0.00 | 0.00 | 0.01 | 0.02 | 0.00 | 0.00 |
HDCA | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 |
Soybean oil | 0.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 |
Premix (1) | 5.00 | 5.00 | 5.00 | 5.00 | 5.00 | 5.00 |
Total | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
Nutrient levels (2), % | ||||||
ME (MJ/kg) | 10.91 | 13.73 | 13.73 | 13.73 | 13.73 | 13.73 |
CP | 17.49 | 17.7 | 17.63 | 17.09 | 17.78 | 17.82 |
CF | 3.10 | 11.42 | 11.57 | 11.06 | 11.95 | 11.67 |
ASH | 8.74 | 6.67 | 6.86 | 6.82 | 6.82 | 6.81 |
Ca | 3.33 | 3.60 | 3.58 | 3.22 | 3.79 | 3.81 |
P | 0.37 | 0.35 | 0.36 | 0.32 | 0.34 | 0.34 |
Met | 0.27 | 0.25 | 0.23 | 0.21 | 0.26 | 0.28 |
Lys | 0.64 | 0.62 | 0.67 | 0.66 | 0.63 | 0.67 |
Items 2 | CON | HFD | HFD | p Value | |||
---|---|---|---|---|---|---|---|
0.01% CDCA | 0.02% CDCA | 0.01% HDCA | 0.02% HDCA | ||||
ADFI | 106.93 ± 5.66 | 96.38 ± 7.08 | 115.35 ± 6.43 | 103.51 ± 5.64 | 102.32 ± 5.77 | 96.43 ± 8.40 | 0.323 |
(g/d) | |||||||
AEW | 47.80 ± 0.79 | 47.71 ± 1.07 | 49.24 ± 0.88 | 50.78 ± 2.08 | 48.17 ± 1.20 | 49.04 ± 0.54 | 0.133 |
(g) | |||||||
FCR | 2.25 ± 0.12 | 2.10 ± 0.13 | 2.36 ± 0.15 | 2.07 ± 0.14 | 2.17 ± 0.13 | 1.92 ± 0.16 | 0.315 |
Body Weight | 1.71 ± 0.07 c | 1.75 ± 0.11 bc | 2.06 ± 0.09 a | 2.01 ± 0.11 ab | 1.79 ± 0.09 abc | 1.70 ± 0.11 c | 0.022 |
(kg) | |||||||
Egg mass | 31.39 ± 2.52 | 29.85 ± 2.16 | 35.99 ± 1.41 | 28.90 ± 2.71 | 34.77 ± 2.20 | 32.62 ± 2.42 | 0.29 |
(g/hen/d) | |||||||
LR | 0.66 ± 0.06 ab | 0.62 ± 0.04 ab | 0.73 ± 0.03 a | 0.53 ± 0.07 b | 0.72 ± 0.04 a | 0.70 ± 0.02 a | 0.029 |
Items | CON | HFD | HFD | p Value | |||
---|---|---|---|---|---|---|---|
0.01% CDCA | 0.02% CDCA | 0.01% HDCA | 0.02% HDCA | ||||
Eggshell strength | 35.77 ± 1.78 | 32.34 ± 1.57 | 32.01 ± 1.83 | 34.06 ± 2.41 | 36.47 ± 1.40 | 34.41 ± 2.28 | 0.155 |
(N/cm2) | |||||||
Eggshell | 0.41 ± 0.007 a | 0.37 ± 0.009 bc | 0.36 ± 0.007 bc | 0.39 ± 0.011 ab | 0.37 ± 0.005 bc | 0.35 ± 0.007 c | 0.001 |
Thickness (mm) | |||||||
Albumen height | 5.10 ± 0.16 ab | 4.75 ± 0.12 b | 4.97 ± 0.12 ab | 4.89 ± 0.21 ab | 5.21 ± 0.15 ab | 5.32 ± 0.13 a | 0.001 |
(mm) | |||||||
Yolk weight | 16.71 ± 0.27 | 16.16 ± 0.39 | 16.78 ± 0.25 | 16.23 ± 0.36 | 16.08 ± 0.33 | 16.24 ± 0.34 | 0.42 |
(g) | |||||||
