In Vitro Antibacterial Activities of Fosfomycin against Escherichia coli Isolates from Canine Urinary Tract Infection
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Bacterial Identification
2.2. Detection of Escherichia coli Strains Producing Extended-Spectrum Beta-Lactamase (ESBL)
2.3. Determination MIC of Other Antibacterial Drugs
2.4. Determination MIC of Fosfomycin
2.5. Determination MPC of Fosfomycin
2.6. Estimation PK/PD of Fosfomycin
2.7. Statistical Analysis
3. Results
3.1. Escherichia coli Isolates
3.2. Escherichia coli Strains Producing Extended-Spectrum Beta-Lactamase (ESBL)
3.3. MIC of Other Antibacterial Drugs
3.4. MIC of Fosfomycin
3.5. MPC of Fosfomycin
3.6. Estimation PK/PD of Fosfomycin
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Theuretzbacher, U.; Van Bambeke, F.; Cantón, R.; Giske, C.G.; Mouton, J.W.; Nation, R.L.; Paul, M.; Turnidge, J.D.; Kahlmeter, G. Reviving old antibiotics. J. Antimicrob. Chemother. 2015, 70, 2177–2181. [Google Scholar] [CrossRef]
- Cassir, N.; Rolain, J.-M.; Brouqui, P. A new strategy to fight antimicrobial resistance: The revival of old antibiotics. Front. Microbiol. 2014, 5, 551. [Google Scholar] [CrossRef] [PubMed]
- Tran, M.T. New ways of using old antibiotics in pediatrics: Focus on fosfomycin. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2023, 43, 705–712. [Google Scholar] [CrossRef] [PubMed]
- Ball, K.R.; Rubin, J.E.; Chirino-Trejo, M.; Dowling, P.M. Antimicrobial resistance and prevalence of canine uropathogens at the Western College of Veterinary Medicine Veterinary Teaching Hospital, 2002–2007. Can. Vet. J. 2008, 49, 985–990. [Google Scholar] [PubMed]
- Wong, C.; Epstein, S.E.; Westropp, J.L. Antimicrobial Susceptibility Patterns in Urinary Tract Infections in Dogs (2010–2013). J. Vet. Intern. Med. 2015, 29, 1045–1052. [Google Scholar] [CrossRef] [PubMed]
- Ling, G.V.; Norris, C.R.; Franti, C.E.; Eisele, P.H.; Johnson, D.L.; Ruby, A.L.; Jang, S.S. Interrelations of organism prevalence, specimen collection method, and host age, sex, and breed among 8,354 canine urinary tract infections (1969–1995). J. Vet. Intern. Med. 2001, 15, 341–347. [Google Scholar] [CrossRef] [PubMed]
- Weese, J.S.; Blondeau, J.; Boothe, D.; Guardabassi, L.G.; Gumley, N.; Papich, M.; Jessen, L.R.; Lappin, M.; Rankin, S.; Westropp, J.L.; et al. International Society for Companion Animal Infectious Diseases (ISCAID) guidelines for the diagnosis and management of bacterial urinary tract infections in dogs and cats. Vet. J. 2019, 247, 8–25. [Google Scholar] [CrossRef] [PubMed]
- Rampacci, E.; Bottinelli, M.; Stefanetti, V.; Hyatt, D.R.; Sgariglia, E.; Coletti, M.; Passamonti, F. Antimicrobial susceptibility survey on bacterial agents of canine and feline urinary tract infections: Weight of the empirical treatment. J. Glob. Antimicrob. Resist. 2018, 13, 192–196. [Google Scholar] [CrossRef] [PubMed]
- Marchese, A.; Gualco, L.; Debbia, E.A.; Schito, G.C.; Schito, A.M. In vitro activity of fosfomycin against gram-negative urinary pathogens and the biological cost of fosfomycin resistance. Int. J. Antimicrob. Agents 2003, 22 (Suppl. S2), 53–59. [Google Scholar] [CrossRef]
- Bergan, T.; Thorsteinsson, S.B.; Albini, E. Pharmacokinetic profile of fosfomycin trometamol. Chemotherapy 1993, 39, 297–301. [Google Scholar] [CrossRef]
- Boothe, D.M. Small Animal Clinical Pharmacology & Therapeutics, 2nd ed.; Elsevier Health Sciences: St. Louis, MO, USA, 2012; pp. 339–340. [Google Scholar]
- USFDA. MONUROL (Fosfomycin Tromethamine) Sachet. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2008/050717s005lbl.pdf (accessed on 19 May 2024).
