Sequential Behavior of Broiler Chickens in Enriched Environments under Varying Thermal Conditions Using the Generalized Sequential Pattern Algorithm: A Proof of Concept
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals, Housing, and Management
2.2. Image Acquisition
2.3. Generalized Sequential Pattern (GSP) Algorithm
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pocketbook, F.S. World Food and Agriculture; FAO: Rome, Italy, 2015. [Google Scholar]
- Garcia, R.; Aguilar, J.; Toro, M.; Pinto, A.; Rodriguez, P. A systematic literature review on the use of machine learning in precision livestock farming. Comput. Electron. Agric. 2020, 179, 105826. [Google Scholar] [CrossRef]
- Fernandez, A.P.; Norton, T.; Tullo, E.; Van Hertem, T.; Yossef, A.; Exadaktylos, V.; Vranken, E.; Guarino, M.; Berckmans, D. Real-time monitoring of broiler flock’s welfare status using camera-based technology. Biosyst. Eng. 2018, 173, 103–114. [Google Scholar] [CrossRef]
- Tullo, E.; Fontana, I.; Diana, A.; Norton, T.; Berckmans, D.; Guarino, M. Application note: Labelling, a methodology to develop reliable algorithm in PLF. Comput. Electron. Agric. 2017, 142, 424–428. [Google Scholar] [CrossRef]
- Lee, M.; See, S. Wearable wireless biosensor technology for monitoring cattle: A review. Animals 2021, 11, 2779. [Google Scholar] [CrossRef] [PubMed]
- Morota, G.; Ventura, R.V.; Silva, F.F.; Koyama, M.; Fernando, S.C. Big Data Analytics and Precision Animal Agriculture Symposium: Machine learning and data mining advance predictive big data analysis in precision animal agriculture. J. Anim. Sci. 2018, 96, 1540–1550. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, X.; Zhang, T. Detection of sick broilers by digital image processing and deep learning. Biosyst. Eng. 2019, 179, 106–116. [Google Scholar] [CrossRef]
- Jones, R.B. Fear and adaptability in poultry: Insights, implications and imperative. World Poult. Sci. J. 1996, 52, 131–174. [Google Scholar] [CrossRef]
- Newberry, R.C. Environmental enrichment: Increasing the biological relevance of captive environments. Appl. Anim. Behav. Sci. 1995, 44, 229–243. [Google Scholar] [CrossRef]
- Altan, O.; Seremet, C.; Bayraktar, Ö. The effects of early environmental enrichment on performance, fear and physiological responses to acute stress of broiler. Arch. Geflugelkd. 2013, 1, 23–28. [Google Scholar]
- Bergmann, S.; Schwarzer, A.; Wilutzky, K.; Louton, H.; Bachmeier, J.; Schmidt, P.; Erhard, M.; Rauch, E. Behavior as welfare indicator for the rearing of broilers in an enriched husbandry environment—A field study. J. Vet. Behav. 2017, 19, 90–101. [Google Scholar] [CrossRef]
- De Jong, I.C.; Gunnink, H. Effects of a commercial broiler enrichment programme with or without natural light on behaviour and other welfare indicators. Animal 2019, 13, 384–391. [Google Scholar] [CrossRef]
- Cornetto, T.; Estevez, I. Influence of vertical panels s on use of space by domestic fowl. Appl. Anim. Behav. Sci. 2001, 71, 141–153. [Google Scholar] [CrossRef] [PubMed]
- Cornetto, T.; Estevez, I. Behavior of the domestic fowl in the presence of vertical panels. Poult. Sci 2001, 80, 1455–1462. [Google Scholar] [CrossRef]
