Microbiological Survey and Evaluation of Antimicrobial Susceptibility Patterns of Microorganisms Obtained from Suspect Cases of Canine Otitis Externa in Gran Canaria, Spain
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Microbiological Identification and Antimicrobial Susceptibility Testing (AST)
2.3. Statistical Analysis
3. Results
3.1. Sample Cohort Description
3.2. Diagnostic Results
3.3. Antimicrobial Susceptibility, MDR and Coinfection Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tesin, N.; Stojanovic, D.; Stancic, I.; Kladar, N.; Ružić, Z.; Spasojevic, J.; Tomanic, D.; Kovacevic, Z. Prevalence of the Microbiological Causes of Canine Otitis Externa and the Antibiotic Susceptibility of the Isolated Bacterial Strains. Pol. J. Vet. Sci. 2023, 26, 449–459. [Google Scholar] [CrossRef]
- Pye, C. Pseudomonas Otitis Externa in Dogs. Can. Vet. J. 2018, 59, 1231–1234. [Google Scholar] [PubMed]
- Terziev, G.; Urumova, V. Retrospective Study on the Etiology and Clinical Signs of Canine Otitis. Comp. Clin. Path 2018, 27, 7–12. [Google Scholar] [CrossRef]
- Kwon, J.; Ko, H.J.; Yang, M.H.; Park, C.; Park, S.C. Antibiotic Resistance and Species Profile of Enterococcus Species in Dogs with Chronic Otitis Externa. Vet. Sci. 2022, 9, 592. [Google Scholar] [CrossRef]
- O’Neill, D.G.; Volk, A.V.; Soares, T.; Church, D.B.; Brodbelt, D.C.; Pegram, C. Frequency and Predisposing Factors for Canine Otitis Externa in the UK—A Primary Veterinary Care Epidemiological View. Canine Med. Genet. 2021, 8, 7. [Google Scholar] [CrossRef] [PubMed]
- Nuttall, T. Managing Recurrent Otitis Externa in Dogs: What Have We Learned and What Can We Do Better? J. Am. Vet. Med. Assoc. 2023, 261, 1–13. [Google Scholar] [CrossRef]
- Lyskova, P.; Vydrzalova, M.; Mazurova, J. Identification and Antimicrobial Susceptibility of Bacteria and Yeasts Isolated from Healthy Dogs and Dogs with Otitis Externa. J. Vet. Med. Ser. A 2007, 54, 559–563. [Google Scholar] [CrossRef]
- Rosser, E.J. Causes of Otitis Externa. Vet. Clin. North. Am. Small Anim. Pract. 2004, 34, 459–468. [Google Scholar] [CrossRef] [PubMed]
- Bajwa, J. Canine Otitis Externa—Treatment and Complications. Can. Vet. J. 2019, 60, 97–99. [Google Scholar]
- Saengchoowong, S.; Jitvaropas, R.; Poomipak, W.; Praianantathavorn, K.; Payungporn, S. Identification of Bacteria Associated with Canine Otitis Externa Based on 16S RDNA High-Throughput Sequencing. Braz. J. Microbiol. 2023, 54, 3283–3290. [Google Scholar] [CrossRef]
- Kasai, T.; Fukui, Y.; Aoki, K.; Ishii, Y.; Tateda, K. Changes in the Ear Canal Microbiota of Dogs with Otitis Externa. J. Appl. Microbiol. 2021, 130, 1084–1091. [Google Scholar] [CrossRef] [PubMed]
- Pye, C.C.; Yu, A.A.; Weese, J.S. Evaluation of Biofilm Production by Pseudomonas aeruginosa from Canine Ears and the Impact of Biofilm on Antimicrobial Susceptibility in Vitro. Vet. Dermatol. 2013, 24, 446. [Google Scholar] [CrossRef]
- Chan, W.Y.; Hickey, E.E.; Page, S.W.; Trott, D.J.; Hill, P.B. Biofilm Production by Pathogens Associated with Canine Otitis Externa, and the Antibiofilm Activity of Ionophores and Antimicrobial Adjuvants. J. Vet. Pharmacol. Ther. 2019, 42, 682–692. [Google Scholar] [CrossRef] [PubMed]
- Blondeau, J.M. Antimicrobial Resistance & ‘Man’s Best Friend’: What They Give to Us We Might Be Giving Right Back. Future Microbiol. 2017, 12, 549–553. [Google Scholar] [CrossRef]
- Nocera, F.P.; Ambrosio, M.; Fiorito, F.; Cortese, L.; De Martino, L. On Gram-Positive- and Gram-Negative-Bacteria-Associated Canine and Feline Skin Infections: A 4-Year Retrospective Study of the University Veterinary Microbiology Diagnostic Laboratory of Naples, Italy. Animals 2021, 11, 1603. [Google Scholar] [CrossRef] [PubMed]
- Jin, M.; Osman, M.; Green, B.A.; Yang, Y.; Ahuja, A.; Lu, Z.; Cazer, C.L. Evidence for the Transmission of Antimicrobial Resistant Bacteria between Humans and Companion Animals: A Scoping Review. One Health 2023, 17, 100593. [Google Scholar] [CrossRef] [PubMed]
- Duim, B.; Verstappen, K.M.; Broens, E.M.; Laarhoven, L.M.; van Duijkeren, E.; Hordijk, J.; de Heus, P.; Spaninks, M.; Timmerman, A.J.; Wagenaar, J.A. Changes in the Population of Methicillin-Resistant Staphylococcus pseudintermedius and Dissemination of Antimicrobial-Resistant Phenotypes in the Netherlands. J. Clin. Microbiol. 2016, 54, 283–288. [Google Scholar] [CrossRef] [PubMed]
- Secker, B.; Shaw, S.; Atterbury, R.J. Pseudomonas spp. in Canine Otitis Externa. Microorganisms 2023, 11, 2650. [Google Scholar] [CrossRef]
- Censos—[email protected]. Available online: https://zoocan.net/Paginas/Censos.aspx (accessed on 20 February 2024).