- WHO. Critically Important Antimicrobials for Human Medicine. Available online: https://apps.who.int/iris/bitstream/handle/10665/312266/9789241515528-eng.pdf (accessed on 19 May 2024).
- EMA. Categorisation of Antibiotics in the European Union. Available online: https://www.ema.europa.eu/en/documents/report/categorisation-antibiotics-european-union-answer-request-european-commission-updating-scientific_en.pdf (accessed on 19 May 2024).
- Plumb, D.C. Plumb’s Veterinary Drug Handbook, 9th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2018; pp. 722–724. [Google Scholar]
- Papich, M.G. Saunders Handbook of Veterinary Drugs: Small and Large Animal, 4th ed.; Elsevier Health Sciences: St. Louis, MO, USA, 2016; pp. 344–345. [Google Scholar]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing, 31st ed.; CLSI Supplement M100; CLSI: Berwyn, PA, USA, 2021; pp. 45–79. [Google Scholar]
- Drlica, K. The mutant selection window and antimicrobial resistance. J. Antimicrob. Chemother. 2003, 52, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Matsukawa, M.; Kunishima, Y.; Takahashi, S.; Takeyama, K.; Tsukamoto, T. Time courses of bacterial density in urine during antibacterial chemotherapy and influential factors in patients having positive bacteriuria with a complicated urinary tract. J. Infect. Chemother. 2007, 13, 99–104. [Google Scholar] [CrossRef] [PubMed]
- Scott, V.C.; Haake, D.A.; Churchill, B.M.; Justice, S.S.; Kim, J.H. Intracellular Bacterial Communities: A Potential Etiology for Chronic Lower Urinary Tract Symptoms. Urology 2015, 86, 425–431. [Google Scholar] [CrossRef] [PubMed]
- Blondeau, J.M. New concepts in antimicrobial susceptibility testing: The mutant prevention concentration and mutant selection window approach. Vet. Dermatol. 2009, 20, 383–396. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Zhao, X.; Domagala, J.; Drlica, K. Effect of fluoroquinolone concentration on selection of resistant mutants of Mycobacterium bovis BCG and Staphylococcus aureus. Antimicrob. Agents Chemother. 1999, 43, 1756–1758. [Google Scholar] [CrossRef] [PubMed]
- Blondeau, J.M.; Zhao, X.; Hansen, G.; Drlica, K. Mutant prevention concentrations of fluoroquinolones for clinical isolates of Streptococcus pneumoniae. Antimicrob. Agents Chemother. 2001, 45, 433–438. [Google Scholar] [CrossRef] [PubMed]
- Blondeau, J.M.; Hansen, G.; Metzler, K.; Hedlin, P. The Role of PK/PD Parameters to Avoid Selection and Increase of Resistance: Mutant Prevention Concentration. J. Chemother. 2004, 16, 1–19. [Google Scholar] [CrossRef] [PubMed]
- CLSI. Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals, 7th ed.; CLSI Supplement VET01S; CLSI: Berwyn, PA, USA, 2024; pp. 24–41. [Google Scholar]
- Falagas, M.E.; Maraki, S.; Karageorgopoulos, D.E.; Kastoris, A.C.; Mavromanolakis, E.; Samonis, G. Antimicrobial susceptibility of multidrug-resistant (MDR) and extensively drug-resistant (XDR) Enterobacteriaceae isolates to fosfomycin. Int. J. Antimicrob. Agents 2010, 35, 240–243. [Google Scholar] [CrossRef] [PubMed]
- Falagas, M.E.; Karageorgopoulos, D.E. Pandrug Resistance (PDR), Extensive Drug Resistance (XDR), and Multidrug Resistance (MDR) among Gram-Negative Bacilli: Need for International Harmonization in Terminology. Clin. Infect. Dis. 2008, 46, 1121–1122. [Google Scholar] [CrossRef] [PubMed]