- Baxter, M.; Bailie, C.L.; O’Connell, N.E. Evaluation of dustbathing susbtrate and straw bales as environmental enrichments in comercial broiler housing. Appl. Anim. Behav. Sci. 2018, 200, 78–85. [Google Scholar] [CrossRef]
- Madkour, M.; Aboelenin, M.M.; Younis, E.; Mohamed, M.A.; Hassan, H.; Alagawany, M.; Shourrap, M. Hepatic acute-phase response, antioxidant biomarkers and DNA fragmentation of two rabbit breeds subjected to acute heat stress. Ital. J. Anim. Sci. 2020, 19, 1568–1576. [Google Scholar] [CrossRef]
- Lara, L.J.; Rostagno, M.H. Impact of Heat Stress on Poultry Production. Animals 2013, 3, 356–369. [Google Scholar] [CrossRef]
- Xin, H. Assessing swine thermal comfort by image analysis of postural behaviors. J. Anim. Sci. 1999, 77, 1–9. [Google Scholar] [CrossRef]
- Massari, J.M.; Moura, D.J.; Nääs, I.A.; Pereira, D.F.; Branco, T. Computer-Vision-Based Indexes for Analyzing Broiler Response to Rearing Environment: A Proof of Concept. Animals 2022, 12, 846. [Google Scholar] [CrossRef] [PubMed]
- Pereira, D.F.; Miyamoto, B.C.B.; Maia, G.D.N.; Sales, G.T.; Magalhães, M.M.; Gates, R.S. Machine vision to identify broiler breeder behavior. Comput. Electron. Agric. 2013, 99, 194–199. [Google Scholar] [CrossRef]
- Pereira, D.F.; Lopes, F.A.A.; Filho, L.R.A.G.; Salgado, D.D.A.; Neto, M.M. Cluster index for estimating thermal poultry stress (Gallus gallus domesticus). Comput. Electron. Agric. 2020, 177, 105704. [Google Scholar] [CrossRef]
- Del Valle, J.E.; Pereira, D.F.; Mollo Neto, M.; Gabriel Filho, L.R.A.; Salgado, D.D.A. Unrest index for estimating thermal comfort of poultry broilers (Gallus gallus domesticus) using computer vision techniques. Biosyst. Eng. 2021, 206, 123–134. [Google Scholar] [CrossRef]
- Stachowicz, J.; Nasser, R.; Adrion, F.; Umstätter, C. Can we detect patterns in behavioral time series of cows using cluster analysis? J. Dairy Sci. 2022, 105, 9971–9981. [Google Scholar] [CrossRef] [PubMed]
- Mancinelli, A.C.; Trocino, A.; Chiattelli, D.; Ciarelli, C.; Castellini, C. New approaches to selecting a scan-sampling method for chicken behavioral observations and their practical implications. Sci. Rep. 2023, 13, 17177. [Google Scholar] [CrossRef]
- Rufener, C.; Berezowski, J.; Maximiano Sousa, F.; Abre, Y.; Asher, L.; Toscano, M.J. Finding hens in a haystack: Consistency of movement patterns within and across individual laying hens maintained in large groups. Sci. Rep. 2023, 8, 12303. [Google Scholar] [CrossRef]
- Branco, T.; Moura, D.J.; Nääs, I.A.; Oliveira, S.R.M. Detection of broiler heat stress by using the generalised sequential pattern algorithm. Biosyst. Eng. 2020, 199, 121–126. [Google Scholar] [CrossRef]
- Branco, T.; Moura, D.J.; Nääs, I.A.; Lima, N.D.S.; Klein, D.R.; Oliveira, S.R.M. The sequential behavior pattern analysis of broiler chickens exposed to heat stress. AgriEngeneering 2021, 3, 447–457. [Google Scholar] [CrossRef]
- María, G.A.; Escós, J.; Alados, C.L. Complexity of behavioural sequences and their relation to stress conditions in chickens (Gallus gallus domesticus): A non-invasive technique to evaluate animal welfare. Appl. Anim. Behav. Sci. 2004, 86, 93–104. [Google Scholar] [CrossRef]
