The Influence of Increasing Roughage Content in the Diet on the Growth Performance and Intestinal Flora of Jinwu and Duroc × Landrace × Yorkshire Pigs
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design and Animal Management
2.2. Diet and Feed Composition
2.3. Collection and Processing of Fecal Samples
2.4. 16S rRNA Sequencing
2.5. Statistical Analysis
3. Results
3.1. Impact of Roughage Diet on the Growth Performance of JW and DLY
3.2. Effect of Roughage Diet on the Gut Microbiota Diversity in JW and DLY
3.3. Impact of Roughage Diets on the Species Composition of Intestinal Microbiota in JW and DLY
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Patience, J.F.; Rossoni-Serão, M.C.; Gutiérrez, N.A. A Review of Feed Efficiency in Swine: Biology and Application. J. Anim. Sci. Biotechnol. 2015, 6, 33. [Google Scholar] [CrossRef] [PubMed]
- Dai, F.; Yu, J.; Yao, H.; Su, B.; Fu, C.; Yang, Y. Research Progress on the Application of Fiber Feed Ingredients for Pigs. Feed Res. 2020, 43, 109–112. [Google Scholar]
- Owusu-Asiedu, A.; Patience, J.F.; Laarveld, B.; Van Kessel, A.G.; Simmins, P.H.; Zijlstra, R.T. Effects of Guar Gum and Cellulose on Digesta Passage Rate, Ileal Microbial Populations, Energy and Protein Digestibility, and Performance of Grower Pigs. J. Anim. Sci. 2006, 84, 843–852. [Google Scholar] [CrossRef] [PubMed]
- Pu, G.; Li, P.; Du, T.; Niu, Q.; Fan, L.; Wang, H.; Liu, H.; Li, K.; Niu, P.; Wu, C.; et al. Adding Appropriate Fiber in Diet Increases Diversity and Metabolic Capacity of Distal Gut Microbiota without Altering Fiber Digestibility and Growth Rate of Finishing Pig. Front. Microbiol. 2020, 11, 514929. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Liu, P.; Wu, Y.; Guo, P.; Liu, L.; Ma, N.; Levesque, C.; Chen, Y.; Zhao, J.; Zhang, J.; et al. Dietary fiber increases butyrate-producing bacteria and improves the growth performance of weaned piglets. J. Agric. Food Chem. 2018, 66, 7995–8004. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.; Zhang, S.; Yang, Q.; Peng, Q.; Zhu, J.; Zeng, X.; Qiao, S. Effect of high fibre diets formulated with different fibrous ingredients on performance, nutrient digestibility and faecal microbiota of weaned piglets. Arch. Anim. Nutr. 2016, 70, 263–277. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhang, S.; Gu, X.; Xie, J.; Zhu, X.; Wang, Y.; Shan, T. Effects of Alfalfa Levels on Carcass Traits, Meat Quality, Fatty Acid Composition, Amino Acid Profile, and Gut Microflora Composition of Heigai Pigs. Front. Nutr. 2022, 9, 975455. [Google Scholar] [CrossRef] [PubMed]
- Yen, J.T.; Varel, V.H.; Nienaber, J.A. Metabolic and Microbial Responses in Western Crossbred and Meishan Growing Pigs Fed a High-Fiber Diet12. J. Anim. Sci. 2004, 82, 1740–1755. [Google Scholar] [CrossRef] [PubMed]
- Li, W. Effects of Dietary Crude Fiber Level on Growth Performance, Digestion and Metabolism and Intestinal Health of Mashen pigs and Duroc × Landrace × Large. Master’s Thesis, Shanxi Agricultural University, Jinzhong, China, 2023. [Google Scholar]
- Hong, J.; Kim, H.S.; Patterson, R.; Woyengo, T.A. Growth Performance and Gut Integrity of Nursery Pigs Fed Diet with Butyric Acid and Enzymatically Hydrolyzed Yeast Product. J. Anim. Sci. 2021, 99, 109–110. [Google Scholar] [CrossRef]