- Marcusson, L.L.; Olofsson, S.K.; Lindgren, P.K.; Cars, O.; Hughes, D. Mutant prevention concentrations of ciprofloxacin for urinary tract infection isolates of Escherichia coli. J. Antimicrob. Chemother. 2005, 55, 938–943. [Google Scholar] [CrossRef]
- Jariyapamornkoon, N.; Patthanachai, K.; Suanpairintr, N. Plasma and Urine Pharmacokinetics of Oral Fosfomycin Tromethamine in Dogs. Vet. Sci. 2023, 10, 391. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Xie, H.; Wang, Y.; Wang, H.; Hu, J.; Zhang, G. Pharmacodynamic Parameters of Pharmacokinetic/Pharmacodynamic (PK/PD) Integration Models. Front. Vet. Sci. 2022, 9, 860472. [Google Scholar] [CrossRef] [PubMed]
- Craig, W.A. Pharmacokinetic/pharmacodynamic parameters: Rationale for antibacterial dosing of mice and men. Clin. Infect. Dis. 1998, 26, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Mouton, J.W.; Dudley, M.N.; Cars, O.; Derendorf, H.; Drusano, G.L. Standardization of pharmacokinetic/pharmacodynamic (PK/PD) terminology for anti-infective drugs: An update. J. Antimicrob. Chemother. 2005, 55, 601–607. [Google Scholar] [CrossRef] [PubMed]
- Papich, M.G. Pharmacokinetic-pharmacodynamic (PK-PD) modeling and the rational selection of dosage regimes for the prudent use of antimicrobial drugs. Vet. Microbiol. 2014, 171, 480–486. [Google Scholar] [CrossRef] [PubMed]
- Toutain, P.L.; del Castillo, J.R.; Bousquet-Melou, A. The pharmacokinetic-pharmacodynamic approach to a rational dosage regimen for antibiotics. Res. Vet. Sci. 2002, 73, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Leesombun, A.; Boonmasawai, S. Categorization of antimicrobial agents prescribed inthe Veterinary Teaching Hospital in Thailand. J. Appl. Anim. Sci. 2019, 12, 25–28. [Google Scholar]
- Hubka, P.; Boothe, D.M. In vitro susceptibility of canine and feline Escherichia coli to fosfomycin. Vet. Microbiol. 2011, 149, 277–282. [Google Scholar] [CrossRef]
- Zdzieblo, M.; Biernasiuk, A.; Helon, P.; Malm, A. Fosfomycin activity against strains isolated from urine specimens. Curr. Issues Pharm. Med. Sci. 2023, 36, 217–220. [Google Scholar] [CrossRef]
- Sojo-Dorado, J.; López-Hernández, I.; Hernández-Torres, A.; Retamar-Gentil, P.; Merino de Lucas, E.; Escolà-Vergé, L.; Bereciartua, E.; García-Vázquez, E.; Pintado, V.; Boix-Palop, L.; et al. Effectiveness of fosfomycin trometamol as oral step-down therapy for bacteraemic urinary tract infections due to MDR Escherichia coli: A post hoc analysis of the FOREST randomized trial. J. Antimicrob. Chemother. 2023, 78, 1658–1666. [Google Scholar] [CrossRef]
- Abbott, I.J.; Dekker, J.; van Gorp, E.; Wijma, R.A.; Raaphorst, M.N.; Klaassen, C.H.W.; Meletiadis, J.; Mouton, J.W.; Peleg, A.Y. Impact of bacterial species and baseline resistance on fosfomycin efficacy in urinary tract infections. J. Antimicrob. Chemother. 2020, 75, 988–996. [Google Scholar] [CrossRef] [PubMed]
- Pan, A.J.; Mei, Q.; Ye, Y.; Li, H.R.; Liu, B.; Li, J.B. Validation of the mutant selection window hypothesis with fosfomycin against Escherichia coli and Pseudomonas aeruginosa: An in vitro and in vivo comparative study. J. Antibiot. 2017, 70, 166–173. [Google Scholar] [CrossRef] [PubMed]
- Drlica, K.; Zhao, X.; Blondeau, J.M.; Hesje, C. Low correlation between MIC and mutant prevention concentration. Antimicrob. Agents Chemother. 2006, 50, 403–404. [Google Scholar] [CrossRef] [PubMed]