- Berger, A.; Scheibe, K.M.; Michaelis, S.; Streich, W.J. Evaluation of living conditions of free-ranging animals by automated chronobiological analysis of behavior. Behav. Res. Methods Instrum. Comput. 2003, 35, 458–466. [Google Scholar] [CrossRef]
- Harper, D.G.; Tornatzky, W.; Miczek, K.A. Stress induced disorganization of circadian and ultradian rhythms: Comparisons of effects of surgery and social stress. Physiol. Behav. 1996, 59, 409–419. [Google Scholar] [CrossRef]
- Berger, A. Activity patterns, chronobiology and the assessment of stress and welfare in zoo and wild animals. Int. Zoo Yearb. 2011, 45, 80–90. [Google Scholar] [CrossRef]
- Veissier, I.; Mialon, M.M.; Sloth, K.H. Short communication: Early modification of the circadian organization of cow activity in relation to disease or estrus. J. Dairy Sci. 2017, 100, 3969–3974. [Google Scholar] [CrossRef]
- Sarout, B.N.M.; Waterhouse, A.; Duthie, C.A.; Poli, C.E.H.C.; Haskell, M.J.; Berger, A.; Umstätter, C. Assessment of circadian rhythm of activity combined with random regression model as a novel approach to monitoring sheep in an extensive system. Appl. Anim. Behav. Sci. 2018, 207, 26–38. [Google Scholar] [CrossRef]
- Agrawal, R.; Srikant, R. Mining sequential patterns. In Proceedings of the Eleventh International Conference on Data Engineering, Taipei, Taiwan, 6–10 March 1995; pp. 3–14. [Google Scholar]
- Andretta, I.; Kipper, M.; Schirmann, G.D.; Franceschina, C.S.; Ribeiro, A.M.L. Modeling the performance of broilers under heat stress. Poult. Sci. 2021, 100, 101338. [Google Scholar] [CrossRef]
- Siddigui, S.H.; Krang, D.; Park, J.; Khan, M.; Belal, S.A.; Shin, D.; Shim, K. Altered relationship between gluconeogenesis and immunity in broilers exposed to heat stress for different durations. Poult. Sci. 2021, 100, 101274. [Google Scholar] [CrossRef]
- Hu, H.; Bai, X.; Xu, K.; Zhang, C.; Chen, L. Effect of phloretin on growth performance, serum biochemical parameters and antioxidant profile in heat-stressed broilers. Poult. Sci. 2021, 100, 101217. [Google Scholar] [CrossRef] [PubMed]
- Nicol, C.J. Effects of environmental enrichment and gentle handling on behaviour and fear responses of transported broilers. Appl. Anim. Behav. Sci. 1992, 33, 367–380. [Google Scholar] [CrossRef]
- Bizeray, D.; Estevez, I.; Leterrier, C.; Faure, J.M. Effects of increasing environmental complexity on the physical activity of broiler chickens. Appl. Anim. Behav. Sci. 2002, 79, 27–41. [Google Scholar] [CrossRef]
- Miller, K.A.; Mench, J.A. The differential effects of four types of environmental enrichment on the activity budgets, fearfulness, and social proximity preference of Japanese quail. Appl. Anim. Behav. Sci. 2005, 95, 169–187. [Google Scholar] [CrossRef]
- Rostagno, S.R.; Albino, L.F.T.; Donzele, J.L.; Gomes, P.C.; Oliveira, R.F.; Lopes, S.C.; Ferreira, A.S.; Barreto, S.L.T.; Euclides, R.F. Tabelas Brasileiras para Aves e Suínos: Composição de Alimentos e Exigências Nutricionais, 3rd ed.; UFV: Viçosa, Brazil, 2011; p. 252. [Google Scholar]
- Cobb—Vantress Brasil Ltda. Manual de Manejo de Frangos de Corte. 2013. Available online: https://cobbgenetics.com/ (accessed on 5 September 2015).