- Wang, W.; Chen, D.; Yu, B.; Huang, Z.; Mao, X.; Zheng, P.; Luo, Y.; Yu, J.; Luo, J.; Yan, H.; et al. Effects of dietary inulin supplementation on growth performance, intestinal barrier integrity and microbial populations in weaned pigs. Br. J. Nutr. 2020, 124, 296–305. [Google Scholar] [CrossRef]
- Chen, T.; Chen, D.; Tian, G.; Zheng, P.; Mao, X.; Yu, J.; He, J.; Huang, Z.; Luo, Y.; Luo, J.; et al. Soluble Fiber and Insoluble Fiber Regulate Colonic Microbiota and Barrier Function in a Piglet Model. BioMed Res. Int. 2019, 12, 7809171. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Luo, Y.; Kong, X.; Yu, B.; Zheng, P.; Huang, Z.; Mao, X.; Yu, J.; Luo, J.; Yan, H.; et al. Effects of Dietary Fiber on Growth Performance, Nutrient Digestibility and Intestinal Health in Different Pig Breeds. Animals 2022, 12, 3298. [Google Scholar] [CrossRef] [PubMed]
- Yao, W.; Gong, Y.; Li, L.; Hu, X.; You, L. The Effects of Dietary Fibers from Rice Bran and Wheat Bran on Gut Microbiota: An Overview. Food Chem. X 2022, 13, 100252. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Li, L.; Ma, S.; Ye, J.; Zhang, H.; Li, Y.; Sair, A.T.; Pan, J.; Liu, X.; Li, X.; et al. High-Dietary Fiber Intake Alleviates Antenatal Obesity-Induced Postpartum Depression: Roles of Gut Microbiota and Microbial Metabolite Short-chain Fatty Acid Involved. J. Agric. Food Chem. 2020, 68, 13697–13710. [Google Scholar] [CrossRef] [PubMed]
- Fouhse, J.M.; Gänzle, M.G.; Regmi, P.R.; van Kempen, T.A.; Zijlstra, R.T. High Amylose Starch with Low In Vitro Digestibility Stimulates Hindgut Fermentation and Has a Bifidogenic Effect in Weaned Pigs. J. Nutr. 2015, 145, 2464–2470. [Google Scholar] [CrossRef] [PubMed]
- Bikker, P.; Dirkzwager, A.; Fledderus, J.; Trevisi, P.; Le Huërou-Luron, I.; Lallès, J.P.; Awati, A. The Effect of Dietary Protein and Fermentable Carbohydrates Levels on Growth Performance and Intestinal Characteristics in Newly Weaned Piglets. J. Anim. Sci. 2006, 84, 3337–3345. [Google Scholar] [CrossRef] [PubMed]
- Bindelle, J.; Pieper, R.; Leterme, P.; Rossnagel, B.; Van Kessel, A.G. Changes in Intestinal Microbial Ecophysiology as Related to the Carbohydrate Composition of Barleys and Oats Cultivars in an In Vitro Model of the Pig Gastrointestinal Tract. Livest. Sci. 2010, 133, 151–153. [Google Scholar] [CrossRef]
- Ivarsson, E.; Roos, S.; Liu, H.Y.; Lindberg, J.E. Fermentable Non-Starch Polysaccharides Increases the Abundance of Bacteroides–Prevotella–Porphyromonas in Ileal Microbial Community of Growing Pigs. Animal 2014, 8, 1777–1787. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Xu, K.; Liu, H.; Liu, G.; Bai, M.; Peng, C.; Li, T.; Yin, Y. Impact of the Gut Microbiota on Intestinal Immunity Mediated by Tryptophan Metabolism Available. Front. Cell. Infect. Microbiol. 2018, 8, 00013. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Kong, F.; Xiang, Y.; Zhou, W.; Wang, J.; Yang, H.; Zhang, G.; Zhao, J. Comparative Biogeography of the Gut Microbiome between Jinhua and Landrace Pigs. Sci. Rep. 2018, 8, 5985. [Google Scholar] [CrossRef]