- Crespo, M.J.; Abarca, M.L.; Cabañes, F.J. Occurrence of Malassezia spp. in the External Ear Canals of Dogs and Cats with and without Otitis Externa. Med. Mycol. 2002, 40, 115–121. [Google Scholar] [CrossRef]
- Winstanley, T.; Courvalin, P. Expert Systems in Clinical Microbiology. Clin. Microbiol. Rev. 2011, 24, 515–556. [Google Scholar] [CrossRef]
- Monteiro, L.P.; Von Allmen, N.; Friesen, I.; Huth, K.; Zambardi, G. Performance of the VITEK®2 Advanced Expert SystemTM for the Validation of Antimicrobial Susceptibility Testing Results. Eur. J. Clin. Microbiol. Infect. Dis. 2021, 40, 1333–1335. [Google Scholar] [CrossRef] [PubMed]
- Magiorakos, A.-P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-Resistant, Extensively Drug-Resistant and Pandrug-Resistant Bacteria: An International Expert Proposal for Interim Standard Definitions for Acquired Resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef]
- Sweeney, M.T.; Lubbers, B.V.; Schwarz, S.; Watts, J.L. Applying Definitions for Multidrug Resistance, Extensive Drug Resistance and Pandrug Resistance to Clinically Significant Livestock and Companion Animal Bacterial Pathogens. J. Antimicrob. Chemother. 2018, 73, 1460–1463. [Google Scholar] [CrossRef] [PubMed]
- O’Neill, D.G.; James, H.; Brodbelt, D.C.; Church, D.B.; Pegram, C. Prevalence of Commonly Diagnosed Disorders in UK Dogs under Primary Veterinary Care: Results and Applications. BMC Vet. Res. 2021, 17, 69. [Google Scholar] [CrossRef] [PubMed]
- Li, J.-P.; Li, L.-Y.; T, F.-L.; Lu, D.-Z. The Epidemiology of Canine Ear Diseases in Northwest China: Analysis of Data on 221 Dogs from 2012 to 2016. Vet World 2023, 16, 2382–2388. [Google Scholar] [CrossRef] [PubMed]
- Thrusfield, M.; Christley, R.; Brown, H.; Diggle, P.J.; French, N.; Howe, K.; Kelly, L.; O’Connor, A.; Sargeant, J.; Wood, H. Veterinary Epidemiology; Wiley: Hoboken, NJ, USA, 2018; ISBN 9781118280287. [Google Scholar]
- O’Neill, D.G.; Skipper, A.M.; Kadhim, J.; Church, D.B.; Brodbelt, D.C.; Packer, R.M.A. Disorders of Bulldogs under Primary Veterinary Care in the UK in 2013. PLoS ONE 2019, 14, e0217928. [Google Scholar] [CrossRef]
- Perry, L.R.; MacLennan, B.; Korven, R.; Rawlings, T.A. Epidemiological Study of Dogs with Otitis Externa in Cape Breton, Nova Scotia. Can. Vet. J. 2017, 58, 168–174. [Google Scholar]
- McGreevy, P.D.; Wilson, B.J.; Mansfield, C.S.; Brodbelt, D.C.; Church, D.B.; Dhand, N.; Soares Magalhães, R.J.; O’Neill, D.G. Labrador Retrievers under Primary Veterinary Care in the UK: Demography, Mortality and Disorders. Canine Genet. Epidemiol. 2018, 5, 8. [Google Scholar] [CrossRef]
- O’Neill, D.G.; Baral, L.; Church, D.B.; Brodbelt, D.C.; Packer, R.M.A. Demography and Disorders of the French Bulldog Population under Primary Veterinary Care in the UK in 2013. Canine Genet. Epidemiol. 2018, 5, 3. [Google Scholar] [CrossRef]