- Maia, A.P.d.A.; Moura, D.J.; Green, A.R.; Silva, W.T.; Sarubbi, J.; Massari, J.M.; Barbosa, L.V.S. Design and testing of a novel environmental preference chamber. Comput. Electron. Agric. 2019, 157, 23–37. [Google Scholar] [CrossRef]
- Mohammed, A.A.; Jacobs, J.A.; Murugesan, G.R.; Cheng, H. W Effect of dietary synbiotic supplement on behavioral patterns and growth performance of broiler chickens reared under heat stress. Poult. Sci. 2018, 97, 1101–1108. [Google Scholar] [CrossRef]
- Mahmoud, U.T.; Abdel-Rahman, M.A.; Darwish, M.H.A.; Applegate, T.J.; Cheng, H.W. Behavioral changes and feathering score in heat stressed broiler chickens fed diets containing different levels of propolis. Appl. Anim. Behav. Sci. 2015, 166, 98–105. [Google Scholar] [CrossRef]
- Ventura, B.A.; Siewerdt, F.; Estevez, I. Access to Barrier Perches Improves Behavior Repertoire in Broilers. PLoS ONE 2012, 7, e29826. [Google Scholar] [CrossRef]
- Roll, V.F.B.; dai Prá, M.A.; Roll, A.A.P.; Xavier, E.G.; Rossi, P.; Anciuti, M.A.; Rutz, F. Influência da altura de comedouros tubulares no comportamento ingestivo de frangos de corte. Arch. Zootec. 2010, 9, 115–122. [Google Scholar] [CrossRef]
- Witten, I.H.; Frank, E.; Hall, M.A.; Pal, C.J. Data Mining: Practical Machine Learning Tools and Techniques, 4th ed.; Morgan Kaufmann: San Francisco, CA, USA, 2016. [Google Scholar]
- Bureva, V.; Sotirova, E.; Chountas, P. Generalized Net of the Process of Sequential Pattern Mining by Generalized Sequential Pattern Algorithm (GSP). In Advances in Intelligent Systems and Computing; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2015; pp. 831–838. [Google Scholar]
- Srikant, R.; Agrawal, R. Mining sequential patterns: Generalizations and performance improvements. In Transactions on Petri Nets and Other Models of Concurrency XV; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 1996; pp. 1–17. [Google Scholar]
- Chu, C.J.; Tseng, V.S.; Liang, T. An efficient algorithm for mining temporal high utility itemsets from data streams. J. Syst. Softw. 2008, 81, 1105–1117. [Google Scholar] [CrossRef]
- Hu, Y.H.; Wu, F.; Liao, Y.J. An efficient tree-based algorithm for mining sequential patterns with multiple minimum supports. J. Syst. Softw. 2013, 86, 1224–1238. [Google Scholar] [CrossRef]
- Weeks, C.A.; Danbury, T.D.; Davies, H.C.; Hunt, P.; Kestin, S.C. The behaviour of broiler chickens and its modification by lameness. Appl. Anim. Behav. Sci. 2000, 67, 111–125. [Google Scholar] [CrossRef]
- Collins, S.; Forkman, B.; Kristensen, H.H.; Sandøe, P.; Hocking, P.M. Investigating the importance of vision in poultry: Comparing the behaviour of blind and sighted chickens. Appl. Anim. Behav. Sci. 2011, 133, 60–69. [Google Scholar] [CrossRef]
- Abeyesinghe, S.M.; Chancellor, N.M.; Hernandez Moore, D.; Chang, Y.M.; Pearce, J.; Demmers, T.; Nicol, C.J. Associations between behaviour and health outcomes in conventional and slow-growing breeds of broiler chicken. Animal 2021, 15, 100261. [Google Scholar] [CrossRef] [PubMed]