Egg weight | 48.31 ± 0.64 | 48.2 ± 0.76 | 49.70 ± 0.58 | 48.83 ± 1.60 | 47.71 ± 0.84 | 49.66 ± 0.51 | 0.276 |
(g) | |||||||
Egg shell weight | 4.55 ± 0.06 a | 4.21 ± 0.08 b | 4.43 ± 0.04 ab | 4.23 ± 0.11 ab | 4.30 ± 0.09 ab | 4.4 ± 0.09 ab | 0.004 |
(g) | |||||||
Egg shape | 1.31 ± 0.011 | 1.32 ± 0.017 | 1.32 ± 0.008 | 1.31 ± 0.013 | 1.31 ± 0.010 | 1.32 ± 0.011 | 0.696 |
index | |||||||
Haugh | 73.86 ± 1.15 ab | 71.30 ± 0.99 b | 72.37 ± 0.95 ab | 72.14 ± 1.41 ab | 75.13 ± 1.03 a | 75.25 ± 0.97 a | 0.001 |
unit | |||||||
Specific gravity | 1.0787 ± 0.001 a | 1.0759 ± 0.001 ab | 1.0745 ± 0.001 b | 1.0754 ± 0.001 ab | 1.0763 ± 0.001 ab | 1.0773 ± 0.001 ab | 0.009 |
of egg | |||||||
albumen weight (g) | 24.98 ± 0.52 b | 24.27 ± 0.55 b | 25.87 ± 0.49 ab | 25.76 ± 0.82 ab | 25.08 ± 0.50 ab | 26.49 ± 0.34 a | 0.042 |
Items 2 | CON | HFD | HFD | p Value | |||
---|---|---|---|---|---|---|---|
0.01% CDCA | 0.02% CDCA | 0.01% HDCA | 0.02% HDCA | ||||
ALT | 20.04 ± 3.75 b | 36.31 ± 3.57 a | 34.33 ± 0.53 a | 17.70 ± 3.49 b | 24.54 ± 4.78 ab | 18.04 ± 2.82 b | 0.007 |
(U/L) | |||||||
AST | 19.42 ± 1.56 | 25.88 ± 1.30 | 20.97 ± 1.12 | 21.55 ± 2.02 | 22.85 ± 1.68 | 22.35 ± 2.39 | 0.064 |
(U/L) | |||||||
HDL-C | 0.51 ± 0.09 | 0.44 ± 0.14 | 0.54 ± 0.09 | 0.67 ± 0.20 | 0.52 ± 0.10 | 0.53 ± 0.12 | 0.923 |
(mmol/L) | |||||||
LDL-C | 2.57 ± 0.25 b | 4.71 ± 0.39 a | 2.77 ± 0.48 b | 2.53 ± 0.21 b | 2.12 ± 0.49 b | 2.05 ± 0.24 b | 0.005 |
(mmol/L) | |||||||
TG | 14.13 ± 1.50 b | 21.27 ± 3.05 a | 14.16 ± 2.16 b | 9.61 ± 1.56 b | 12.93 ± 2.60 b | 13.27 ± 1.21 b | 0.02 |
(mmol/L) | |||||||
TC | 3.40 ± 0.21 b | 4.78 ± 0.35 a | 3.72 ± 0.81 b | 3.30 ± 0.23 b | 2.93 ± 0.37 b | 3.05 ± 0.13 b | 0.001 |
(mmol/L) |
Items 2 | CON | HFD | HFD | p Value | |||
---|---|---|---|---|---|---|---|
0.01% CDCA | 0.02% CDCA | 0.01% HDCA | 0.02% HDCA | ||||
T-AOC | 0.48 ± 0.05 a | 0.31 ± 0.02 b | 0.49 ± 0.05 a | 0.44 ± 0.08 ab | 0.59 ± 0.04 a | 0.52 ± 0.09 a | 0.048 |
(U/mL) | |||||||
CAT | 2.42 ± 0.45 a | 1.15 ± 0.29 b | 2.25 ± 0.17 a | 2.54 ± 0.05 a | 2.24 ± 0.46 a | 2.27 ± 0.21 a | 0.04 |
(U/mL) | |||||||
MDA | 2.34 ± 0.64 b | 5.71 ± 0.87 a | 2.59 ± 0.49 b | 2.58 ± 0.23 b | 2.96 ± 0.59 b | 3.61 ± 0.27 b | 0.009 |
(nmol/mL) | |||||||