- Bugden, D.L. Identification and Antibiotic Susceptibility of Bacterial Isolates from Dogs with Otitis Externa in Australia. Aust. Vet. J. 2013, 91, 43–46. [Google Scholar] [CrossRef]
- Li, Y.; Fernández, R.; Durán, I.; Molina-López, R.A.; Darwich, L. Antimicrobial Resistance in Bacteria Isolated From Cats and Dogs From the Iberian Peninsula. Front. Microbiol. 2020, 11, 621597. [Google Scholar] [CrossRef]
- Rodrigues Hoffmann, A.; Patterson, A.P.; Diesel, A.; Lawhon, S.D.; Ly, H.J.; Elkins Stephenson, C.; Mansell, J.; Steiner, J.M.; Dowd, S.E.; Olivry, T.; et al. The Skin Microbiome in Healthy and Allergic Dogs. PLoS ONE 2014, 9, e83197. [Google Scholar] [CrossRef] [PubMed]
- Weese, J.S.; Prescott, J.F. Staphylococcal Infections. In Greene’s Infectious Diseases of the Dog and Cat; Elsevier: Amsterdam, The Netherlands, 2021; pp. 611–626. [Google Scholar]
- Bornand, V. Bacteriology and Mycology of Otitis Externa in Dogs. Schweiz. Arch. Tierheilkd. 1992, 134, 341–348. [Google Scholar] [PubMed]
- Kiss, G.; Radványi, S.Z.; Szigeti, G. New Combination for the Therapy of Canine Otitis Externa I Microbiology of Otitis Externa. J. Small Anim. Pract. 1997, 38, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Lee, G.Y.; Lee, H.-H.; Hwang, S.Y.; Hong, J.; Lyoo, K.-S.; Yang, S.-J. Carriage of Staphylococcus schleiferi from Canine Otitis Externa: Antimicrobial Resistance Profiles and Virulence Factors Associated with Skin Infection. J. Vet. Sci. 2019, 20, e6. [Google Scholar] [CrossRef] [PubMed]
- O’Gara, J.P. Into the Storm: Chasing the Opportunistic Pathogen Staphylococcus aureus from Skin Colonisation to Life-Threatening Infections. Environ. Microbiol. 2017, 19, 3823–3833. [Google Scholar] [CrossRef] [PubMed]
- De Martino, L.; Nocera, F.P.; Mallardo, K.; Nizza, S.; Masturzo, E.; Fiorito, F.; Iovane, G.; Catalanotti, P. An Update on Microbiological Causes of Canine Otitis Externa in Campania Region, Italy. Asian Pac. J. Trop. Biomed. 2016, 6, 384–389. [Google Scholar] [CrossRef]
- Rice, L.B. Federal Funding for the Study of Antimicrobial Resistance in Nosocomial Pathogens: No ESKAPE. J. Infect. Dis. 2008, 197, 1079–1081. [Google Scholar] [CrossRef] [PubMed]
- Pilegi, R.A.; Bordin, J.T.; Capoia, V.K.; Munhoz, P.M.; Pinto, A.A.; Baptista, M.J.; Cardozo, R.M.; Osaki, S.C.; Wosiacki, S.R. Antimicrobial Resistance in Bacterial Pathogens of Canine Otitis. Am. J. Anim. Vet. Sci. 2015, 10, 162–169. [Google Scholar] [CrossRef]
- Petrov, V.; Zhelev, G.; Marutsov, P.; Koev, K.; Georgieva, S.; Toneva, I.; Urumova, V. Microbiological and Antibacterial Resistance Profile in Canine Otitis Externa—A Comparative Analysis. Bulg. J. Vet. Med. 2019, 22, 447–456. [Google Scholar] [CrossRef]
- Leonard, C.; Thiry, D.; Taminiau, B.; Daube, G.; Fontaine, J. External Ear Canal Evaluation in Dogs with Chronic Suppurative Otitis Externa: Comparison of Direct Cytology, Bacterial Culture and 16S Amplicon Profiling. Vet. Sci. 2022, 9, 366. [Google Scholar] [CrossRef] [PubMed]