- Weeks, C.A.; Nicol, C.J. Behavioural needs, priorities and preferences of laying hens. Worl. Poult. Sci. J. 2006, 62, 296–307. [Google Scholar] [CrossRef]
- Dawson, L.C.; Widowski, T.M.; Liu, Z.; Edwards, A.M.; Torrey, S. In pursuit of a better broiler: A comparison of the inactivity, behavior, and enrichment use of fast- and slower growing broiler chickens. Poult. Sci. 2021, 100, 101451. [Google Scholar] [CrossRef]
- Mack, L.A.; Felver-Gant, J.N.; Dennis, R.L.; Cheng, H.W. Genetic variations alter production and behavioral responses following heat stress in 2 strains of laying hens. Poult. Sci. 2013, 92, 285–294. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Zhao, Y.; Porter, Z.; Purswell, J.L. Automated measurement of broiler stretching behaviors under four stocking densities via faster region-based convolutional neural network. Animal 2021, 15, 100059. [Google Scholar] [CrossRef]
- Barbosa Filho, J.A.D.B.; Silva, I.J.O.; Silva, M.A.N.; Silva, C.J.M. Avaliação dos comportamentos de aves poedeiras utilizando sequência de imagens. Eng. Agríc. 2007, 27, 93–99. [Google Scholar] [CrossRef]
- Nazareno, A.C.; Silveira, R.M.F.; Castro Junior, S.L.; Silva, I.J.O. Fuzzy modelling as an intelligent tool to study animal behaviour: An application to broilers with environmental enrichment. Appl. Anim. Behav. Sci. 2024, 270, 106149. [Google Scholar] [CrossRef]
- Kells, A.; Dawkins, M.S.; Cortina Borja, M. The effect of a ‘Freedom Food’ enrichment on the behaviour of broilers on commercial farms. Anim. Welf. 2001, 10, 347–356. [Google Scholar] [CrossRef]
- Bach, M.H.; Tahamtani, F.M.; Pedersen, I.J.; Riber, A.B. Effects of environmental complexity on behaviour in fast-growing broiler chickens. Appl. Anim. Behav. Sci. 2019, 219, 104840. [Google Scholar] [CrossRef]
- Vasdal, G.; Vas, J.; Newberry, R.C.; Moe, R.O. Effects of environmental enrichment on activity and lameness in commercial broiler production. J. Appl. Anim. Welf. Sci. 2019, 22, 197–205. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.P.; Jiao, H.C.; Jiang, Y.B.; Song, Z.G.; Wang, X.J.; Lin, H. Cool perches improve the growth performance and welfare status of broiler chickens reared at different stocking densities and high temperatures. Poult. Sci. 2013, 92, 1962–1971. [Google Scholar] [CrossRef]
- Moura, D.J.; Nääs, I.A.; Pereira, D.F.; Silva, R.B.T.R.; Camargo, G.A. Animal welfare concepts and strategy for poultry production: A review. Braz. J. Poult. Sci. 2006, 8, 137–148. [Google Scholar] [CrossRef]
Behavior | Acronym | Description | Reference |
---|---|---|---|
Lying down | Ld | Broilers with the ventral body region in contact with the ground, knees bent, and with either closed or open eyes (resting). | [44] |