- Gianvecchio, C.; Lozano, N.A.; Henderson, C.; Kalhori, P.; Bullivant, A.; Valencia, A.; Su, L.; Bello, G.; Wong, M.; Cook, E.; et al. Variation in Mutant Prevention Concentrations. Front. Microbiol. 2019, 10, 42. [Google Scholar] [CrossRef] [PubMed]
- Falagas, M.E.; Vouloumanou, E.K.; Samonis, G.; Vardakas, K.Z. Fosfomycin. Clin. Microbiol. Rev. 2016, 29, 321–347. [Google Scholar] [CrossRef]
- MacLeod, D.L.; Barker, L.M.; Sutherland, J.L.; Moss, S.C.; Gurgel, J.L.; Kenney, T.F.; Burns, J.L.; Baker, W.R. Antibacterial activities of a fosfomycin/tobramycin combination: A novel inhaled antibiotic for bronchiectasis. J. Antimicrob. Chemother. 2009, 64, 829–836. [Google Scholar] [CrossRef] [PubMed]
- MacLeod, D.L.; Velayudhan, J.; Kenney, T.F.; Therrien, J.H.; Sutherland, J.L.; Barker, L.M.; Baker, W.R. Fosfomycin enhances the active transport of tobramycin in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2012, 56, 1529–1538. [Google Scholar] [CrossRef]
- Mazzei, T.; Cassetta, M.I.; Fallani, S.; Arrigucci, S.; Novelli, A. Pharmacokinetic and pharmacodynamic aspects of antimicrobial agents for the treatment of uncomplicated urinary tract infections. Int. J. Antimicrob. Agents 2006, 28 (Suppl. S1), S35–S41. [Google Scholar] [CrossRef]
- Descourouez, J.L.; Jorgenson, M.R.; Wergin, J.E.; Rose, W.E. Fosfomycin synergy in vitro with amoxicillin, daptomycin, and linezolid against vancomycin-resistant Enterococcus faecium from renal transplant patients with infected urinary stents. Antimicrob. Agents Chemother. 2013, 57, 1518–1520. [Google Scholar] [CrossRef]
- Petek, M.; Baebler, S.; Kuzman, D.; Rotter, A.; Podlesek, Z.; Gruden, K.; Ravnikar, M.; Urleb, U. Revealing fosfomycin primary effect on Staphylococcus aureus transcriptome: Modulation of cell envelope biosynthesis and phosphoenolpyruvate induced starvation. BMC Microbiol. 2010, 10, 159. [Google Scholar] [CrossRef]
- Chavan, R.; Naphade, B.; Waykar, B.; Bhagwat, S. Investigations on In Vivo Pharmacokinetic/Pharmacodynamic Determinants of Fosfomycin in Murine Thigh and Kidney Infection Models. Microb. Drug Resist. 2022, 29, 18–27. [Google Scholar] [CrossRef] [PubMed]
- Lepak, A.J.; Zhao, M.; VanScoy, B.; Taylor, D.S.; Ellis-Grosse, E.; Ambrose, P.G.; Andes, D.R. In Vivo Pharmacokinetics and Pharmacodynamics of ZTI-01 (Fosfomycin for Injection) in the Neutropenic Murine Thigh Infection Model against Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2017, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Docobo-Perez, F.; Drusano, G.L.; Johnson, A.; Goodwin, J.; Whalley, S.; Ramos-Martin, V.; Ballestero-Tellez, M.; Rodriguez-Martinez, J.M.; Conejo, M.C.; van Guilder, M.; et al. Pharmacodynamics of fosfomycin: Insights into clinical use for antimicrobial resistance. Antimicrob. Agents Chemother. 2015, 59, 5602–5610. [Google Scholar] [CrossRef] [PubMed]
Antibacterial Drugs | %S | %I | %R |
---|---|---|---|
Ampicillin | 5.26 | NA | 94.74 |
Amoxicillin | 47.44 | 12.82 | 39.74 |
Piperacillin | 24.36 | 2.56 | 73.08 |
Cephalexin | 28.21 | 7.69 | 64.10 |
Cefpodoxime | 50.00 | NA | 50.00 |
Cefovecin | 53.85 | 3.85 | 42.31 |
Ceftiofur | 50.00 | 2.56 | 47.44 |
Imipenem | 94.87 | 1.28 | 3.85 |
Amikacin | 88.46 | NA | 11.54 |