- Prado, M.R.; Brilhante, R.S.N.; Cordeiro, R.A.; Monteiro, A.J.; Sidrim, J.J.C.; Rocha, M.F.G. Frequency of Yeasts and Dermatophytes from Healthy and Diseased Dogs. J. Vet. Diagn. Investig. 2008, 20, 197–202. [Google Scholar] [CrossRef] [PubMed]
- Korbelik, J.; Singh, A.; Rousseau, J.; Weese, J.S. Analysis of the Otic Mycobiota in Dogs with Otitis Externa Compared to Healthy Individuals. Vet. Dermatol. 2018, 29, 417-e138. [Google Scholar] [CrossRef] [PubMed]
- Goodale, E.C.; Outerbridge, C.A.; White, S.D. Aspergillus otitis in Small Animals—A Retrospective Study of 17 Cases. Vet. Dermatol. 2016, 27, 3-e2. [Google Scholar] [CrossRef] [PubMed]
- Guillot, J.; Bond, R. Malassezia Yeasts in Veterinary Dermatology: An Updated Overview. Front. Cell Infect. Microbiol. 2020, 10, 79. [Google Scholar] [CrossRef]
- Buommino, E.; Baroni, A.; Papulino, C.; Nocera, F.P.; Coretti, L.; Donnarumma, G.; De Filippis, A.; De Martino, L. Malassezia pachydermatis Up-Regulates AhR Related CYP1A1 Gene and Epidermal Barrier Markers in Human Keratinocytes. Med. Mycol. 2018, 56, 987–993. [Google Scholar] [CrossRef] [PubMed]
- Li, X.-Z.; Plésiat, P.; Nikaido, H. The Challenge of Efflux-Mediated Antibiotic Resistance in Gram-Negative Bacteria. Clin. Microbiol. Rev. 2015, 28, 337–418. [Google Scholar] [CrossRef]
- Petrov, V.; Mihaylov, G.; Tsachev, I.; Zhelev, G.; Marutsov, P.; Koev, K. Otitis Externa in Dogs: Microbiology and Antimicrobial Susceptibility. Rev. Med. Vet. 2013, 164, 18–22. [Google Scholar]
- Arais, L.R.; Barbosa, A.V.; Carvalho, C.A.; Cerqueira, A.M.F. Antimicrobial Resistance, Integron Carriage, and GyrA and GyrB Mutations in Pseudomonas aeruginosa Isolated from Dogs with Otitis Externa and Pyoderma in Brazil. Vet. Dermatol. 2016, 27, 113. [Google Scholar] [CrossRef]
- Bourély, C.; Cazeau, G.; Jarrige, N.; Leblond, A.; Madec, J.Y.; Haenni, M.; Gay, E. Antimicrobial Resistance Patterns of Bacteria Isolated from Dogs with Otitis. Epidemiol. Infect. 2019, 147, e121. [Google Scholar] [CrossRef] [PubMed]
- Kwon, J.; Yang, M.-H.; Ko, H.-J.; Kim, S.-G.; Park, C.; Park, S.-C. Antimicrobial Resistance and Virulence Factors of Proteus mirabilis Isolated from Dog with Chronic Otitis Externa. Pathogens 2022, 11, 1215. [Google Scholar] [CrossRef] [PubMed]
- Stock, I. Natural Antibiotic Susceptibility of Proteus spp., with Special Reference to P. mirabilis and P. penneri Strains. J. Chemother. 2003, 15, 12–26. [Google Scholar] [CrossRef] [PubMed]
- Boehmer, T.; Vogler, A.J.; Thomas, A.; Sauer, S.; Hergenroether, M.; Straubinger, R.K.; Birdsell, D.; Keim, P.; Sahl, J.W.; Williamson, C.H.D.; et al. Phenotypic Characterization and Whole Genome Analysis of Extended-Spectrum Beta-Lactamase-Producing Bacteria Isolated from Dogs in Germany. PLoS ONE 2018, 13, e0206252. [Google Scholar] [CrossRef] [PubMed]
- Zamankhan Malayeri, H.; Jamshidi, S.; Zahraei Salehi, T. Identification and Antimicrobial Susceptibility Patterns of Bacteria Causing Otitis Externa in Dogs. Vet. Res. Commun. 2010, 34, 435–444. [Google Scholar] [CrossRef] [PubMed]