Preening | P | Broilers pecking or scratching their feathers in both seated and standing positions. | [45] |
Forage | F | Broilers stretch their necks and peck at the substrate on the ground in both sitting and standing positions. | [15] |
Walk | W | Broilers walk at least two steps without pecking at the ground. | [45] |
Dust bathing | Db | The broiler is lying on the ground, throwing dirt on its back/wings, ruffling, and shaking its feathers. | [46] |
Wing flap | Wf | The broiler is repeatedly seen flapping its wings. | [47] |
Shake feathers | Sf | The broiler is ruffling and shaking all the feathers of its body. | [44] |
Eat | E | The broiler’s head is positioned within the feeder, encompassing slight movements around the perimeter of the feeder. | [45] |
Drink | D | The broiler’s beak is in contact with the drinker, including slight movements around the drinker. | [45] |
Run | R | The broiler achieves a higher ground speed when the propulsive force is derived from leg action. | [47] |
Stretching | St | The broiler stretches one or two wings or legs and returns to its original position. | [15] |
Lying laterally | Ll | The broiler is lying on its side with one leg and/or wing stretched out. | [15] |
Explore | Ex | The broiler explores the environment by interacting with objects. This is exclusive to the enriched environment, including pecking perch, sandbox, and colorful plastic rings. | [11] |
Database D | ||
---|---|---|
Sequence-Id | Transaction Time | Items |
Broiler 1 | 1st | Eat (E) |
Broiler 1 | 2nd | Walk (W) |
Broiler 1 | 3rd | Drink (D) |
Broiler 2 | 1st | Lying down (Ld) |
Broiler 2 | 2nd | Preening (P) |
Broilers Housed in a Non-Enriched Environment | ||
MinSupport | Sequence Number | Sequence |
1.0, 0.9 and 0.8 | 1 size 1 | <{Ld,P}> (n = 10) |
0.7 and 0.6 | 1 size 1 and 1 size 2 | <{Ld,F}> (n = 7); <{Ld,P} {Ld,P}> (n = 7) |
0.5 | 1 size 2 | <{Ld,F} {Ld,P}> (n = 5) |
0.4 | 1 size 2 | <{Ld,P} {Ld,F}> (n = 4) |
0.3 | 2 size 1 and 1 size 3 | <{P,F,P}> (n = 3); <{Ld,P,F}> (n = 3); <{Ld,P} {Ld,P} {Ld,P}> (n = 3) |
0.2 | 4 size 1, 8 size 2, 6 size 3, and 1 size 4 | <{E,W,F}> (n = 2); <{W,F,P}> (n = 2); <{D,W,E}> (n = 2); <{F,P,W,E}> (n = 2); <{Ld,P} {Ld,P,F}> (n = 2); <{Ld,P} {D,W,E}> (n = 2); <{P,F,P} {Ld,P}> (n = 2); <{P,F,P} {Ld,F}> (n = 2); <{Ld,F} {Ld,P,F}> (n = 2); <{Ld,F} {D,W,E}> (n = 2); <{Ld,P,F} {Ld,P}> (n = 2); <{W,F,P} {Ld,P}> (n = 2); <{Ld,P} {Ld,P} {Ld,F}> (n = 2); <{Ld,P} {Ld,F} {Ld,P}> (n = 2); <{P,F,P} {Ld,P} {Ld,P}> (n = 2); <{P,F,P} {Ld,P} {Ld,F}> (n = 2); <{Ld,F} {Ld,P} {Ld,P}> (n = 2); <{Ld,F} {Ld,P} {Ld,P,F}> (n = 2); <{P,F,P} {Ld,P} {Ld,F} {Ld,P}> (n = 2) |
Broilers Housed in an Enriched Environment | ||
MinSupport | Sequence Number | Sequence |
1.0 to 0.8 | None | |
0.7 and 0.6 | 1 size 1 | <{Ld,P}> (n = 7) |
0.5 | 2 size 1 | <{Ld,P,F,P}> (n = 5); <{Ld,P,F}> (n = 5) |
0.4 | 1 size 1 | <{F,P}> (n = 4) |