- Tan, Z. Study on the Correlation between Roughage-Resistance and Intestinal Microecological Factors of Tibetan Pigs. Ph.D. Thesis, Agricultural and Animal Husbandry College of Tibet University, Lhasa, China, 2021. [Google Scholar]
- Du, T.; Li, P.; Niu, Q.; Pu, G.; Wang, B.; Liu, G.; Li, P.; Niu, P.; Zhang, Z.; Wu, C.; et al. Effects of Varying Levels of Wheat Bran Dietary Fiber on Growth Performance, Fiber Digestibility and Gut Microbiota in Erhualian and Large White Pigs. Microorganisms 2023, 11, 2474. [Google Scholar] [CrossRef] [PubMed]
- Lange, C. New NRC (2012) Nutrient Requirements of Swine. Adv. Pork Prod. 2013, 24, 17–28. [Google Scholar]
- Zhang, L.; Chen, Q.; Song, Y. Research progress on the application of dietary fiber in pig feed. Mod. J. Anim. Husb. Vet. Med. 2023, 7, 65–69. [Google Scholar]
- Li, Z.; Zhao, Y.; Wang, H.; Zhang, W.; Zhang, C.; Xie, J.; Ma, X. High-Fibre Diets Regulate Antioxidative Capacity and Promote Intestinal Health by Regulating Bacterial Microbiota in Growing Pigs. J. Anim. Physiol. Anim. Nutr. 2023, 16, 13897. [Google Scholar] [CrossRef] [PubMed]
- Tejeda, O.J.; Kim, W.K. The Effects of Cellulose and Soybean Hulls as Sources of Dietary Fiber on the Growth Performance, Organ Growth, Gut Histomorphology, and Nutrient Digestibility of Broiler Chickens. Poult. Sci. 2020, 99, 6828–6836. [Google Scholar] [CrossRef] [PubMed]
- Thi Bich Ngoc, T.; Thi Thanh Thao, T.; Van Dung, P. Effects of Different Fibre Sources in Pig Diets on Growth Performance, Gas Emissions and Slurry Characteristics. AAVS 2020, 9, 63–72. [Google Scholar] [CrossRef]
- Liu, J.; Luo, Y.; Kong, X.; Yu, B.; Zheng, P.; Huang, Z.; Mao, X.; Yu, J.; Luo, J.; Yan, H.; et al. Influences of Wheat Bran Fiber on Growth Performance, Nutrient Digestibility, and Intestinal Epithelium Functions in Xiangcun Pigs. Heliyon 2023, 9, e17699. [Google Scholar] [CrossRef] [PubMed]
- Jin, S.; Yu, C.; Xu, H.; Azevedo, P.; Lei, H.; Rodas, A.; Nyachoti, M.; O, K.; Yang, C. 161 Effect of High- and Low-Fiber Diets on Growth Performance in Growing-Finishing Pigs Selected for Low or High Feed Efficiency. J. Anim. Sci. 2022, 100, 75. [Google Scholar] [CrossRef]
- Jin, S.; Wijerathne, C.U.B.; Au-Yeung, K.K.W.; Lei, H.; Yang, C.; O, K. Effects of High- and Low-Fiber Diets on Intestinal Oxidative Stress in Growing-Finishing Pigs. J. Anim. Sci. 2022, 100, skac306. [Google Scholar] [CrossRef] [PubMed]
- Ren, M. Structural Characteristics of Jinhua Pig Intestinal Flora and Dietary Fiber Intervention. Master’s Thesis, Guizhou University, Guiyang, China, 2020. [Google Scholar]
- Samantha, K.; Gill, M.R.; Balazs, B.; Kevin, W. Dietary Fibre in Gastrointestinal Health and Disease. Nat. Rev. Gastroenterol. Hepatol. Available 2021, 18, 101–116. [Google Scholar]
- Heinritz, S.N.; Weiss, E.; Eklund, M.; Aumiller, T.; Louis, S.; Rings, A.; Messner, S.; Camarinha-Silva, A.; Seifert, J.; Bischoff, S.C.; et al. Intestinal Microbiota and Microbial Metabolites Are Changed in a Pig Model Fed a High-Fat/Low-Fiber or a Low-Fat/High-Fiber Diet. PLoS ONE 2016, 11, e0154329. [Google Scholar] [CrossRef]
- Liu, H.; Ni, L.; Zhao, X. Report on the Expansion and Coarse Feed Tolerance Trial of Sujiang Pigs. Zhongguo Xumu Shouyi Wenzhai 2015, 31, 62–63. [Google Scholar]