- Menandro, M.L.; Dotto, G.; Mondin, A.; Martini, M.; Ceglie, L.; Pasotto, D. Prevalence and Characterization of Methicillin-Resistant Staphylococcus pseudintermedius from Symptomatic Companion Animals in Northern Italy: Clonal Diversity and Novel Sequence Types. Comp. Immunol. Microbiol. Infect. Dis. 2019, 66, 101331. [Google Scholar] [CrossRef]
- Grönthal, T.; Eklund, M.; Thomson, K.; Piiparinen, H.; Sironen, T.; Rantala, M. Antimicrobial Resistance in Staphylococcus Pseudintermedius and the Molecular Epidemiology of Methicillin-Resistant S. pseudintermedius in Small Animals in Finland. J. Antimicrob. Chemother. 2017, 72, 1021–1030. [Google Scholar] [CrossRef]
- van Duijkeren, E.; Catry, B.; Greko, C.; Moreno, M.A.; Pomba, M.C.; Pyorala, S.; Ruzauskas, M.; Sanders, P.; Threlfall, E.J.; Torren-Edo, J.; et al. Review on Methicillin-Resistant Staphylococcus pseudintermedius. J. Antimicrob. Chemother. 2011, 66, 2705–2714. [Google Scholar] [CrossRef]
- Guimarães, L.; Teixeira, I.M.; da Silva, I.T.; Antunes, M.; Pesset, C.; Fonseca, C.; Santos, A.L.; Côrtes, M.F.; Penna, B. Epidemiologic Case Investigation on the Zoonotic Transmission of Methicillin-Resistant Staphylococcus pseudintermedius among Dogs and Their Owners. J. Infect. Public. Health 2023, 16, 183–189. [Google Scholar] [CrossRef]
- Gómez-Sanz, E.; Torres, C.; Lozano, C.; Sáenz, Y.; Zarazaga, M. Detection and Characterization of Methicillin-Resistant Staphylococcus pseudintermedius in Healthy Dogs in La Rioja, Spain. Comp. Immunol. Microbiol. Infect. Dis. 2011, 34, 447–453. [Google Scholar] [CrossRef]
- Loncaric, I.; Tichy, A.; Handler, S.; Szostak, M.P.; Tickert, M.; Diab-Elschahawi, M.; Spergser, J.; Künzel, F. Prevalence of Methicillin-Resistant Staphylococcus sp. (MRS) in Different Companion Animals and Determination of Risk Factors for Colonization with MRS. Antibiotics 2019, 8, 36. [Google Scholar] [CrossRef]
- Teixeira, I.M.; de Oliveira Ferreira, E.; de Araújo Penna, B. Dogs as Reservoir of Methicillin Resistant Coagulase Negative Staphylococci Strains—A Possible Neglected Risk. Microb. Pathog. 2019, 135, 103616. [Google Scholar] [CrossRef] [PubMed]
- Marco-Fuertes, A.; Jordá, J.; Marin, C.; Lorenzo-Rebenaque, L.; Montoro-Dasi, L.; Vega, S. Multidrug-Resistant Escherichia coli Strains to Last Resort Human Antibiotics Isolated from Healthy Companion Animals in Valencia Region. Antibiotics 2023, 12, 1638. [Google Scholar] [CrossRef] [PubMed]
n | % (95% CI) | p-Value | n | % (95% CI) | p-Value | ||
---|---|---|---|---|---|---|---|
Acinetobacter baumannii complex | 1 | 0.2 (−0.2–0.5) | 1.00 ‡ | Pseudomonas fluorescens | 2 | 0.4 (−0.1–0.9) | 1.00 ‡ |
Aeromonas hydrophila-caviae | 1 | 0.2 (−0.2–0.5) | 1.00 ‡ | Pseudomonas luteola | 1 | 0.2 (−0.2–0.5) | 1.00 ‡ |