0.3 | 3 size 1 and 2 size 2 | <{P,F,P}> (n = 3); <{P,Ld}> (n = 3); <{Ld,F,P}> (n = 3); <{Ld,P} {Ld,P,F,P}> (n = 3); <{Ld,P,F,P} {Ld,P,F,P}> (n = 3) |
0.2 | 4 size 1, 11 size 2, 4 size 3, and 1 size 4 | <{Ld,F,P,F}> (n = 2); <{Ld,F}> (n = 2); <{Ld,P,Sf,P}> (n = 2); <{E,W,F}> (n = 2); <{Ld,P} {Ld,F}> (n = 2); <{Ld,P} {Ld,F,P}> (n = 2); <{F,P} {Ld,P,F,P}> (n = 2); <{Ld,P,F,P} {Ld,F}> (n = 2); <{P,F,P} {Ld,P}> (n = 2); <{P,F,P} {Ld,P,F,P}> (n = 2); <{Ld,F} {Ld,F}> (n = 2); <{P,Ld} {Ld,P}>; <{P,Ld} {Ld, P,F}>; <{E,W,F} {F,P}> (n = 2); <{Ld,P,F} {Ld,P}> (n = 2); <{Ld,P} {Ld,F} {Ld,F}> (n = 2); <{Ld,P} {Ld,P,F,P} {Ld,P,F,P}> (n = 2); <{Ld,P} {Ld,P,F,P} {Ld,F}> (n = 2); <{Ld,P,F,P} {Ld,F} {Ld,F}> (n = 2); <{Ld,P} {Ld,P,F,P} {Ld,F} {Ld,F}> (n = 2) |
Broilers Housed in a Non-Enriched Environment | ||
MinSupport | Sequence Number | Sequence |
1.0 to 0.5 | None | |
0.4 | 1 size 1 | <{Ld,P,W,D,W}> (n = 4) |
0.3 | 2 size 1 | <{Ld,P}> (n = 3); <{Ld,F,P}> (n = 3) |
0.2 | 3 size 1 and 1 size 2 | <{Ld,P,F}> (n = 2); <{Ld,P,St,Ll}> (n = 2); <{E,W,P,W,F}> (n = 2); <{Ld,P,St,Ll} {Ld,P,W,D,W}> (n = 2) |
Broilers Housed in an Enriched Environment | ||
MinSupport | Sequence Number | Sequence |
1.0 to 0.4 | None | |
0.3 | 1 size 1 | <{E,W,F}> (n = 3) |
0.2 | 6 size 1 and 1 size 2 | <{Ld,F}> (n = 2); <{Ld,W,D}> (n = 2); <{Ld,P,W,P}> (n = 2); <{E,W,D}> (n = 2); <{P,F,St,P}> (n = 2); <{E,F,E}> (n = 2); <{P,F,St,P} {E,W,F}> (n = 2) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Massari, J.M.; Moura, D.J.d.; Nääs, I.d.A.; Pereira, D.F.; Oliveira, S.R.d.M.; Branco, T.; Barros, J.d.S.G. Sequential Behavior of Broiler Chickens in Enriched Environments under Varying Thermal Conditions Using the Generalized Sequential Pattern Algorithm: A Proof of Concept. Animals 2024, 14, 2010. https://doi.org/10.3390/ani14132010
Massari JM, Moura DJd, Nääs IdA, Pereira DF, Oliveira SRdM, Branco T, Barros JdSG. Sequential Behavior of Broiler Chickens in Enriched Environments under Varying Thermal Conditions Using the Generalized Sequential Pattern Algorithm: A Proof of Concept. Animals. 2024; 14(13):2010. https://doi.org/10.3390/ani14132010
Chicago/Turabian StyleMassari, Juliana Maria, Daniella Jorge de Moura, Irenilza de Alencar Nääs, Danilo Florentino Pereira, Stanley Robson de Medeiros Oliveira, Tatiane Branco, and Juliana de Souza Granja Barros. 2024. "Sequential Behavior of Broiler Chickens in Enriched Environments under Varying Thermal Conditions Using the Generalized Sequential Pattern Algorithm: A Proof of Concept" Animals 14, no. 13: 2010. https://doi.org/10.3390/ani14132010
APA StyleMassari, J. M., Moura, D. J. d., Nääs, I. d. A., Pereira, D. F., Oliveira, S. R. d. M., Branco, T., & Barros, J. d. S. G. (2024). Sequential Behavior of Broiler Chickens in Enriched Environments under Varying Thermal Conditions Using the Generalized Sequential Pattern Algorithm: A Proof of Concept. Animals, 14(13), 2010. https://doi.org/10.3390/ani14132010