- Liu, P.; Li, R.; Tan, Z.; Wang, Y.; Chen, X.; He, W.; Du, R.; Ma, J.; Chu, G.; Cai, C. Effects of High Fiber Diet on Growth Performance, Meat Quality and Intestinal Microbiome of Growing-finishing Pigs. Acta Vet. Zootech. Sin. 2023, 54, 4247–4259. [Google Scholar]
- Shi, B.; Bao, J.; Zhao, X. Research progress on the functional exploration and utilization of intestinal microorganisms in Chinese local pig breeds. Anim. Nutr. 2022, 34, 6281–6290. [Google Scholar]
- Huang, Y.; Shi, X.; Li, Z.; Shen, Y.; Shi, X.; Wang, L.; Li, G.; Yuan, Y.; Wang, J.; Zhang, Y.; et al. Possible Association of Firmicutes in the Gut Microbiota of Patients with Major Depressive Disorder. NDT 2018, 14, 3329–3337. [Google Scholar] [CrossRef]
- Cholewińska, P.; Wołoszyńska, M.; Michalak, M.; Czyż, K.; Rant, W.; Smoliński, J.; Wyrostek, A.; Wojnarowski, K. Influence of Selected Factors on the Firmicutes, Bacteroidetes Phyla and the Lactobacillaceae Family in the Digestive Tract of Sheep. Sci. Rep. 2021, 11, 23801. [Google Scholar] [CrossRef] [PubMed]
- Guo, P.; Zhang, K.; Ma, X.; He, P. Clostridium Species as Probiotics: Potentials and Challenges. J. Anim. Sci. Biotechnol. 2020, 11, 24. [Google Scholar] [CrossRef] [PubMed]
- Tomova, A.; Bukovsky, I.; Rembert, E.; Yonas, W.; Alwarith, J.; Barnard, N.D.; Kahleova, H. The Effects of Vegetarian and Vegan Diets on Gut Microbiota. Front. Nutr. 2019, 6, 47. [Google Scholar] [CrossRef] [PubMed]
- Larsbrink, J.; Rogers, T.E.; Hemsworth, G.R.; McKee, L.S.; Tauzin, A.S.; Spadiut, O.; Klinter, S.; Pudlo, N.A.; Urs, K.; Koropatkin, N.M.; et al. A Discrete Genetic Locus Confers Xyloglucan Metabolism in Select Human Gut Bacteroidetes. Nature 2014, 506, 498–502. [Google Scholar] [CrossRef]
- Gharechahi, J.; Salekdeh, G.H. A Metagenomic Analysis of the Camel Rumen’s Microbiome Identifies the Major Microbes Responsible for Lignocellulose Degradation and Fermentation. Biotechnol. Biofuels 2018, 11, 216. [Google Scholar] [CrossRef]
- Gaston, L.W.; Stadtman, E.R. Fermentation of Ethylene Glycol by Clostridium glycolicum, SP. N1. J. Bacteriol. 1963, 85, 356–362. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Liang, Z.; Zhang, Y. Evolution of Physicochemical Properties and Bacterial Community in Aerobic Composting of Swine Manure Based on a Patent Compost Tray. Bioresour. Technol. 2022, 343, 126136. [Google Scholar] [CrossRef] [PubMed]
- Louis, P.; Flint, H.J. Diversity, Metabolism and Microbial Ecology of Butyrate-Producing Bacteria from the Human Large Intestine. FEMS Microbiol. Lett. 2009, 294, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Su, Y.; Zhu, W. Microbiome-Metabolome Responses in the Cecum and Colon of Pig to a High Resistant Starch Diet. Front. Microbiol. 2016, 7, 198556. [Google Scholar] [CrossRef] [PubMed]
- Shirajum, M.; Shota, N.; Kazuyoshi, G.; Kaori, I.; Haruo, W.; Nur, H.A.; Takaaki, N.; Toshihiro, H.; Sk, I.A.; Tetsuya, I.; et al. Metagenomic Profile of Gut Microbiota in Children during Cholera and Recovery. Gut Pathog. 2013, 5, 1–9. [Google Scholar]
- La Reau, A.J.; Suen, G. The Ruminococci: Key Symbionts of the Gut Ecosystem. J. Microbiol. 2018, 56, 199–208. [Google Scholar] [CrossRef]
Item | Diet Composition | |
---|---|---|
CON | EG | |
Ingredients | ||
Corn | 60.00 | 48.00 |
Soybean meal | 12.50 | 8.00 |