T-SOD | 55.95 ± 2.50 a | 42.84 ± 3.27 b | 53.81 ± 1.88 a | 57.83 ± 3.60 a | 60.34 ± 3.22 a | 54.07 ± 1.01 a | 0.019 |
(U/mL) | |||||||
GSH | 25.28 ± 4.64 | 12.38 ± 1.93 | 20.00 ± 2.98 | 22.22 ± 2.72 | 20.00 ± 3.09 | 24.44 ± 2.03 | 0.097 |
(μmol/L) | |||||||
GSH-PX | 483.46 ± 24.44 ab | 335.31 ± 19.44 c | 427.26 ± 28.41 bc | 560.00 ± 43.41 a | 372.35 ± 72.66 c | 419.56 ± 19.96 bc | 0.001 |
(U/mL) |
Items 2 | CON | HFD | HFD | p Value | |||
---|---|---|---|---|---|---|---|
0.01% CDCA | 0.02% CDCA | 0.01% HDCA | 0.02% HDCA | ||||
IL-6 | 35.48 ± 0.73 bc | 39.10 ± 0.93 a | 38.17 ± 0.94 ab | 36.32 ± 0.82 abc | 37.02 ± 1.39 abc | 34.55 ± 0.452 c | 0.019 |
(pg/mL) | |||||||
IL-1β | 2.90 ± 0.24 b | 3.82 ± 0.23 a | 3.39 ± 0.33 ab | 2.50 ± 0.26 b | 3.18 ± 0.22 ab | 2.76 ± 0.33 b | 0.044 |
(pg/mL) | |||||||
TNF-α | 0.35 ± 0.03 b | 0.48 ± 0.04 a | 0.30 ± 0.04 b | 0.33 ± 0.01 b | 0.34 ± 0.03 b | 0.25 ± 0.04 b | 0.008 |
(pg/mL) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, W.; Zhang, Y.; Yang, J.; Xu, H.; Ye, R.; Wu, J.; Cao, M.; Zhao, C.; Yang, B.; Liu, C.; et al. Effect of Bile Acids Supplementation in Fatty Liver Hemorrhagic Syndrome, Production Performance, Physiological and Quality Characteristics of Laying Hen Eggs. Animals 2024, 14, 1910. https://doi.org/10.3390/ani14131910
Li W, Zhang Y, Yang J, Xu H, Ye R, Wu J, Cao M, Zhao C, Yang B, Liu C, et al. Effect of Bile Acids Supplementation in Fatty Liver Hemorrhagic Syndrome, Production Performance, Physiological and Quality Characteristics of Laying Hen Eggs. Animals. 2024; 14(13):1910. https://doi.org/10.3390/ani14131910
Chicago/Turabian StyleLi, Wen, Yu Zhang, Jingyi Yang, Hao Xu, Ruiqi Ye, Jiale Wu, Mixia Cao, Chunfang Zhao, Bing Yang, Chang Liu, and et al. 2024. "Effect of Bile Acids Supplementation in Fatty Liver Hemorrhagic Syndrome, Production Performance, Physiological and Quality Characteristics of Laying Hen Eggs" Animals 14, no. 13: 1910. https://doi.org/10.3390/ani14131910
APA StyleLi, W., Zhang, Y., Yang, J., Xu, H., Ye, R., Wu, J., Cao, M., Zhao, C., Yang, B., Liu, C., & Li, L. (2024). Effect of Bile Acids Supplementation in Fatty Liver Hemorrhagic Syndrome, Production Performance, Physiological and Quality Characteristics of Laying Hen Eggs. Animals, 14(13), 1910. https://doi.org/10.3390/ani14131910