Aspergillus fumigatus | 1 | 0.2 (−0.2–0.5) | 0.25 ‡ | Pseudomonas oryzihabitans | 1 | 0.2 (−0.2–0.5) | 1.00 ‡ |
Aspergillus niger | 1 | 0.2 (−0.2–0.5) | 0.25 ‡ | Pseudomonas stutzeri | 1 | 0.2 (−0.2–0.5) | 1.00 ‡ |
Burkholderia cepacia | 2 | 0.4 (−0.1–0.9) | 1.00 ‡ | Serratia fonticola | 1 | 0.2 (−0.2–0.5) | 1.00 ‡ |
Candida albicans | 4 | 0.7 (0.0–1.4) | 0.04 ‡ | Serratia liquefaciens | 1 | 0.2 (−0.2–0.5) | 1.00 ‡ |
Candida guilliermondii | 1 | 0.2 (−0.2–0.5) | 0.25 ‡ | Serratia marcescens | 2 | 0.4 (−0.1–0.9) | 1.00 ‡ |
Candida parafilopsis | 1 | 0.2 (−0.2–0.5) | 0.25 ‡ | Sphingomonas paucimobilis | 1 | 0.2 (−0.2–0.5) | 1.00 ‡ |
Candida spp. | 2 | 0.4 (−0.1–0.9) | 0.06 ‡ | Staphylococcus aureus | 10 | 1.8 (0.7–2.9) | 0.13 ‡ |
Citrobacter freundii | 1 | 0.2 (−0.2–0.5) | 1.00 ‡ | Staphylococcus chromogenes | 1 | 0.2 (−0.2–0.5) | 1.00 ‡ |
Citrobacter koseri | 4 | 0.7 (0.0–1.4) | 0.58 ‡ | Staphylococcus coag Neg | 2 | 0.4 (−0.1–0.9) | 1.00 ‡ |
Enterobacter cloacae | 3 | 0.5 (−0.1–1.1) | 1.00 ‡ | Staphylococcus epidermidis | 4 | 0.7 (0.0–1.4) | 0.58 ‡ |
Enterococcus faecalis | 11 | 1.9 (0.8–3.1) | 0.07 ‡ | Staphylococcus haemolyticus | 5 | 0.9 (0.1–1.7) | 0.34 ‡ |
Enterococcus faecium | 1 | 0.2 (−0.2–0.5) | 1.00 ‡ | Staphylococcus hominis ssp. hominis | 2 | 0.4 (−0.1–0.9) | 1.00 ‡ |
Enterococcus spp. | 1 | 0.2 (−0.2–0.5) | 1.00 ‡ | Staphylococcus intermedius | 3 | 0.5 (−0.1–1.1) | 1.00 ‡ |
Escherichia coli | 44 | 7.9 (5.6–10.1) | <0.001 + | Staphylococcus lentus | 6 | 1.1 (0.2–1.9) | 0.34 ‡ |
Haemophilus haemolyticus | 1 | 0.2 (−0.2–0.5) | 1.00 ‡ | Staphylococcus pseudintermedius | 128 | 22.9 (19.4–26.4) | <0.001 + |
Haemophilus parainfluenza | 1 | 0.2 (−0.2–0.5) | 1.00 ‡ | Staphylococcus saprophyticcus | 1 | 0.2 (−0.2–0.5) | 1.00 ‡ |
Klebsiella pneumoniae | 4 | 0.7 (0.0–1.4) | 0.58 ‡ | Staphylococcus schleiferi | 16 | 2.9 (1.5–4.3) | 0.02 ‡ |
Malassezia furfur | 1 | 0.2 (−0.2–0.5) | 0.25 ‡ | Staphylococcus warneri | 1 | 0.2 (−0.2–0.5) | 1.00 ‡ |
Malassezia pachydermatis | 126 | 22.6 (19.1–26.1) | <0.001 + | Staphylococcus xylosus | 2 | 0.4 (−0.1–0.9) | 1.00 ‡ |
Proteus mirabilis | 48 | 8.6 (6.3–10.9) | <0.001 + | Streptococcus canis | 1 | 0.2 (−0.2–0.5) | 1.00 ‡ |
Providencia stuartii | 2 | 0.4 (−0.1–0.9) | 1.00 ‡ | Streptococcus mutans | 1 | 0.2 (−0.2–0.5) | 1.00 ‡ |
Pseudomonas aeruginosa | 102 | 18.3 (15.1–21.5) | <0.001 + | Streptococcus parasanguinis | 1 | 0.2 (−0.2–0.5) | 1.00 ‡ |
S. pseudintermedius | P. aeruginosa | P. mirabilis | E. coli | S. schleiferi | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S | I | R | S | I | R | S | I | R | S | I | R | S | I | R | |
CL | 18% (n = 9) | 82% (n = 41) | 41.3% (n = 19) | 19.6% (n = 9) | 39.1% (n = 18) | 63.6% (n = 28) | 4.5% (n = 2) | 31.8% (n = 14) | |||||||
CVN | 83.6% (n = 107) | 3.9% (n = 5) | 12.5% (n = 16) | 27.8% (n = 15) | 5.6% (n = 3) | 66.7% (n = 36) | 80.9% (n = 38) | 6.4% (n = 3) | 12.8% (n = 6) | 72.7% (n = 32) | 2.3% (n = 1) | 25% (n = 11) | 100% (n = 16) | ||