Gentamicin | 56.41 | 2.56 | 41.03 |
Tobramycin | 55.13 | 30.77 | 14.10 |
Enrofloxacin | 15.38 | 5.13 | 79.49 |
Marbofloxacin | 20.51 | 1.28 | 78.21 |
Tetracycline | 30.77 | 2.56 | 66.67 |
Nitrofurantoin | 91.03 | 8.97 | 3.85 |
Chloramphenicol | 50.00 | 20.51 | 29.49 |
Sulfamethoxazole/trimethoprim | 47.44 | NA | 52.56 |
MIC Parameters | All E. coli | ESBL-Producing E. coli | MDR E. coli |
---|---|---|---|
(n = 79) | (n = 25) | (n = 44) | |
Range of MIC (mg/L) | 1—≥256 | 2—≥256 | 2—≥256 |
MIC50 (mg/L) | 4 | 4 | 4 |
MIC90 (mg/L) | 96 | 96 | 256 |
Susceptibility (%) | 86.06 | 88.89 | 79.55 |
MPC Parameters | All E. coli | ESBL-Producing E. coli | MDR E. coli |
---|---|---|---|
(n = 68) | (n = 22) | (n = 35) | |
Range of MPC (mg/L) | 16—≥256 | 48—≥256 | 16—≥256 |
MPC50 (mg/L) | 64 | 64 | 64 |
MPC90 (mg/L) | 192 | 192 | 256 |
MPC50/MIC50 | 16 | 16 | 16 |
MPC90/MIC90 | 2 | 2 | 1 |
PK/PD | Parameters | 40 mg/kg PO | 80 mg/kg PO |
---|---|---|---|
PK (plasma) [29] | AUC0–24 (mg*h/L) | 145.47 | 343.16 |
Cmax (mg/L) | 34.46 | 66.40 | |
T (h) | 24 | 24 | |
PD | MIC50 (mg/L) | 4 | |
MIC90 (mg/L) | 96 | ||
MPC50 (mg/L) | 64 | ||
MPC90 (mg/L) | 192 | ||
PK/PD (MIC50) | AUC/MIC50 | 36.37 | 85.79 |
Cmax/MIC50 | 8.62 | 16.60 | |
T > MIC50 | <30% | >50% | |
PK/PD (MIC90) | AUC/MIC90 | 1.52 | 3.57 |
Cmax/MIC90 | 0.36 | 0.69 | |
T > MIC90 | 0% | 0% | |
PK/PD (MPC50) | AUC/MPC50 | 2.27 | 5.36 |
Cmax/MPC50 | 0.54 | 1.04 | |
T > MPC50 | 0% | <10% | |
PK/PD (MPC90) | AUC/MPC90 | 0.76 | 1.79 |
Cmax/MPC90 | 0.18 | 0.35 | |
T > MPC90 | 0% | 0% |
PK/PD | Parameters | 40 mg/kg PO | 80 mg/kg PO |
---|---|---|---|
PK (urine) [29] | AUC0–24 (mg × h/L) | 15,390.22 | 42,779.13 |
Cmax (mg/L) | 4463.07 | 8784.93 | |
T (h) | 24 | 24 | |
PD | MIC50 (mg/L) | 4 | |
MIC90 (mg/L) | 96 | ||
MPC50 (mg/L) | 64 | ||
MPC90 (mg/L) | 192 | ||
PK/PD (MIC50) | AUC/MIC50 | 3847.56 | 10,694.78 |
Cmax/MIC50 | 1115.77 | 2196.23 | |
T > MIC50 | 100% | 100% | |
PK/PD (MIC90) | AUC/MIC90 | 160.31 | 445.62 |
Cmax/MIC90 | 46.49 | 91.51 | |
T > MIC90 | >50% | 100% | |
PK/PD (MPC50) | AUC/MPC50 | 240.47 | 668.42 |
Cmax/MPC50 | 69.74 | 137.26 | |
T > MPC50 | >50% | 100% | |
PK/PD (MPC90) | AUC/MPC90 | 80.16 | 222.81 |
Cmax/MPC90 | 23.25 | 45.75 | |
T > MPC90 | <50% | 100% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jariyapamornkoon, N.; Nuanualsuwan, S.; Suanpairintr, N. In Vitro Antibacterial Activities of Fosfomycin against Escherichia coli Isolates from Canine Urinary Tract Infection. Animals 2024, 14, 1916. https://doi.org/10.3390/ani14131916
Jariyapamornkoon N, Nuanualsuwan S, Suanpairintr N. In Vitro Antibacterial Activities of Fosfomycin against Escherichia coli Isolates from Canine Urinary Tract Infection. Animals. 2024; 14(13):1916. https://doi.org/10.3390/ani14131916
Chicago/Turabian StyleJariyapamornkoon, Nattha, Suphachai Nuanualsuwan, and Nipattra Suanpairintr. 2024. "In Vitro Antibacterial Activities of Fosfomycin against Escherichia coli Isolates from Canine Urinary Tract Infection" Animals 14, no. 13: 1916. https://doi.org/10.3390/ani14131916
APA StyleJariyapamornkoon, N., Nuanualsuwan, S., & Suanpairintr, N. (2024). In Vitro Antibacterial Activities of Fosfomycin against Escherichia coli Isolates from Canine Urinary Tract Infection. Animals, 14(13), 1916. https://doi.org/10.3390/ani14131916