Rice bran | 15.00 | 30.00 |
Wheat bran | 8.00 | 10.00 |
Fish meal | 0.50 | 0 |
Premix 1 | 4.00 | 4.00 |
Nutritional Level | ||
Dry matter (%) | 83.08 | 83.34 |
Metabolizable energy (MC/kg) | 2.89 | 2.83 |
Digestible energy (MC/kg) | 3.11 | 3.04 |
Crude protein (%) | 14.79 | 13.90 |
Crude fiber (%) | 3.27 | 4.19 |
Starch (%) | 41.92 | 38.31 |
Neutral detergent fiber | 15.11 | 19.74 |
Acid detergent fiber | 7.07 | 9.50 |
Lignin | 2.46 | 3.27 |
Calcium | 0.11 | 0.09 |
Total phosphorus | 0.58 | 0.78 |
Utilizable phosphorus | 0.17 | 0.17 |
Lysine | 0.66 | 0.60 |
Methionine | 0.23 | 0.22 |
Threonine | 0.54 | 0.50 |
Tryptophan | 0.16 | 0.15 |
Isoleucine | 0.56 | 0.54 |
Leucine | 1.26 | 1.14 |
Valine | 0.70 | 0.71 |
Arginine | 0.95 | 0.93 |
Histidine | 0.39 | 0.38 |
Phenylalanine | 0.72 | 0.68 |
Price (RMB/ton) | 2666 | 2165 |
Item | CON | EG | p-Value | SEM |
---|---|---|---|---|
Initial body weight (kg) | 49.51 ± 7.51 | 51.67 ± 7.10 | 0.221 | 1.20 |
Final body weight (kg) | 96.49 ± 10.30 | 95.53 ± 10.16 | 0.697 | 1.72 |
Overall average daily gain (kg/d) | 0.72 ± 0.14 | 0.67 ± 0.11 | 0.109 | 0.02 |
Overall average daily feed intake (kg/d) | 26.54 ± 13.68 | 28.17 ± 12.42 | 0.865 | 6.21 |
Overall feed conversion Ratio (F/G) | 3.52 ± 0.12 | 3.67 ± 0.16 | 0.734 | 0.89 |
Item | CON | EG | p-Value | SEM |
---|---|---|---|---|
Initial body weight (kg) | 57.00 ± 8.82 | 57.11 ± 11.06 | 0.964 | 1.84 |
Final body weight (kg) | 116.59 ± 17.17 | 112.53 ± 18.82 | 0.354 | 3.14 |
Overall average daily gain (kg/d) | 0.92 ± 0.18 | 0.85 ± 0.16 | 0.130 | 0.03 |
Overall average daily feed intake (kg/d) | 26.35 ± 10.15 | 29.71 ± 13.20 | 0.700 | 6.59 |
Overall feed conversion ratio (F/G) | 3.01 ± 0.27 | 3.54 ± 0.31 | 0.076 | 1.24 |
Source | DF | Sum of Squares | Mean Square | F Value | Pr > F |
---|---|---|---|---|---|
Model | 3 | 1.2845 | 0.4285 | 18.78 | <0.0001 |
Pig | 1 | 1.1706 | 1.1706 | 51.35 | <0.0001 |
Feed | 1 | 0.1008 | 0.1008 | 4.42 | 0.0374 |
Pig × feed | 1 | 0.0131 | 0.1311 | 0.58 | 0.4495 |
Error | 134 | 3.0547 | 0.0228 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, G.; Huang, J.; Chen, W.; Zhao, A.; Pan, J.; Yu, F. The Influence of Increasing Roughage Content in the Diet on the Growth Performance and Intestinal Flora of Jinwu and Duroc × Landrace × Yorkshire Pigs. Animals 2024, 14, 1913. https://doi.org/10.3390/ani14131913
Xu G, Huang J, Chen W, Zhao A, Pan J, Yu F. The Influence of Increasing Roughage Content in the Diet on the Growth Performance and Intestinal Flora of Jinwu and Duroc × Landrace × Yorkshire Pigs. Animals. 2024; 14(13):1913. https://doi.org/10.3390/ani14131913
Chicago/Turabian StyleXu, Gaili, Jing Huang, Wenduo Chen, Ayong Zhao, Jianzhi Pan, and Fuxian Yu. 2024. "The Influence of Increasing Roughage Content in the Diet on the Growth Performance and Intestinal Flora of Jinwu and Duroc × Landrace × Yorkshire Pigs" Animals 14, no. 13: 1913. https://doi.org/10.3390/ani14131913
APA StyleXu, G., Huang, J., Chen, W., Zhao, A., Pan, J., & Yu, F. (2024). The Influence of Increasing Roughage Content in the Diet on the Growth Performance and Intestinal Flora of Jinwu and Duroc × Landrace × Yorkshire Pigs. Animals, 14(13), 1913. https://doi.org/10.3390/ani14131913