CAZ | 91% (n = 91) | 1% (n = 1) | 8% (n = 8) | 80.4% (n = 37) | 13% (n = 6) | 6.5% (n = 3) | 83.7% (n = 36) | 2.3% (n = 1) | 14% (n = 6) | ||||||
CPD | 42.9% (n = 12) | 57.1% (n = 16) | 78.3% (n = 36) | 21.7% (n = 10) | 83.7% (n = 36) | 16.3% (n = 7) | |||||||||
CTF | 87.5% (n = 7) | 12.5% (n = 1) | 11.6% (n = 11) | 6.3% (n = 6) | 82.1% (n = 78) | 68.2% (n = 30) | 18.2% (n = 8) | 13.6% (n = 6) | 70% (n = 33) | 9.1% (n = 4) | 15.9% (n = 7) | 100% (n = 5) | |||
AMC | 91.9% (n = 34) | 8.1% (n = 3) | 37.5% (n = 9) | 62.5% (n = 15) | 64.6% (n = 31) | 6.3% (n = 3) | 29.2% (n = 14) | 90.9% (n = 40) | 2.3% (n = 1) | 6.8% (n = 3) | |||||
AMP | 29.2% (n = 7) | 70.8% (n = 17) | 40% (n = 18) | 60% (n = 27) | 52.3% (n = 23) | 47.7% (n = 21) | |||||||||
P | 31% (n = 39) | 69% (n = 87) | 100% (n = 16) | ||||||||||||
OXA | 73.6% (n = 92) | 26.4% (n = 33) | 93.8% (n = 15) | 6.3% (n = 1) | |||||||||||
IPM | 84% (n = 84) | 4% (n = 4) | 12% (n = 12) | 21.7% (n = 10) | 58.7% (n = 27) | 19.6% (n = 9) | 100% (n = 44) | ||||||||
AMI | 94% (n = 94) | 6% (n = 6) | 93.5% (n = 43) | 6.5% (n = 3) | 90.9% (n = 40) | 2.3% (n = 1) | 6.8% (n = 3) | ||||||||
GEN | 80% (n = 100) | 2.4% (n = 3) | 17.6% (n = 22) | 86.3% (n = 88) | 1% (n = 1) | 12.7% (n = 13) | 89.6% (n = 43) | 4.2% (n = 2) | 6.3% (n = 3) | 88.6% (n = 39) | 11.4% (n = 5) | 100% (n = 16) | |||
K | 68.5% (n = 87) | 0.8% (n = 1) | 30.7% (n = 39) | 100% (n = 16) | |||||||||||
N | 75.8% (n = 97) | 6.3% (n = 8) | 18% (n = 23) | 100% (n = 16) | |||||||||||
CIP | 70.3% (n = 71) | 2% (n = 2) | 27.7% (n = 28) | 76.1% (n = 35) | 2.2% (n = 1) | 21.7% (n = 10) | 77.3% (n = 34) | 6.8% (n = 3) | 15.9% (n = 7) | ||||||
ENR | 65.4% (n = 83) | 12.6% (n = 16) | 22% (n = 28) | 34.7% (n = 35) | 44.6% (n = 45) | 20.8% (n = 21) | 72.9% (n = 35) | 4.2% (n = 2) | 22.9% (n = 11) | 81.8% (n = 36) | 9.1% (n = 4) | 9.1% (n = 4) | 56.3% (n = 9) | 18.8% (n = 3) | 25% (n = 4) |
MAR | 73.4% (n = 94) | 7.8% (n = 10) | 18.8% (n = 24) | 78% (n = 78) | 11% (n = 11) | 11% (n = 11) | 77.1% (n = 37) | 16.7% (n = 8) | 6.3% (n = 3) | 84.1% (n = 37) | 4.5% (n = 2) | 11.4% (n = 5) | 68.8% (n = 11) | 6.3% (n = 1) | 25% (n = 4) |
ERY | 65.6% (n = 84) | 4.7% (n = 6) | 29.7% (n = 38) | 100% (n = 16) | |||||||||||
CLI | 67.5% (n = 85) | 3.2% (n = 4) | 29.4% (n = 37) | 93.8% (n = 15) | 6.3% (n = 1) | ||||||||||
DOX | 59.8% (n = 76) | 12.6% (n = 16) | 27.6% (n = 35) | 55.6% (n = 20) | 44.4% (n = 16) | 6.3% (n = 3) | 2.1% (n = 1) | 91.7% (n = 44) | 70.5% (n = 31) | 6.8% (n = 3) | 22.7% (n = 10) | 100% (n = 16) | |||
TET | 57.5% (n = 73) | 0.8% (n = 1) | 41.7% (n = 53) | 100% (n = 16) | |||||||||||
NIT | 97.6% (n = 124) | 2.4% (n = 3) | 56.3% (n = 18) | 43.8% (n = 14) | 10.4% (n = 5) | 2.1% (n = 1) | 87.5% (n = 42) | 93.2% (n = 41) | 6.8% (n = 3) | 100% (n = 16) | |||||
CHL | 78.9% (n = 101) | 1.6% (n = 2) | 19.5% (n = 25) | 59.4% (n = 19) | 3.1% (n = 1) | 37.5% (n = 12) | 60.4% (n = 29) | 2.1% (n = 1) | 37.5% (n = 18) | 50% (n = 22) | 6.8% (n = 3) | 43.2% (n = 19) | 100% (n = 16) | ||
SXT | 82% (n = 105) | 18% (n = 23) | 70% (n = 21) | 6.7% (n = 2) | 23.3% (n = 7) | 83.3% (n = 40) | 16.7% (n = 8) | 76.7% (n = 33) | 23.3% (n = 10) | 100% (n = 16) | |||||
PB | 81.4% (n = 70) | 18.6% (n = 16) | 83.3% (n = 5) | 16.7% (n = 1) | 73.8% (n = 31) | 7.1% (n = 3) | 19% (n = 8) | ||||||||
Total SRI | 71.2% | 3.7% | 25.1% | 62.9% | 6.4% | 30.7% | 61.6% | 9% | 29.4% | 77.3% | 3.7% | 19% | 94.3% | 1.6% | 4.1% |
S. pseudintermedius | P. aeruginosa | P. mirabilis | E. coli | S. schleiferi | Mean | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
S (%) | R (%) | S (%) | R (%) | S (%) | R (%) | S (%) | R (%) | S (%) | R (%) | S (%) | R (%) | |
β-Lactams | 73.5 | 25.7 | 32.5 | 53.7 | 59.4 | 25.3 | 77.1 | 22.5 | 98.5 | 6.3 | 68.2 | 26.7 |
Aminoglycosides | 74.8 | 22.1 | 90.2 | 9.4 | 91.6 | 6.4 | 89.8 | 9.1 | 100 | - | 89.2 | 9.4 |
Fluroquinolones | 69.4 | 20.4 | 61 | 19.8 | 75.4 | 17 | 81.1 | 39.4 | 62.6 | 25 | 69.9 | 24.3 |
MLS * | 66.6 | 39.8 | 96.9 | 6.3 | 81.7 | 23 | ||||||
Tetracyclines | 58.7 | 34.7 | 55.6 | 44.4 | 6.3 | 91.7 | 70.5 | 22.7 | 100 | - | 58.2 | 38.7 |
Nitrofurans | 97.6 | 2.4 | 56.3 | 43.8 | 10.4 | 87.5 | 93.2 | 6.8 | 100 | - | 71.5 | 28.1 |
Amphenicols | 78.9 | 19.5 | 59.4 | 37.5 | 60.4 | 37.5 | 50 | 43.2 | 100 | - | 69.7 | 27.5 |
SXT | 0.8 | 18 | 70 | 23.3 | 83.3 | 16.7 | 76.7 | 23.3 | 100 | - | 66.2 | 16.3 |
Polypeptides | 81.4 | 18.6 | 83.3 | 16.7 | 73.8 | 19 | 79.5 | 18.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rosales, R.S.; Ramírez, A.S.; Moya-Gil, E.; de la Fuente, S.N.; Suárez-Pérez, A.; Poveda, J.B. Microbiological Survey and Evaluation of Antimicrobial Susceptibility Patterns of Microorganisms Obtained from Suspect Cases of Canine Otitis Externa in Gran Canaria, Spain. Animals 2024, 14, 742. https://doi.org/10.3390/ani14050742
Rosales RS, Ramírez AS, Moya-Gil E, de la Fuente SN, Suárez-Pérez A, Poveda JB. Microbiological Survey and Evaluation of Antimicrobial Susceptibility Patterns of Microorganisms Obtained from Suspect Cases of Canine Otitis Externa in Gran Canaria, Spain. Animals. 2024; 14(5):742. https://doi.org/10.3390/ani14050742
Chicago/Turabian StyleRosales, Rubén S., Ana S. Ramírez, Eduardo Moya-Gil, Sara N. de la Fuente, Alejandro Suárez-Pérez, and José B. Poveda. 2024. "Microbiological Survey and Evaluation of Antimicrobial Susceptibility Patterns of Microorganisms Obtained from Suspect Cases of Canine Otitis Externa in Gran Canaria, Spain" Animals 14, no. 5: 742. https://doi.org/10.3390/ani14050742
APA StyleRosales, R. S., Ramírez, A. S., Moya-Gil, E., de la Fuente, S. N., Suárez-Pérez, A., & Poveda, J. B. (2024). Microbiological Survey and Evaluation of Antimicrobial Susceptibility Patterns of Microorganisms Obtained from Suspect Cases of Canine Otitis Externa in Gran Canaria, Spain. Animals, 14(5), 742. https://doi.org/10.3390/ani14050742